mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 21:44:33 +00:00 
			
		
		
		
	Split grid communication
This commit is contained in:
		@@ -684,6 +684,307 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
 | 
			
		||||
    merge(out._odata[out_oidx], ptrs, 0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Communicate between grids
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// All to all plan
 | 
			
		||||
//
 | 
			
		||||
// Subvolume on fine grid is v.    Vectors a,b,c,d 
 | 
			
		||||
//
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// SIMPLEST CASE:
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Mesh of nodes (2) ; subdivide to  1 subdivisions
 | 
			
		||||
//
 | 
			
		||||
// Lex ord:   
 | 
			
		||||
//          N0 va0 vb0  N1 va1 vb1 
 | 
			
		||||
//
 | 
			
		||||
// For each dimension do an all to all
 | 
			
		||||
//
 | 
			
		||||
// full AllToAll(0)
 | 
			
		||||
//          N0 va0 va1    N1 vb0 vb1
 | 
			
		||||
//
 | 
			
		||||
// REARRANGE
 | 
			
		||||
//          N0 va01       N1 vb01
 | 
			
		||||
//
 | 
			
		||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
 | 
			
		||||
// NB: Easiest to programme if keep in lex order.
 | 
			
		||||
//
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// SIMPLE CASE:
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// Mesh of nodes (2x2) ; subdivide to  1x1 subdivisions
 | 
			
		||||
//
 | 
			
		||||
// Lex ord:   
 | 
			
		||||
//          N0 va0 vb0 vc0 vd0       N1 va1 vb1 vc1 vd1  
 | 
			
		||||
//          N2 va2 vb2 vc2 vd2       N3 va3 vb3 vc3 vd3 
 | 
			
		||||
//
 | 
			
		||||
// Ratio = full[dim] / split[dim]
 | 
			
		||||
//
 | 
			
		||||
// For each dimension do an all to all; get Nvec -> Nvec / ratio
 | 
			
		||||
//                                          Ldim -> Ldim * ratio
 | 
			
		||||
//                                          LocalVol -> LocalVol * ratio
 | 
			
		||||
// full AllToAll(0)
 | 
			
		||||
//          N0 va0 vb0 va1 vb1       N1 vc0 vd0 vc1 vd1   
 | 
			
		||||
//          N2 va2 vb2 va3 vb3       N3 vc2 vd2 vc3 vd3 
 | 
			
		||||
//
 | 
			
		||||
// REARRANGE
 | 
			
		||||
//          N0 va01 vb01      N1 vc01 vd01
 | 
			
		||||
//          N2 va23 vb23      N3 vc23 vd23
 | 
			
		||||
//
 | 
			
		||||
// full AllToAll(1)           // Not what is wanted. FIXME
 | 
			
		||||
//          N0 va01 va23      N1 vc01 vc23 
 | 
			
		||||
//          N2 vb01 vb23      N3 vd01 vd23
 | 
			
		||||
// 
 | 
			
		||||
// REARRANGE
 | 
			
		||||
//          N0 va0123      N1 vc0123
 | 
			
		||||
//          N2 vb0123      N3 vd0123
 | 
			
		||||
//
 | 
			
		||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
 | 
			
		||||
// NB: Easiest to programme if keep in lex order.
 | 
			
		||||
//
 | 
			
		||||
/////////////////////////////////////////////////////////
 | 
			
		||||
template<class Vobj>
 | 
			
		||||
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename Vobj::scalar_object Sobj;
 | 
			
		||||
 | 
			
		||||
  int full_vecs   = full.size();
 | 
			
		||||
 | 
			
		||||
  assert(full_vecs>=1);
 | 
			
		||||
 | 
			
		||||
  GridBase * full_grid = full[0]._grid;
 | 
			
		||||
  GridBase *split_grid = split._grid;
 | 
			
		||||
 | 
			
		||||
  int       ndim  = full_grid->_ndimension;
 | 
			
		||||
  int  full_nproc = full_grid->_Nprocessors;
 | 
			
		||||
  int split_nproc =split_grid->_Nprocessors;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Checkerboard management
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  int cb = full[0].checkerboard;
 | 
			
		||||
  split.checkerboard = cb;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Checks
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  for(int n=0;n<full_vecs;n++){
 | 
			
		||||
    assert(full[n].checkerboard == cb);
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
 | 
			
		||||
      assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int   nvector   =full_nproc/split_nproc; 
 | 
			
		||||
  assert(nvector*split_nproc==full_nproc);
 | 
			
		||||
  assert(nvector == full_vecs);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> ratio(ndim);
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
    ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int lsites = full_grid->lSites();
 | 
			
		||||
  Integer sz = lsites * nvector;
 | 
			
		||||
  std::vector<Sobj> tmpdata(sz);
 | 
			
		||||
  std::vector<Sobj> alldata(sz);
 | 
			
		||||
  std::vector<Sobj> scalardata(lsites); 
 | 
			
		||||
  for(int v=0;v<nvector;v++){
 | 
			
		||||
    unvectorizeToLexOrdArray(scalardata,full[v]);    
 | 
			
		||||
    parallel_for(int site=0;site<lsites;site++){
 | 
			
		||||
      alldata[v*lsites+site] = scalardata[site];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int nvec = nvector; // Counts down to 1 as we collapse dims
 | 
			
		||||
  std::vector<int> ldims = full_grid->_ldimensions;
 | 
			
		||||
  std::vector<int> lcoor(ndim);
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
 | 
			
		||||
    if ( ratio[d] != 1 ) {
 | 
			
		||||
 | 
			
		||||
      full_grid ->AllToAll(d,alldata,tmpdata);
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      //Local volume for this dimension is expanded by ratio of processor extents
 | 
			
		||||
      // Number of vectors is decreased by same factor
 | 
			
		||||
      // Rearrange to lexico for bigger volume
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      nvec    /= ratio[d];
 | 
			
		||||
      auto rdims = ldims; rdims[d]  *=   ratio[d];
 | 
			
		||||
      auto rsites= lsites*ratio[d];
 | 
			
		||||
      for(int v=0;v<nvec;v++){
 | 
			
		||||
 | 
			
		||||
	// For loop over each site within old subvol
 | 
			
		||||
	for(int lsite=0;lsite<lsites;lsite++){
 | 
			
		||||
 | 
			
		||||
	  Lexicographic::CoorFromIndex(lcoor, lsite, ldims);	  
 | 
			
		||||
 | 
			
		||||
	  for(int r=0;r<ratio[d];r++){ // ratio*nvec terms
 | 
			
		||||
 | 
			
		||||
	    auto rcoor = lcoor;	    rcoor[d]  += r*ldims[d];
 | 
			
		||||
 | 
			
		||||
	    int rsite; Lexicographic::IndexFromCoor(rcoor, rsite, rdims);	  
 | 
			
		||||
	    rsite += v * rsites;
 | 
			
		||||
 | 
			
		||||
	    int rmul=nvec*lsites;
 | 
			
		||||
	    int vmul=     lsites;
 | 
			
		||||
	    alldata[rsite] = tmpdata[lsite+r*rmul+v*vmul];
 | 
			
		||||
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ldims[d]*= ratio[d];
 | 
			
		||||
      lsites  *= ratio[d];
 | 
			
		||||
 | 
			
		||||
      if ( split_grid->_processors[d] > 1 ) {
 | 
			
		||||
	tmpdata = alldata;
 | 
			
		||||
	split_grid->AllToAll(d,tmpdata,alldata);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  vectorizeFromLexOrdArray(alldata,split);    
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Vobj>
 | 
			
		||||
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj>   & split)
 | 
			
		||||
{
 | 
			
		||||
  int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors;
 | 
			
		||||
  std::vector<Lattice<Vobj> > full_v(nvector,full._grid);
 | 
			
		||||
  for(int n=0;n<nvector;n++){
 | 
			
		||||
    full_v[n] = full;
 | 
			
		||||
  }
 | 
			
		||||
  Grid_split(full_v,split);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Vobj>
 | 
			
		||||
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename Vobj::scalar_object Sobj;
 | 
			
		||||
 | 
			
		||||
  int full_vecs   = full.size();
 | 
			
		||||
 | 
			
		||||
  assert(full_vecs>=1);
 | 
			
		||||
 | 
			
		||||
  GridBase * full_grid = full[0]._grid;
 | 
			
		||||
  GridBase *split_grid = split._grid;
 | 
			
		||||
 | 
			
		||||
  int       ndim  = full_grid->_ndimension;
 | 
			
		||||
  int  full_nproc = full_grid->_Nprocessors;
 | 
			
		||||
  int split_nproc =split_grid->_Nprocessors;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Checkerboard management
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  int cb = full[0].checkerboard;
 | 
			
		||||
  split.checkerboard = cb;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Checks
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  for(int n=0;n<full_vecs;n++){
 | 
			
		||||
    assert(full[n].checkerboard == cb);
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
 | 
			
		||||
      assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int   nvector   =full_nproc/split_nproc; 
 | 
			
		||||
  assert(nvector*split_nproc==full_nproc);
 | 
			
		||||
  assert(nvector == full_vecs);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> ratio(ndim);
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
    ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int lsites = full_grid->lSites();
 | 
			
		||||
  Integer sz = lsites * nvector;
 | 
			
		||||
  std::vector<Sobj> tmpdata(sz);
 | 
			
		||||
  std::vector<Sobj> alldata(sz);
 | 
			
		||||
  std::vector<Sobj> scalardata(lsites); 
 | 
			
		||||
 | 
			
		||||
  unvectorizeToLexOrdArray(alldata,split);    
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Start from split grid and work towards full grid
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  std::vector<int> lcoor(ndim);
 | 
			
		||||
  std::vector<int> rcoor(ndim);
 | 
			
		||||
 | 
			
		||||
  int nvec = 1;
 | 
			
		||||
  lsites = split_grid->lSites();
 | 
			
		||||
  std::vector<int> ldims = split_grid->_ldimensions;
 | 
			
		||||
 | 
			
		||||
  for(int d=ndim-1;d>=0;d--){
 | 
			
		||||
 | 
			
		||||
    if ( ratio[d] != 1 ) {
 | 
			
		||||
 | 
			
		||||
      if ( split_grid->_processors[d] > 1 ) {
 | 
			
		||||
	tmpdata = alldata;
 | 
			
		||||
	split_grid->AllToAll(d,tmpdata,alldata);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      //Local volume for this dimension is expanded by ratio of processor extents
 | 
			
		||||
      // Number of vectors is decreased by same factor
 | 
			
		||||
      // Rearrange to lexico for bigger volume
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      auto rsites= lsites/ratio[d];
 | 
			
		||||
      auto rdims = ldims; rdims[d]/=ratio[d];
 | 
			
		||||
 | 
			
		||||
      for(int v=0;v<nvec;v++){
 | 
			
		||||
 | 
			
		||||
	// rsite, rcoor --> smaller local volume
 | 
			
		||||
	// lsite, lcoor --> bigger original (single node?) volume
 | 
			
		||||
	// For loop over each site within smaller subvol
 | 
			
		||||
	for(int rsite=0;rsite<rsites;rsite++){
 | 
			
		||||
 | 
			
		||||
	  Lexicographic::CoorFromIndex(rcoor, rsite, rdims);	  
 | 
			
		||||
	  int lsite;
 | 
			
		||||
 | 
			
		||||
	  for(int r=0;r<ratio[d];r++){ 
 | 
			
		||||
 | 
			
		||||
	    lcoor = rcoor; lcoor[d] += r*rdims[d];
 | 
			
		||||
	    Lexicographic::IndexFromCoor(lcoor, lsite, ldims); lsite += v * lsites;
 | 
			
		||||
 | 
			
		||||
	    int rmul=nvec*rsites;
 | 
			
		||||
	    int vmul=     rsites;
 | 
			
		||||
	    tmpdata[rsite+r*rmul+v*vmul]=alldata[lsite];
 | 
			
		||||
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      nvec   *= ratio[d];
 | 
			
		||||
      ldims[d]=rdims[d];
 | 
			
		||||
      lsites  =rsites;
 | 
			
		||||
 | 
			
		||||
      full_grid ->AllToAll(d,tmpdata,alldata);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  lsites = full_grid->lSites();
 | 
			
		||||
  for(int v=0;v<nvector;v++){
 | 
			
		||||
    parallel_for(int site=0;site<lsites;site++){
 | 
			
		||||
      scalardata[site] = alldata[v*lsites+site];
 | 
			
		||||
    }
 | 
			
		||||
    assert(v<full.size());
 | 
			
		||||
 | 
			
		||||
    vectorizeFromLexOrdArray(scalardata,full[v]);    
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user