1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-12-19 12:14:29 +00:00

Simplifying the MultiRHS solver to make it do SRHS *and* MRHS

This commit is contained in:
Peter Boyle
2024-03-06 14:04:33 -05:00
parent ee3b3c4c56
commit 070b61f08f
5 changed files with 287 additions and 478 deletions

View File

@@ -51,15 +51,15 @@ public:
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice<CComplex > FineComplexField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
GridCartesian * _CoarseGridMulti;
GridCartesian * _CoarseGrid;
GeneralCoarseOp & _Op;
NonLocalStencilGeometry geom;
NonLocalStencilGeometry geom_srhs;
PaddedCell Cell;
GeneralLocalStencil Stencil;
@@ -77,20 +77,57 @@ public:
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
MultiGeneralCoarsenedMatrix(GeneralCoarseOp & Op,GridCartesian *CoarseGridMulti) :
_Op(Op),
_CoarseGrid(Op.CoarseGrid()),
// Can be used to do I/O on the operator matrices externally
void SetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
GridtoBLAS(A[p],BLAS_A[p]);
}
void GetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
BLAStoGrid(A[p],BLAS_A[p]);
}
/*
void CopyMatrix (GeneralCoarseOp &_Op)
{
for(int p=0;p<geom.npoint;p++){
auto Aup = _Op.Cell.Extract(_Op._A[p]);
//Unpadded
GridtoBLAS(Aup,BLAS_A[p]);
}
}
void CheckMatrix (GeneralCoarseOp &_Op)
{
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
for(int p=0;p<geom.npoint;p++){
//Unpadded
auto Aup = _Op.Cell.Extract(_Op._A[p]);
auto Ack = Aup;
BLAStoGrid(Ack,BLAS_A[p]);
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
}
std::cout <<"************* "<<std::endl;
}
*/
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
_CoarseGridMulti(CoarseGridMulti),
geom(_CoarseGridMulti,Op.geom.hops,Op.geom.skip+1),
Cell(Op.geom.Depth(),_CoarseGridMulti),
geom_srhs(_geom),
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
Cell(geom.Depth(),_CoarseGridMulti),
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
{
int32_t padded_sites = _Op._A[0].Grid()->lSites();
int32_t unpadded_sites = _CoarseGrid->lSites();
int32_t padded_sites = Cell.grids.back()->lSites();
int32_t unpadded_sites = CoarseGridMulti->lSites();
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
int32_t orhs = nrhs/CComplex::Nsimd();
padded_sites = padded_sites/nrhs;
unpadded_sites = unpadded_sites/nrhs;
/////////////////////////////////////////////////
// Device data vector storage
/////////////////////////////////////////////////
@@ -98,9 +135,9 @@ public:
for(int p=0;p<geom.npoint;p++){
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
}
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
BLAS_AP.resize(geom.npoint);
BLAS_BP.resize(geom.npoint);
for(int p=0;p<geom.npoint;p++){
@@ -113,21 +150,20 @@ public:
// Pointers to data
/////////////////////////////////////////////////
// Site identity mapping for A, C
// Site identity mapping for A
for(int p=0;p<geom.npoint;p++){
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
acceleratorPut(BLAS_AP[p][ss],ptr);
}
}
// Site identity mapping for C
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
acceleratorPut(BLAS_CP[ss],ptr);
}
/////////////////////////////////////////////////
// Neighbour table is more complicated
/////////////////////////////////////////////////
int32_t j=0; // Interior point counter (unpadded)
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
int ghost_zone=0;
@@ -150,18 +186,9 @@ public:
}
}
assert(j==unpadded_sites);
CopyMatrix();
}
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
{
#if 0
std::vector<typename vobj::scalar_object> tmp;
unvectorizeToLexOrdArray(tmp,from);
assert(tmp.size()==from.Grid()->lSites());
assert(tmp.size()==to.size());
to.resize(tmp.size());
acceleratorCopyToDevice(&tmp[0],&to[0],sizeof(typename vobj::scalar_object)*tmp.size());
#else
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
@@ -206,17 +233,9 @@ public:
to[w] = stmp;
}
});
#endif
}
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
{
#if 0
std::vector<typename vobj::scalar_object> tmp;
tmp.resize(in.size());
assert(in.size()==grid.Grid()->lSites());
acceleratorCopyFromDevice(&in[0],&tmp[0],sizeof(typename vobj::scalar_object)*in.size());
vectorizeFromLexOrdArray(tmp,grid);
#else
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
@@ -261,15 +280,152 @@ public:
putlane(to[w], stmp, to_lane);
}
});
#endif
}
void CopyMatrix (void)
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace,
GridBase *CoarseGrid)
{
for(int p=0;p<geom.npoint;p++){
//Unpadded
auto Aup = _Op.Cell.Extract(_Op._A[p]);
GridtoBLAS(Aup,BLAS_A[p]);
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
GridBase *grid = Subspace.FineGrid;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid);
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom_srhs.npoint;
Coordinate clatt = CoarseGrid->GlobalDimensions();
int Nd = CoarseGrid->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
CoarseVector coarseInner(CoarseGrid);
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid);
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
// Could save on storage here
std::vector<CoarseMatrix> _A;
_A.resize(geom_srhs.npoint,CoarseGrid);
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
CoarseVector FT(CoarseGrid);
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
phaV = phaF[p]*Subspace.subspace[i];
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
linop.Op(phaV,MphaV);
// Fixme, could use batched block projector here
blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;
}
for(int k=0;k<npoint;k++){
FT = Zero();
for(int l=0;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT, AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
}
// Only needed if nonhermitian
// if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
// }
// Need to write something to populate Adag from A
for(int p=0;p<geom_srhs.npoint;p++){
GridtoBLAS(_A[p],BLAS_A[p]);
}
/*
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
Takes 600s to compute matrix elements, DOMINATED by the block project.
Easy to speed up with the batched block project.
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
*/
}
void Mdag(const CoarseVector &in, CoarseVector &out)
{
@@ -302,16 +458,17 @@ public:
const int Nsimd = CComplex::Nsimd();
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
assert(nrhs>=1);
RealD flops,bytes;
int64_t osites=in.Grid()->oSites(); // unpadded
int64_t unpadded_vol = _CoarseGrid->lSites();
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
+ 2.0*osites*sizeof(siteVector)*npoint;
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
assert(nrhs>=1);
t_GtoB=-usecond();
GridtoBLAS(pin,BLAS_B);
@@ -339,7 +496,7 @@ public:
BLAStoGrid(out,BLAS_C);
t_BtoG+=usecond();
t_tot+=usecond();
/*
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
@@ -351,12 +508,12 @@ public:
std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
*/
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);