1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-24 12:45:56 +01:00
This commit is contained in:
Quadro 2021-06-09 16:32:35 -04:00
parent 76837ffc65
commit 096bb98f78

View File

@ -1,560 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file:
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/action/momentum/DirichletFilter.h>
#include <Grid/qcd/action/momentum/DDHMCfilter.h>
#include <Grid/qcd/action/fermion/DirichletFermionOperator.h>
#include <Grid/qcd/action/fermion/SchurFactoredFermionOperator.h>
#include <Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourPseudoFermion.h>
#include <Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion.h>
#include <Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion.h>
NAMESPACE_BEGIN(Grid);
#define MIXED_PRECISION
/*
* Need a plan for gauge field update for mixed precision in HMC (2x speed up)
* -- Store the single prec action operator.
* -- Clone the gauge field from the operator function argument.
* -- Build the mixed precision operator dynamically from the passed operator and single prec clone.
*/
template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class SchurOperatorF>
class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
public:
typedef typename FermionOperatorD::FermionField FieldD;
typedef typename FermionOperatorF::FermionField FieldF;
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid4; //Grid for single-precision fields
GridBase* SinglePrecGrid5; //Grid for single-precision fields
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
FermionOperatorF &FermOpF;
FermionOperatorD &FermOpD;;
SchurOperatorF &LinOpF;
SchurOperatorD &LinOpD;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
MixedPrecisionConjugateGradientOperatorFunction(RealD tol,
Integer maxinnerit,
Integer maxouterit,
GridBase* _sp_grid4,
GridBase* _sp_grid5,
FermionOperatorF &_FermOpF,
FermionOperatorD &_FermOpD,
SchurOperatorF &_LinOpF,
SchurOperatorD &_LinOpD):
LinOpF(_LinOpF),
LinOpD(_LinOpD),
FermOpF(_FermOpF),
FermOpD(_FermOpD),
Tolerance(tol),
InnerTolerance(tol),
MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit),
SinglePrecGrid4(_sp_grid4),
SinglePrecGrid5(_sp_grid5),
OuterLoopNormMult(100.)
{ };
void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi)
{
SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
// Assumption made in code to extract gauge field
// We could avoid storing LinopD reference alltogether ?
assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
////////////////////////////////////////////////////////////////////////////////////
// Must snarf a single precision copy of the gauge field in Linop_d argument
////////////////////////////////////////////////////////////////////////////////////
typedef typename FermionOperatorF::GaugeField GaugeFieldF;
typedef typename FermionOperatorD::GaugeField GaugeFieldD;
typedef typename FermionOperatorF::GaugeLinkField GaugeLinkFieldF;
typedef typename FermionOperatorD::GaugeLinkField GaugeLinkFieldD;
GridBase * GridPtrF = SinglePrecGrid4;
GridBase * GridPtrD = FermOpD.GaugeGrid();
////////////////////////////////////////////////////////////////////////////////////
// Moving this to a Clone method of fermion operator would allow to duplicate the
// physics parameters and decrease gauge field copies
////////////////////////////////////////////////////////////////////////////////////
auto &Umu_d = FermOpD.GetDoubledGaugeField();
auto &Umu_f = FermOpF.GetDoubledGaugeField();
auto &Umu_fe= FermOpF.GetDoubledGaugeFieldE();
auto &Umu_fo= FermOpF.GetDoubledGaugeFieldO();
precisionChange(Umu_f,Umu_d);
pickCheckerboard(Even,Umu_fe,Umu_f);
pickCheckerboard(Odd ,Umu_fo,Umu_f);
////////////////////////////////////////////////////////////////////////////////////
// Could test to make sure that LinOpF and LinOpD agree to single prec?
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
// Make a mixed precision conjugate gradient
////////////////////////////////////////////////////////////////////////////////////
MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
MPCG(src,psi);
}
};
NAMESPACE_END(Grid);
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionR FermionAction;
typedef MobiusFermionF FermionActionF;
typedef DirichletFermionOperator<WilsonImplR> DirichletFermion;
typedef DirichletFermionOperator<WilsonImplF> DirichletFermionF;
typedef MobiusEOFAFermionR FermionEOFAAction;
typedef typename FermionAction::FermionField FermionField;
typedef typename FermionActionF::FermionField FermionFieldF;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 12;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 26;
HMCparams.Trajectories = 1000;
HMCparams.NoMetropolisUntil= 10;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_EOFA4D_lat";
CPparams.rng_prefix = "ckpoint_EOFA4D_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Momentum Dirichlet
Coordinate Block({16,16,16,16});
// TheHMC.Resources.SetMomentumFilter(new DirichletFilter<WilsonImplR::Field>(Block));
TheHMC.Resources.SetMomentumFilter(new DDHMCFilter<WilsonImplR::Field>(Block,1));
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 16;
Real beta = 2.13;
Real light_mass = 0.01;
Real strange_mass = 0.04;
Real pv_mass = 1.0;
RealD M5 = 1.8;
RealD b = 1.0;
RealD c = 0.0;
std::vector<Real> hasenbusch({ 0.04, 0.4, 0.7 });
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
Coordinate latt = GridDefaultLatt();
Coordinate mpi = GridDefaultMpi();
Coordinate simdF = GridDefaultSimd(Nd,vComplexF::Nsimd());
Coordinate simdD = GridDefaultSimd(Nd,vComplexD::Nsimd());
auto GridPtrF = SpaceTimeGrid::makeFourDimGrid(latt,simdF,mpi);
auto GridRBPtrF = SpaceTimeGrid::makeFourDimRedBlackGrid(GridPtrF);
auto FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtrF);
auto FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtrF);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
LatticeGaugeFieldF UF(GridPtrF);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
FermionAction::ImplParams DirichletParams(boundary);
DirichletParams.locally_periodic=true;
double ActionStoppingCondition = 1e-10;
double DerivativeStoppingCondition = 1e-8;
double MaxCGIterations = 30000;
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(8);
ConjugateGradient<FermionField> ActionCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DerivativeCG(DerivativeStoppingCondition,MaxCGIterations);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]);
light_num.push_back(hasenbusch[h]);
}
light_num.push_back(pv_mass);
//////////////////////////////////////////////////////////////
// Forced to replicate the MxPCG and DenominatorsF etc.. because
// there is no convenient way to "Clone" physics params from double op
// into single op for any operator pair.
// Same issue prevents using MxPCG in the Heatbath step
//////////////////////////////////////////////////////////////
typedef SchurDiagMooeeOperator<DirichletFermionF,FermionFieldF> DirichletLinearOperatorF;
typedef SchurDiagMooeeOperator<DirichletFermion ,FermionField > DirichletLinearOperatorD;
typedef SchurDiagMooeeDagOperator<DirichletFermionF,FermionFieldF> DirichletLinearOperatorDagF;
typedef SchurDiagMooeeDagOperator<DirichletFermion ,FermionField > DirichletLinearOperatorDagD;
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> PeriodicLinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > PeriodicLinearOperatorD;
typedef SchurDiagMooeeDagOperator<FermionActionF,FermionFieldF> PeriodicLinearOperatorDagF;
typedef SchurDiagMooeeDagOperator<FermionAction ,FermionField > PeriodicLinearOperatorDagD;
typedef MixedPrecisionConjugateGradientOperatorFunction<DirichletFermion,
DirichletFermionF,
DirichletLinearOperatorD,
DirichletLinearOperatorF> DirichletMxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<DirichletFermion,
DirichletFermionF,
DirichletLinearOperatorD,
DirichletLinearOperatorF> DirichletMxDagPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionAction,
FermionActionF,
PeriodicLinearOperatorD,
PeriodicLinearOperatorF> PeriodicMxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionAction,
FermionActionF,
PeriodicLinearOperatorD,
PeriodicLinearOperatorF> PeriodicMxDagPCG;
// std::vector<FermionActionF *> DenominatorsF;
/////////////////////////////////////////////////
// These are consumed/owned by the Dirichlet wrappers
/////////////////////////////////////////////////
std::vector<FermionAction *> DNumerators;
std::vector<FermionActionF *> DNumeratorsF;
std::vector<FermionAction *> DDenominators;
std::vector<FermionActionF *> DDenominatorsF;
/////////////////////////////////////////////////
// Dirichlet wrappers
/////////////////////////////////////////////////
std::vector<DirichletFermion *> DirichletNumerators;
std::vector<DirichletFermionF *> DirichletNumeratorsF;
std::vector<DirichletFermion *> DirichletDenominators;
std::vector<DirichletFermionF *> DirichletDenominatorsF;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion<DomainWallFermionR::Impl_t> *> BoundaryQuotients;
std::vector<DirichletMxPCG *> ActionMPCG;
std::vector<DirichletMxPCG *> MPCG;
std::vector<DirichletLinearOperatorD *> LinOpD;
std::vector<DirichletLinearOperatorF *> LinOpF;
const int MX_inner = 1000;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage << " 2f quotient Action "<< light_num[h] << " / " << light_den[h]<< std::endl;
DNumerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, DirichletParams));
DNumeratorsF.push_back (new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_num[h],M5,b,c, DirichletParams));
DDenominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, DirichletParams));
DDenominatorsF.push_back(new FermionActionF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[h],M5,b,c, DirichletParams));
DirichletNumerators.push_back (new DirichletFermion (*DNumerators[h],Block));
DirichletNumeratorsF.push_back (new DirichletFermionF(*DNumeratorsF[h],Block));
DirichletDenominators.push_back(new DirichletFermion (*DDenominators[h],Block));
DirichletDenominatorsF.push_back(new DirichletFermionF(*DDenominatorsF[h],Block));
// Dirichlet Schur even odd MpsDagMpc operators on local domains
LinOpD.push_back(new DirichletLinearOperatorD(*DirichletDenominators[h]));
LinOpF.push_back(new DirichletLinearOperatorF(*DirichletDenominatorsF[h]));
// Derivative
MPCG.push_back(new DirichletMxPCG(DerivativeStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
*DirichletDenominatorsF[h],*DirichletDenominators[h],
*LinOpF[h], *LinOpD[h]) );
// Action
ActionMPCG.push_back(new DirichletMxPCG(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
*DirichletDenominatorsF[h],*DirichletDenominators[h],
*LinOpF[h], *LinOpD[h]) );
////////////////////////////////////////////////////////////////////////////
// Standard CG for 2f force
////////////////////////////////////////////////////////////////////////////
// Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],*MPCG[h],*ActionMPCG[h],ActionCG));
Quotients.push_back (new
TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>
(*DirichletNumerators[h],
*DirichletDenominators[h],
*ActionMPCG[h],
*ActionMPCG[h],
ActionCG));
Level1.push_back(Quotients[h]);
}
/////////////////////////////////////////////////////////////
// Boundary action
/////////////////////////////////////////////////////////////
int l_idx = 0;
int pv_idx = n_hasenbusch;
std::cout << GridLogMessage<<" Boundary action masses " <<light_num[l_idx]<<" / "<<light_den[pv_idx]<<std::endl;
/*
typedef SchurDiagMooeeOperator<DirichletFermionF,FermionFieldF> DirichletLinearOperatorF;
typedef SchurDiagMooeeOperator<DirichletFermion ,FermionField > DirichletLinearOperatorD;
typedef SchurDiagMooeeDagOperator<DirichletFermionF,FermionFieldF> DirichletLinearOperatorDagF;
typedef SchurDiagMooeeDagOperator<DirichletFermion ,FermionField > DirichletLinearOperatorDagD;
typedef SchurDiagMooeeOperator<FermionActionF,FermionFieldF> PeriodicLinearOperatorF;
typedef SchurDiagMooeeOperator<FermionAction ,FermionField > PeriodicLinearOperatorD;
typedef SchurDiagMooeeDagOperator<FermionActionF,FermionFieldF> PeriodicLinearOperatorDagF;
typedef SchurDiagMooeeDagOperator<FermionAction ,FermionField > PeriodicOperatorDagD;
*/
typedef MixedPrecisionConjugateGradientOperatorFunction<DirichletFermion,
DirichletFermionF,
DirichletLinearOperatorD,
DirichletLinearOperatorF> DirichletMxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<DirichletFermion,
DirichletFermionF,
DirichletLinearOperatorD,
DirichletLinearOperatorF> DirichletMxDagPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionAction,
FermionActionF,
PeriodicLinearOperatorD,
PeriodicLinearOperatorF> PeriodicMxPCG;
typedef MixedPrecisionConjugateGradientOperatorFunction<FermionAction,
FermionActionF,
PeriodicLinearOperatorD,
PeriodicLinearOperatorF> PeriodicMxDagPCG;
FermionAction PeriNumerator (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[pv_idx],M5,b,c, Params);
FermionAction PeriDenominator (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[l_idx] ,M5,b,c, Params);
FermionActionF PeriNumeratorF (UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_num[pv_idx],M5,b,c, Params);
FermionActionF PeriDenominatorF(UF,*FGridF,*FrbGridF,*GridPtrF,*GridRBPtrF,light_den[l_idx] ,M5,b,c, Params);
DirichletFermion & DirichletNumerator = *DirichletNumerators[pv_idx];
DirichletFermionF & DirichletNumeratorF = *DirichletNumeratorsF[pv_idx];
DirichletFermion & DirichletDenominator = *DirichletDenominators[l_idx];
DirichletFermionF & DirichletDenominatorF= *DirichletDenominatorsF[l_idx];
DirichletLinearOperatorD DirichletNumeratorLinOpD(DirichletNumerator);
DirichletLinearOperatorF DirichletNumeratorLinOpF(DirichletNumeratorF);
DirichletLinearOperatorDagD DirichletNumeratorLinOpDagD(DirichletNumerator);
DirichletLinearOperatorDagF DirichletNumeratorLinOpDagF(DirichletNumeratorF);
DirichletLinearOperatorD DirichletDenominatorLinOpD(DirichletDenominator);
DirichletLinearOperatorF DirichletDenominatorLinOpF(DirichletDenominatorF);
DirichletLinearOperatorDagD DirichletDenominatorLinOpDagD(DirichletDenominator);
DirichletLinearOperatorDagF DirichletDenominatorLinOpDagF(DirichletDenominatorF);
PeriodicLinearOperatorF PeriodicNumeratorLinOpF(PeriNumeratorF);
PeriodicLinearOperatorD PeriodicNumeratorLinOpD(PeriNumerator);
PeriodicLinearOperatorDagF PeriodicNumeratorLinOpDagF(PeriNumeratorF);
PeriodicLinearOperatorDagD PeriodicNumeratorLinOpDagD(PeriNumerator);
PeriodicLinearOperatorF PeriodicDenominatorLinOpF(PeriDenominatorF);
PeriodicLinearOperatorD PeriodicDenominatorLinOpD(PeriDenominator);
PeriodicLinearOperatorDagF PeriodicDenominatorLinOpDagF(PeriDenominatorF);
PeriodicLinearOperatorDagD PeriodicDenominatorLinOpDagD(PeriDenominator);
ConjugateGradient<FermionField> OmegaSolverCG (ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> OmegaDagSolverCG(ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DSolverCG (ActionStoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> DdagSolverCG (ActionStoppingCondition,MaxCGIterations);
DirichletMxPCG NumeratorOmegaSolver(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
DirichletNumeratorF,DirichletNumerator,
DirichletNumeratorLinOpF, DirichletNumeratorLinOpD);
DirichletMxDagPCG NumeratorOmegaDagSolver(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
DirichletNumeratorF,DirichletNumerator,
DirichletNumeratorLinOpDagF,DirichletNumeratorLinOpDagD);
PeriodicMxPCG NumeratorDSolver(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
PeriNumeratorF,PeriNumerator,
PeriodicNumeratorLinOpF, PeriodicNumeratorLinOpD);
PeriodicMxDagPCG NumeratorDdagSolver(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
PeriNumeratorF,PeriNumerator,
PeriodicNumeratorLinOpDagF, PeriodicNumeratorLinOpDagD);
SchurFactoredFermionOperator<DomainWallFermionR::Impl_t> BoundaryNumerator(PeriNumerator,
DirichletNumerator,
NumeratorOmegaSolver,NumeratorOmegaDagSolver,
NumeratorDSolver,NumeratorDdagSolver,
// ActionCG,ActionCG,
// ActionCG,ActionCG,
Block);
DirichletMxPCG DenominatorOmegaSolver(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
DirichletDenominatorF,DirichletDenominator,
DirichletDenominatorLinOpF, DirichletDenominatorLinOpD);
DirichletMxDagPCG DenominatorOmegaDagSolver(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
DirichletDenominatorF,DirichletDenominator,
DirichletDenominatorLinOpDagF,DirichletDenominatorLinOpDagD);
PeriodicMxPCG DenominatorDSolver(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
PeriDenominatorF,PeriDenominator,
PeriodicDenominatorLinOpF, PeriodicDenominatorLinOpD);
PeriodicMxDagPCG DenominatorDdagSolver(ActionStoppingCondition,
MX_inner,
MaxCGIterations,
GridPtrF,
FrbGridF,
PeriDenominatorF,PeriDenominator,
PeriodicDenominatorLinOpDagF, PeriodicDenominatorLinOpDagD);
SchurFactoredFermionOperator<DomainWallFermionR::Impl_t> BoundaryDenominator(PeriDenominator,
DirichletDenominator,
//ActionCG,ActionCG,
//ActionCG,ActionCG,
DenominatorOmegaSolver,DenominatorOmegaDagSolver,
DenominatorDSolver,DenominatorDdagSolver,
Block);
Level1.push_back(new
DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion<DomainWallFermionR::Impl_t>
(BoundaryNumerator,
BoundaryDenominator));
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level2.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
// HMC parameters are serialisable
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.Run(); // no smearing
Grid_finalize();
} // main