diff --git a/Grid/serialisation/BaseIO.h b/Grid/serialisation/BaseIO.h index 7793b061..11dfee0e 100644 --- a/Grid/serialisation/BaseIO.h +++ b/Grid/serialisation/BaseIO.h @@ -42,6 +42,7 @@ namespace Grid { : std::integral_constant::value> {}; // Eigen tensors can be composed of arithmetic scalar and complex types + // TODO Support Grid::comples from GPU port template struct is_scalar : std::integral_constant::value || is_complex::value> {}; @@ -202,10 +203,10 @@ namespace Grid { Scalar * pScalar = ET.data(); for( std::size_t j = 0; j < NumScalars; j++ ) { // if constexpr is C++ 17 ... but otherwise need two specialisations (Container vs Scalar) - if constexpr ( InnerRank == 0 ) { + if constexpr ( EigenIO::is_scalar::value ) { lambda( * pScalar, Seq++, MyIndex ); } else { - for( typename Scalar::scalar_type &Source : * pScalar ) { + for( typename EigenIO::Traits::scalar_type &Source : * pScalar ) { lambda(Source, Seq++, MyIndex ); // Now increment SubIndex for( auto i = rank + InnerRank - 1; i != rank - 1 && ++MyIndex[i] == Dims[i]; i-- ) @@ -244,7 +245,7 @@ namespace Grid { std::cout << pName; for( auto i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]"; std::cout << " in memory order:" << std::endl; - for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array Dims ){ + for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array &Dims ){ std::cout << " "; for( auto dim : Dims ) std::cout << "[" << dim << "]"; @@ -253,6 +254,16 @@ namespace Grid { std::cout << "========================================" << std::endl; } + template + typename std::enable_if::value, void>::type + dump_tensor_func(T &t, const char * pName = nullptr) + { + std::cout << "Dumping non-tensor object "; + if( pName ) + std::cout << pName; + std::cout << "=" << t; + } + // Helper to dump a tensor in memory order // Kind of superfluous given the above ... just keeping in case I need to fall back to this #define DumpMemoryOrder(args...) DumpMemoryOrder_func(args) @@ -379,12 +390,12 @@ namespace Grid { template typename std::enable_if::value, void>::type Reshape(ETensor &t, const std::array &dims ); - template + /*template typename std::enable_if::value, std::size_t>::type DimSize(ETensor &t, std::size_t dim ); template typename std::enable_if::value, std::size_t>::type - DimSize(ETensor &t, std::size_t dim ); + DimSize(ETensor &t, std::size_t dim );*/ protected: template void fromString(U &output, const std::string &s); @@ -677,43 +688,52 @@ namespace Grid { Reader::read(const std::string &s, ETensor &output) { // alias to element type - using Scalar = typename EigenIO::Traits::scalar_type; + using Container = typename ETensor::Scalar; + using Traits = EigenIO::Traits; + using Scalar = typename Traits::scalar_type; // read the (flat) data and dimensionality std::vector dimData; std::vector buf; upcast->readMultiDim( s, buf, dimData ); // Make sure that the number of elements read matches dimensions read - const std::size_t NumElements{buf.size()}; - std::size_t NumElements_check = 1; + std::size_t NumElements = 1; std::size_t RankRequired = 0; std::vector dimNonTrivial; dimNonTrivial.reserve(dimData.size()); for( auto d : dimData ) { - NumElements_check *= d; + NumElements *= d; if( d > 1 ) { RankRequired++; dimNonTrivial.push_back(d); } } - //if( RankRequired == 0 ) RankRequired++; - assert( NumElements_check == NumElements ); + assert( NumElements == buf.size() && "Number of elements read back <> product of dimensions" ); + // If our scalar object is a Container, make sure it's dimensions match what we read back + const auto InnerRank{Traits::rank_non_trivial}; + if ( InnerRank > 0 ) { + assert( RankRequired >= InnerRank && "Tensor Container too complex for data" ); + for( auto i = InnerRank - 1 ; i != -1 ; i-- ) { + auto d = dimNonTrivial[--RankRequired]; + assert( d == Traits::DimensionNT(i) && "Tensor Container dimensions don't match data" ); + NumElements /= d; + dimNonTrivial.pop_back(); + } + } // Make sure our object has the right rank - using Container = typename ETensor::Scalar; - const auto InnerRank = EigenIO::Traits::rank_non_trivial; - assert( ETensor::NumDimensions + InnerRank >= RankRequired ); + assert( ETensor::NumDimensions >= RankRequired ); bool bShapeOK = true; std::size_t RankNonTrivial = 0; - // Make sure fixed dimension objects have allocated memory + const auto & dims{output.dimensions()}; using ETDims = std::array; ETDims dimsNew; + // Make sure fixed dimension objects have allocated memory /*if constexpr( EigenIO::is_tensor_fixed::value ) { for( auto &d : dimsNew ) d = 0; output( dimsNew ) = 0; }*/ - //const auto & dims{output.dimensions()}; for( auto i = 0, j = 0 ; bShapeOK && i < ETensor::NumDimensions ; i++ ) { - auto d = DimSize( output, i ); + auto d = dims[i]; if( d < 1 ) bShapeOK = false; else if( d > 1 ) { @@ -737,14 +757,14 @@ namespace Grid { std::size_t idx = 0; for( auto n = 0 ; n < NumElements ; n++ ) { Container & c = output( MyIndex ); - if constexpr( InnerRank == 0 ) { + if constexpr ( EigenIO::is_scalar::value ) { c = buf[idx++]; } else { for( Scalar & s : c ) s = buf[idx++]; } // Now increment the index - for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- ) + for( int i = ETensor::NumDimensions - 1; i >= 0 && ++MyIndex[i] == dims[i]; i-- ) MyIndex[i] = 0; } } @@ -766,7 +786,7 @@ namespace Grid { t.resize( dims ); } - template + /*template template typename std::enable_if::value, std::size_t>::type Reader::DimSize(ETensor &t, std::size_t dim ) @@ -780,7 +800,7 @@ namespace Grid { Reader::DimSize(ETensor &t, std::size_t dim ) { return t.dimension(dim); - } + }*/ template template diff --git a/tests/IO/Test_serialisation.cc b/tests/IO/Test_serialisation.cc index b330d133..73045155 100644 --- a/tests/IO/Test_serialisation.cc +++ b/tests/IO/Test_serialisation.cc @@ -98,6 +98,8 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam bool good = Serializable::CompareMember(object, buf); if (!good) { std::cout << " failure!" << std::endl; + if constexpr (EigenIO::is_tensor::value) + dump_tensor(buf,"???"); exit(EXIT_FAILURE); } std::cout << " done." << std::endl; @@ -109,21 +111,28 @@ typedef std::complex TestScalar; typedef Eigen::Tensor TestTensor; typedef Eigen::TensorFixedSize, Eigen::StorageOptions::RowMajor> TestTensorFixed; typedef std::vector aTestTensorFixed; -typedef Eigen::TensorFixedSize> LSCTensor; -typedef Eigen::TensorFixedSize> LCMTensor; +typedef Eigen::TensorFixedSize, Eigen::StorageOptions::RowMajor> LSCTensor; +typedef Eigen::TensorFixedSize, Eigen::StorageOptions::RowMajor> LCMTensor; // From Test_serialisation.cc -class ETSerClass: Serializable { +class PerambIOTestClass: Serializable { public: - GRID_SERIALIZABLE_CLASS_MEMBERS(ETSerClass - , SpinColourVector, scv - , SpinColourMatrix, scm - , TestTensor, Critter - , TestTensorFixed, FixedCritter - , aTestTensorFixed, aFixedCritter - , LSCTensor, MyLSCTensor - , LCMTensor, MyLCMTensor + using PerambTensor = Eigen::Tensor; + GRID_SERIALIZABLE_CLASS_MEMBERS(PerambIOTestClass + //, SpinColourVector, scv + //, SpinColourMatrix, scm + , PerambTensor, Perambulator + , std::vector, DistilParameterNames + , std::vector, DistilParameterValues + //, TestTensor, Critter + //, TestTensorFixed, FixedCritter + //, aTestTensorFixed, aFixedCritter + //, LSCTensor, MyLSCTensor + //, LCMTensor, MyLCMTensor ); - ETSerClass() : Critter(7,3,2), aFixedCritter(3) {} + PerambIOTestClass() : Perambulator(2,3,1,4,5,1), + DistilParameterNames {"alpha", "beta", "gamma", "delta", "epsilon", "what's f?"}, + DistilParameterValues{2,3,1,4,5,1}//, Critter(7,3,2), aFixedCritter(3) + {} }; bool EigenIOTest(void) { @@ -157,7 +166,7 @@ bool EigenIOTest(void) { Val += Inc; } ioTest("iotest_tensor.h5", t, "eigen_tensor_instance_name"); - dump_tensor(t, "t"); + //dump_tensor(t, "t"); // Now serialise a fixed size tensor using FixedTensor = Eigen::TensorFixedSize>; @@ -170,11 +179,26 @@ bool EigenIOTest(void) { Val += Inc; } ioTest("iotest_tensor_fixed.h5", tf, "eigen_tensor_fixed_name"); - dump_tensor(tf, "tf"); + //dump_tensor(tf, "tf"); + + PerambIOTestClass o; + for_all( o.Perambulator, [&](TestScalar &c, float f, const std::array::rank_non_trivial> &Dims ){ + c = TestScalar{f,-f}; + //std::cout << " a(" << Dims[0] << "," << Dims[1] << "," << Dims[2] << ")=" << c; + } ); + dump_tensor(o.Perambulator, "PerambIOTestClass" ); + /*for_all( o.FixedCritter, [&](TestScalar &c, float f, const std::array &Dims ){ + c = TestScalar{f,-f}; + //std::cout << " a(" << Dims[0] << "," << Dims[1] << "," << Dims[2] << ")=" << c; + } ); + for( auto &z : o.aFixedCritter ) + for_all( z, [&](TestScalar &c, float f, const std::array &Dims ){ + c = TestScalar{f,-f}; + //std::cout << " a(" << Dims[0] << "," << Dims[1] << "," << Dims[2] << ")=" << c; + } );*/ + ioTest("iotest_object.h5", o, "PerambIOTestClass_object_instance_name"); + //DumpMemoryOrder(o.Perambulator); - ETSerClass o; - ioTest("iotest_object.h5", o, "ETSerClass_object_instance_name"); - // Tensor of spin colour LSCTensor l; Val = 0; @@ -188,7 +212,7 @@ bool EigenIOTest(void) { Val += Inc; } ioTest("iotest_LSCTensor.h5", l, "LSCTensor_object_instance_name"); - dump_tensor(l, "l"); + //dump_tensor(l, "l"); // Tensor of spin colour LCMTensor l2; @@ -204,7 +228,8 @@ bool EigenIOTest(void) { Val += Inc; } ioTest("iotest_LCMTensor.h5", l2, "LCMTensor_object_instance_name"); - + //dump_tensor(l2, "l2"); + std::cout << "Wow!" << std::endl; return true; diff --git a/tests/hadrons/Test_hadrons_distil.cc b/tests/hadrons/Test_hadrons_distil.cc index 3c38e915..00a681f0 100644 --- a/tests/hadrons/Test_hadrons_distil.cc +++ b/tests/hadrons/Test_hadrons_distil.cc @@ -315,28 +315,30 @@ bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true ) typedef Grid::Hadrons::MDistil::NamedTensor MyTensor; -void DebugShowTensor(MyTensor &x, const char * n) +template +void DebugShowTensor(T &x, const char * n) { const MyTensor::Index s{x.size()}; std::cout << n << ".size() = " << s << std::endl; std::cout << n << ".NumDimensions = " << x.NumDimensions << " (TensorBase)" << std::endl; std::cout << n << ".NumIndices = " << x.NumIndices << std::endl; - const MyTensor::Dimensions & d{x.dimensions()}; - std::cout << n << ".dimensions().size() = " << d.size() << std::endl; + const auto d{x.dimensions()}; + //std::cout << n << ".dimensions().size() = " << d.size() << std::endl; std::cout << "Dimensions are "; - for(auto i : d ) std::cout << "[" << i << "]"; + for(auto i = 0; i < x.NumDimensions ; i++) + std::cout << "[" << d[i] << "]"; std::cout << std::endl; MyTensor::Index SizeCalculated{1}; std::cout << "Dimensions again"; - for(int i=0 ; i < d.size() ; i++ ) { - std::cout << " : [" << i << ", " << x.IndexNames[i] << "]=" << d[i]; + for(int i=0 ; i < x.NumDimensions ; i++ ) { + std::cout << " : [" << i << /*", " << x.IndexNames[i] << */"]=" << x.dimension(i); SizeCalculated *= d[i]; } std::cout << std::endl; std::cout << "SizeCalculated = " << SizeCalculated << std::endl;\ assert( SizeCalculated == s ); // Initialise - assert( d.size() == 3 ); + assert( x.NumDimensions == 3 ); for( int i = 0 ; i < d[0] ; i++ ) for( int j = 0 ; j < d[1] ; j++ ) for( int k = 0 ; k < d[2] ; k++ ) { @@ -345,7 +347,7 @@ void DebugShowTensor(MyTensor &x, const char * n) } // Show raw data std::cout << "Data follow : " << std::endl; - Complex * p = x.data(); + typename T::Scalar * p = x.data(); for( auto i = 0 ; i < s ; i++ ) { if( i ) std::cout << ", "; std::cout << n << ".data()[" << i << "]=" << * p++; @@ -415,6 +417,10 @@ void DebugTestTypeEqualities(void) bool DebugEigenTest() { + { + Eigen::TensorFixedSize,Eigen::Sizes<3,4,5>> x; + DebugShowTensor(x, "fixed"); + } const char pszTestFileName[] = "test_tensor.bin"; std::array as={"Alpha", "Beta", "Gamma"}; MyTensor x(as, 2,1,4); @@ -636,7 +642,7 @@ int main(int argc, char *argv[]) << ", sizeof(std::size_t) = " << sizeof(std::size_t) << ", sizeof(std::streamsize) = " << sizeof(std::streamsize) << ", sizeof(Eigen::Index) = " << sizeof(Eigen::Index) << std::endl; - //if( DebugEigenTest() ) return 0; + if( DebugEigenTest() ) return 0; if(DebugGridTensorTest()) return 0; #endif