mirror of
https://github.com/paboyle/Grid.git
synced 2025-12-19 12:14:29 +00:00
Simplifying the MultiRHS solver to make it do SRHS *and* MRHS
This commit is contained in:
@@ -51,15 +51,15 @@ public:
|
||||
typedef iVector<CComplex,nbasis > Cvec;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef Lattice<CComplex > FineComplexField;
|
||||
typedef CoarseVector Field;
|
||||
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
GridCartesian * _CoarseGridMulti;
|
||||
GridCartesian * _CoarseGrid;
|
||||
GeneralCoarseOp & _Op;
|
||||
NonLocalStencilGeometry geom;
|
||||
NonLocalStencilGeometry geom_srhs;
|
||||
PaddedCell Cell;
|
||||
GeneralLocalStencil Stencil;
|
||||
|
||||
@@ -77,20 +77,57 @@ public:
|
||||
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
|
||||
MultiGeneralCoarsenedMatrix(GeneralCoarseOp & Op,GridCartesian *CoarseGridMulti) :
|
||||
_Op(Op),
|
||||
_CoarseGrid(Op.CoarseGrid()),
|
||||
// Can be used to do I/O on the operator matrices externally
|
||||
void SetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
assert(A.size()==geom_srhs.npoint);
|
||||
GridtoBLAS(A[p],BLAS_A[p]);
|
||||
}
|
||||
void GetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
assert(A.size()==geom_srhs.npoint);
|
||||
BLAStoGrid(A[p],BLAS_A[p]);
|
||||
}
|
||||
/*
|
||||
void CopyMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
//Unpadded
|
||||
GridtoBLAS(Aup,BLAS_A[p]);
|
||||
}
|
||||
}
|
||||
void CheckMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
//Unpadded
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
auto Ack = Aup;
|
||||
BLAStoGrid(Ack,BLAS_A[p]);
|
||||
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
|
||||
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
|
||||
}
|
||||
std::cout <<"************* "<<std::endl;
|
||||
}
|
||||
*/
|
||||
|
||||
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
|
||||
_CoarseGridMulti(CoarseGridMulti),
|
||||
geom(_CoarseGridMulti,Op.geom.hops,Op.geom.skip+1),
|
||||
Cell(Op.geom.Depth(),_CoarseGridMulti),
|
||||
geom_srhs(_geom),
|
||||
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
|
||||
Cell(geom.Depth(),_CoarseGridMulti),
|
||||
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
|
||||
{
|
||||
int32_t padded_sites = _Op._A[0].Grid()->lSites();
|
||||
int32_t unpadded_sites = _CoarseGrid->lSites();
|
||||
int32_t padded_sites = Cell.grids.back()->lSites();
|
||||
int32_t unpadded_sites = CoarseGridMulti->lSites();
|
||||
|
||||
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
|
||||
int32_t orhs = nrhs/CComplex::Nsimd();
|
||||
|
||||
padded_sites = padded_sites/nrhs;
|
||||
unpadded_sites = unpadded_sites/nrhs;
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Device data vector storage
|
||||
/////////////////////////////////////////////////
|
||||
@@ -98,9 +135,9 @@ public:
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
|
||||
}
|
||||
|
||||
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
|
||||
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
|
||||
|
||||
BLAS_AP.resize(geom.npoint);
|
||||
BLAS_BP.resize(geom.npoint);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
@@ -113,21 +150,20 @@ public:
|
||||
// Pointers to data
|
||||
/////////////////////////////////////////////////
|
||||
|
||||
// Site identity mapping for A, C
|
||||
// Site identity mapping for A
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
|
||||
acceleratorPut(BLAS_AP[p][ss],ptr);
|
||||
}
|
||||
}
|
||||
// Site identity mapping for C
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
|
||||
acceleratorPut(BLAS_CP[ss],ptr);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Neighbour table is more complicated
|
||||
/////////////////////////////////////////////////
|
||||
int32_t j=0; // Interior point counter (unpadded)
|
||||
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
|
||||
int ghost_zone=0;
|
||||
@@ -150,18 +186,9 @@ public:
|
||||
}
|
||||
}
|
||||
assert(j==unpadded_sites);
|
||||
CopyMatrix();
|
||||
}
|
||||
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
|
||||
{
|
||||
#if 0
|
||||
std::vector<typename vobj::scalar_object> tmp;
|
||||
unvectorizeToLexOrdArray(tmp,from);
|
||||
assert(tmp.size()==from.Grid()->lSites());
|
||||
assert(tmp.size()==to.size());
|
||||
to.resize(tmp.size());
|
||||
acceleratorCopyToDevice(&tmp[0],&to[0],sizeof(typename vobj::scalar_object)*tmp.size());
|
||||
#else
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@@ -206,17 +233,9 @@ public:
|
||||
to[w] = stmp;
|
||||
}
|
||||
});
|
||||
#endif
|
||||
}
|
||||
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
|
||||
{
|
||||
#if 0
|
||||
std::vector<typename vobj::scalar_object> tmp;
|
||||
tmp.resize(in.size());
|
||||
assert(in.size()==grid.Grid()->lSites());
|
||||
acceleratorCopyFromDevice(&in[0],&tmp[0],sizeof(typename vobj::scalar_object)*in.size());
|
||||
vectorizeFromLexOrdArray(tmp,grid);
|
||||
#else
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@@ -261,15 +280,152 @@ public:
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
#endif
|
||||
}
|
||||
void CopyMatrix (void)
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace,
|
||||
GridBase *CoarseGrid)
|
||||
{
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
//Unpadded
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
GridtoBLAS(Aup,BLAS_A[p]);
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
||||
|
||||
GridBase *grid = Subspace.FineGrid;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom_srhs.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
||||
int Nd = CoarseGrid->Nd();
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid);
|
||||
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid);
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
}
|
||||
|
||||
// Could save on storage here
|
||||
std::vector<CoarseMatrix> _A;
|
||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
||||
CoarseVector FT(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
linop.Op(phaV,MphaV);
|
||||
|
||||
// Fixme, could use batched block projector here
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
}
|
||||
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT, AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
// if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
// }
|
||||
// Need to write something to populate Adag from A
|
||||
|
||||
for(int p=0;p<geom_srhs.npoint;p++){
|
||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
||||
}
|
||||
/*
|
||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
|
||||
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
|
||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
|
||||
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
|
||||
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
|
||||
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
|
||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
|
||||
Easy to speed up with the batched block project.
|
||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
|
||||
*/
|
||||
}
|
||||
void Mdag(const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
@@ -302,16 +458,17 @@ public:
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
|
||||
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
|
||||
assert(nrhs>=1);
|
||||
|
||||
RealD flops,bytes;
|
||||
int64_t osites=in.Grid()->oSites(); // unpadded
|
||||
int64_t unpadded_vol = _CoarseGrid->lSites();
|
||||
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
|
||||
|
||||
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
||||
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
|
||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
||||
|
||||
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
|
||||
assert(nrhs>=1);
|
||||
|
||||
t_GtoB=-usecond();
|
||||
GridtoBLAS(pin,BLAS_B);
|
||||
@@ -339,7 +496,7 @@ public:
|
||||
BLAStoGrid(out,BLAS_C);
|
||||
t_BtoG+=usecond();
|
||||
t_tot+=usecond();
|
||||
|
||||
/*
|
||||
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
|
||||
@@ -351,12 +508,12 @@ public:
|
||||
std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
|
||||
*/
|
||||
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
};
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
Reference in New Issue
Block a user