1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-10 03:17:07 +01:00

Merge remote-tracking branch 'origin/chulwoo-dec12-2015'

Merge Chulwoo's Lanczos related improvements.
Merge Nd!=4 fixes for pure gauge HMC from Evan.
This commit is contained in:
paboyle
2016-03-08 09:55:14 +00:00
27 changed files with 4429 additions and 3388 deletions

View File

@ -274,7 +274,7 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
assert(0);
// assert(0);
}
};

View File

@ -38,6 +38,8 @@ template<class Field>
class SortEigen {
private:
//hacking for testing for now
#if 0
static bool less_lmd(RealD left,RealD right){
return fabs(left) < fabs(right);
}
@ -45,6 +47,15 @@ class SortEigen {
std::pair<RealD,Field>& right){
return fabs(left.first) < fabs(right.first);
}
#else
static bool less_lmd(RealD left,RealD right){
return left > right;
}
static bool less_pair(std::pair<RealD,Field>& left,
std::pair<RealD,Field>& right){
return left.first > (right.first);
}
#endif
public:

View File

@ -29,6 +29,10 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_IRL_H
#define GRID_IRL_H
#include <string.h> //memset
#ifdef USE_LAPACK
#include <lapacke.h>
#endif
#include <algorithms/iterative/DenseMatrix.h>
#include <algorithms/iterative/EigenSort.h>
@ -49,6 +53,7 @@ public:
int Niter;
int converged;
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
int Np; // Np -- Number of spare vecs in kryloc space
int Nm; // Nm -- total number of vectors
@ -57,6 +62,8 @@ public:
SortEigen<Field> _sort;
// GridCartesian &_fgrid;
LinearOperatorBase<Field> &_Linop;
OperatorFunction<Field> &_poly;
@ -67,7 +74,27 @@ public:
void init(void){};
void Abort(int ff, DenseVector<RealD> &evals, DenseVector<DenseVector<RealD> > &evecs);
ImplicitlyRestartedLanczos(LinearOperatorBase<Field> &Linop, // op
ImplicitlyRestartedLanczos(
LinearOperatorBase<Field> &Linop, // op
OperatorFunction<Field> & poly, // polynmial
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _Niter) : // Max iterations
_Linop(Linop),
_poly(poly),
Nstop(_Nstop),
Nk(_Nk),
Nm(_Nm),
eresid(_eresid),
Niter(_Niter)
{
Np = Nm-Nk; assert(Np>0);
};
ImplicitlyRestartedLanczos(
LinearOperatorBase<Field> &Linop, // op
OperatorFunction<Field> & poly, // polynmial
int _Nk, // sought vecs
int _Nm, // spare vecs
@ -75,6 +102,7 @@ public:
int _Niter) : // Max iterations
_Linop(Linop),
_poly(poly),
Nstop(_Nk),
Nk(_Nk),
Nm(_Nm),
eresid(_eresid),
@ -142,10 +170,11 @@ public:
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
// std::cout << "alpha = " << zalph << " beta "<<beta<<std::endl;
const RealD tiny = 1.0e-20;
if ( beta < tiny ) {
std::cout << " beta is tiny "<<beta<<std::endl;
}
}
lmd[k] = alph;
lme[k] = beta;
@ -219,15 +248,122 @@ public:
}
}
#ifdef USE_LAPACK
void diagonalize_lapack(DenseVector<RealD>& lmd,
DenseVector<RealD>& lme,
int N1,
int N2,
DenseVector<RealD>& Qt,
GridBase *grid){
const int size = Nm;
// tevals.resize(size);
// tevecs.resize(size);
int NN = N1;
double evals_tmp[NN];
double evec_tmp[NN][NN];
memset(evec_tmp[0],0,sizeof(double)*NN*NN);
// double AA[NN][NN];
double DD[NN];
double EE[NN];
for (int i = 0; i< NN; i++)
for (int j = i - 1; j <= i + 1; j++)
if ( j < NN && j >= 0 ) {
if (i==j) DD[i] = lmd[i];
if (i==j) evals_tmp[i] = lmd[i];
if (j==(i-1)) EE[j] = lme[j];
}
int evals_found;
int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
int liwork = 3+NN*10 ;
int iwork[liwork];
double work[lwork];
int isuppz[2*NN];
char jobz = 'V'; // calculate evals & evecs
char range = 'I'; // calculate all evals
// char range = 'A'; // calculate all evals
char uplo = 'U'; // refer to upper half of original matrix
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
int ifail[NN];
int info;
// int total = QMP_get_number_of_nodes();
// int node = QMP_get_node_number();
// GridBase *grid = evec[0]._grid;
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (NN/total)+1;
double vl = 0.0, vu = 0.0;
int il = interval*node+1 , iu = interval*(node+1);
if (iu > NN) iu=NN;
double tol = 0.0;
if (1) {
memset(evals_tmp,0,sizeof(double)*NN);
if ( il <= NN){
printf("total=%d node=%d il=%d iu=%d\n",total,node,il,iu);
LAPACK_dstegr(&jobz, &range, &NN,
(double*)DD, (double*)EE,
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
&tol, // tolerance
&evals_found, evals_tmp, (double*)evec_tmp, &NN,
isuppz,
work, &lwork, iwork, &liwork,
&info);
for (int i = iu-1; i>= il-1; i--){
printf("node=%d evals_found=%d evals_tmp[%d] = %g\n",node,evals_found, i - (il-1),evals_tmp[i - (il-1)]);
evals_tmp[i] = evals_tmp[i - (il-1)];
if (il>1) evals_tmp[i-(il-1)]=0.;
for (int j = 0; j< NN; j++){
evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
if (il>1) evec_tmp[i-(il-1)][j]=0.;
}
}
}
{
// QMP_sum_double_array(evals_tmp,NN);
// QMP_sum_double_array((double *)evec_tmp,NN*NN);
grid->GlobalSumVector(evals_tmp,NN);
grid->GlobalSumVector((double*)evec_tmp,NN*NN);
}
}
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
for(int i=0;i<NN;i++){
for(int j=0;j<NN;j++)
Qt[(NN-1-i)*N2+j]=evec_tmp[i][j];
lmd [NN-1-i]=evals_tmp[i];
}
}
#endif
void diagonalize(DenseVector<RealD>& lmd,
DenseVector<RealD>& lme,
int Nm2,
int Nm,
DenseVector<RealD>& Qt)
int N2,
int N1,
DenseVector<RealD>& Qt,
GridBase *grid)
{
int Niter = 100*Nm;
#ifdef USE_LAPACK
const int check_lapack=0; // just use lapack if 0, check against lapack if 1
if(!check_lapack)
return diagonalize_lapack(lmd,lme,N2,N1,Qt,grid);
DenseVector <RealD> lmd2(N1);
DenseVector <RealD> lme2(N1);
DenseVector<RealD> Qt2(N1*N1);
for(int k=0; k<N1; ++k){
lmd2[k] = lmd[k];
lme2[k] = lme[k];
}
for(int k=0; k<N1*N1; ++k)
Qt2[k] = Qt[k];
// diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
#endif
int Niter = 100*N1;
int kmin = 1;
int kmax = Nk;
int kmax = N2;
// (this should be more sophisticated)
for(int iter=0; iter<Niter; ++iter){
@ -239,7 +375,7 @@ public:
// (Dsh: shift)
// transformation
qr_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax);
qr_decomp(lmd,lme,N2,N1,Qt,Dsh,kmin,kmax);
// Convergence criterion (redef of kmin and kamx)
for(int j=kmax-1; j>= kmin; --j){
@ -250,6 +386,23 @@ public:
}
}
Niter = iter;
#ifdef USE_LAPACK
if(check_lapack){
const double SMALL=1e-8;
diagonalize_lapack(lmd2,lme2,N2,N1,Qt2,grid);
DenseVector <RealD> lmd3(N2);
for(int k=0; k<N2; ++k) lmd3[k]=lmd[k];
_sort.push(lmd3,N2);
_sort.push(lmd2,N2);
for(int k=0; k<N2; ++k){
if (fabs(lmd2[k] - lmd3[k]) >SMALL) std::cout <<"lmd(qr) lmd(lapack) "<< k << ": " << lmd2[k] <<" "<< lmd3[k] <<std::endl;
// if (fabs(lme2[k] - lme[k]) >SMALL) std::cout <<"lme(qr)-lme(lapack) "<< k << ": " << lme2[k] - lme[k] <<std::endl;
}
for(int k=0; k<N1*N1; ++k){
// if (fabs(Qt2[k] - Qt[k]) >SMALL) std::cout <<"Qt(qr)-Qt(lapack) "<< k << ": " << Qt2[k] - Qt[k] <<std::endl;
}
}
#endif
return;
continued:
@ -265,6 +418,7 @@ public:
abort();
}
#if 1
static RealD normalise(Field& v)
{
RealD nn = norm2(v);
@ -326,6 +480,7 @@ until convergence
{
GridBase *grid = evec[0]._grid;
assert(grid == src._grid);
std::cout << " -- Nk = " << Nk << " Np = "<< Np << std::endl;
std::cout << " -- Nm = " << Nm << std::endl;
@ -356,11 +511,21 @@ until convergence
// (uniform vector) Why not src??
// evec[0] = 1.0;
evec[0] = src;
std:: cout <<"norm2(src)= " << norm2(src)<<std::endl;
// << src._grid << std::endl;
normalise(evec[0]);
std:: cout <<"norm2(evec[0])= " << norm2(evec[0]) <<std::endl;
// << evec[0]._grid << std::endl;
// Initial Nk steps
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
// std:: cout <<"norm2(evec[1])= " << norm2(evec[1]) << std::endl;
// std:: cout <<"norm2(evec[2])= " << norm2(evec[2]) << std::endl;
RitzMatrix(evec,Nk);
for(int k=0; k<Nk; ++k){
// std:: cout <<"eval " << k << " " <<eval[k] << std::endl;
// std:: cout <<"lme " << k << " " << lme[k] << std::endl;
}
// Restarting loop begins
for(int iter = 0; iter<Niter; ++iter){
@ -382,15 +547,18 @@ until convergence
lme2[k] = lme[k+k1-1];
}
setUnit_Qt(Nm,Qt);
diagonalize(eval2,lme2,Nm,Nm,Qt);
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
// sorting
_sort.push(eval2,Nm);
// Implicitly shifted QR transformations
setUnit_Qt(Nm,Qt);
for(int ip=k2; ip<Nm; ++ip)
for(int ip=k2; ip<Nm; ++ip){
std::cout << "qr_decomp "<< ip << " "<< eval2[ip] << std::endl;
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
}
for(int i=0; i<(Nk+1); ++i) B[i] = 0.0;
@ -418,7 +586,7 @@ until convergence
lme2[k] = lme[k];
}
setUnit_Qt(Nm,Qt);
diagonalize(eval2,lme2,Nk,Nm,Qt);
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
for(int k = 0; k<Nk; ++k) B[k]=0.0;
@ -426,13 +594,16 @@ until convergence
for(int k = 0; k<Nk; ++k){
B[j] += Qt[k+j*Nm] * evec[k];
}
// std::cout << "norm(B["<<j<<"])="<<norm2(B[j])<<std::endl;
}
// _sort.push(eval2,B,Nk);
Nconv = 0;
// std::cout << std::setiosflags(std::ios_base::scientific);
for(int i=0; i<Nk; ++i){
_poly(_Linop,B[i],v);
// _poly(_Linop,B[i],v);
_Linop.HermOp(B[i],v);
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
RealD vden = norm2(B[i]);
@ -440,11 +611,13 @@ until convergence
v -= eval2[i]*B[i];
RealD vv = norm2(v);
std::cout.precision(13);
std::cout << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
std::cout <<" |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
if(vv<eresid*eresid){
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
if((vv<eresid*eresid) && (i == Nconv) ){
Iconv[Nconv] = i;
++Nconv;
}
@ -455,7 +628,7 @@ until convergence
std::cout<<" #modes converged: "<<Nconv<<std::endl;
if( Nconv>=Nk ){
if( Nconv>=Nstop ){
goto converged;
}
} // end of iter loop
@ -1025,6 +1198,7 @@ static void Lock(DenseMatrix<T> &H, ///Hess mtx
}
}
#endif
};