1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-19 16:55:37 +01:00

Updated for 8^4 test

This commit is contained in:
Peter Boyle 2024-05-26 20:53:05 +00:00
parent c4b9f71357
commit 0e607a55e7

View File

@ -1,4 +1,4 @@
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
@ -26,84 +26,13 @@ Author: Peter Boyle <pboyle@bnl.gov>
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid/Grid.h> #include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h> #include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h>
#include <Grid/stencil/GeneralLocalStencil.h> #include <Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h>
//#include <Grid/algorithms/GeneralCoarsenedMatrix.h> #include <Grid/algorithms/iterative/AdefMrhs.h>
#include <Grid/algorithms/iterative/AdefGeneric.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;
template<class Coarsened>
void SaveOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Operator.Grid()->IsBoss());
assert(Operator._A.size()==Operator.geom.npoint);
WR.open(file);
for(int p=0;p<Operator._A.size();p++){
auto tmp = Operator.Cell.Extract(Operator._A[p]);
WR.writeScidacFieldRecord(tmp,record);
}
WR.close();
#endif
}
template<class Coarsened>
void LoadOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(file);
assert(Operator._A.size()==Operator.geom.npoint);
for(int p=0;p<Operator.geom.npoint;p++){
conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
RD.readScidacFieldRecord(Operator._A[p],record);
}
RD.close();
Operator.ExchangeCoarseLinks();
#endif
}
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
WR.writeScidacFieldRecord(Agg.subspace[b],record);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
RD.readScidacFieldRecord(Agg.subspace[b],record);
}
RD.close();
#endif
}
template<class Field> class TestSolver : public LinearFunction<Field> {
public:
TestSolver() {};
void operator() (const Field &in, Field &out){ out = Zero(); }
};
RealD InverseApproximation(RealD x){
return 1.0/x;
}
// Want Op in CoarsenOp to call MatPcDagMatPc // Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field> template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field> class HermOpAdaptor : public LinearOperatorBase<Field>
@ -119,33 +48,37 @@ public:
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); }; void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); } void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
}; };
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
template<class Field> class CGSmoother : public LinearFunction<Field>
{ {
public: public:
using LinearFunction<Field>::operator(); using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator; typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator; FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby; int iters;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) : CGSmoother(int _iters, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator), _SmootherOperator(SmootherOperator),
Cheby(_lo,_hi,_ord,InverseApproximation) iters(_iters)
{ {
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl; std::cout << GridLogMessage<<" Mirs smoother order "<<iters<<std::endl;
}; };
void operator() (const Field &in, Field &out) void operator() (const Field &in, Field &out)
{ {
Field tmp(in.Grid()); ConjugateGradient<Field> CG(0.0,iters,false); // non-converge is just fine in a smoother
tmp = in;
Cheby(_SmootherOperator,tmp,out); out=Zero();
CG(_SmootherOperator,in,out);
} }
}; };
int main (int argc, char ** argv) int main (int argc, char ** argv)
{ {
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
const int Ls=24; const int Ls=24;
const int nbasis = 40; const int nbasis = 60;
const int cb = 0 ; const int cb = 0 ;
RealD mass=0.00078; RealD mass=0.00078;
RealD M5=1.8; RealD M5=1.8;
@ -160,10 +93,12 @@ int main (int argc, char ** argv)
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid with 4^4 cell // Construct a coarsened grid with 4^4 cell
Coordinate Block({4,4,4,4});
Coordinate clatt = GridDefaultLatt(); Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){ for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/4; clatt[d] = clatt[d]/Block[d];
} }
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());; GridDefaultMpi());;
@ -182,7 +117,7 @@ int main (int argc, char ** argv)
LatticeGaugeField Umu(UGrid); LatticeGaugeField Umu(UGrid);
FieldMetaData header; FieldMetaData header;
std::string file("ckpoint_lat.4000"); std::string file("ckpoint_EODWF_lat.125");
NerscIO::readConfiguration(Umu,header,file); NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action ////////////////////////////////// //////////////////////// Fermion action //////////////////////////////////
@ -192,15 +127,7 @@ int main (int argc, char ** argv)
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix; typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO); HermFineMatrix FineHermOp(HermOpEO);
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
// Run power method on FineHermOp
PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator /////// ///////////// Coarse basis and Little Dirac Operator ///////
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
@ -208,219 +135,170 @@ int main (int argc, char ** argv)
typedef LittleDiracOperator::CoarseVector CoarseVector; typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d); NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
NearestStencilGeometry5D geom_nn(Coarse5d);
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace; typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb); Subspace Aggregates(Coarse5d,FrbGrid,cb);
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening // Need to check about red-black grid coarsening
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
bool load=false; int refine=1;
if ( load ) { // Aggregates.CreateSubspaceMultishift(RNG5,HermOpEO,
LoadBasis(Aggregates,"/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.scidac"); // 0.0003,1.0e-5,2000); // Lo, tol, maxit
LoadOperator(LittleDiracOp,"/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.scidac"); // Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,95.,0.01,1500);// <== last run
} else { std::cout << "**************************************"<<std::endl;
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis, std::cout << "Create Subspace"<<std::endl;
95.0,0.1, std::cout << "**************************************"<<std::endl;
// 400,200,200 -- 48 iters Aggregates.CreateSubspaceChebyshevNew(RNG5,HermOpEO,95.);
// 600,200,200 -- 38 iters, 162s
// 600,200,100 -- 38 iters, 169s
// 600,200,50 -- 88 iters. 370s
800,
200,
100,
0.0);
LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
SaveBasis(Aggregates,"/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/Subspace.scidac");
SaveOperator(LittleDiracOp,"/lustre/orion/phy157/proj-shared/phy157_dwf/paboyle/LittleDiracOp.scidac");
}
// Try projecting to one hop only
LittleDiracOperator LittleDiracOpProj(geom_nn,FrbGrid,Coarse5d);
LittleDiracOpProj.ProjectNearestNeighbour(0.01,LittleDiracOp); // smaller shift 0.02? n
typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix; std::cout << "**************************************"<<std::endl;
HermMatrix CoarseOp (LittleDiracOp); std::cout << "Refine Subspace"<<std::endl;
HermMatrix CoarseOpProj (LittleDiracOpProj); std::cout << "**************************************"<<std::endl;
Aggregates.RefineSubspace(HermOpEO,0.001,1.0e-3,3000); // 172 iters
////////////////////////////////////////// std::cout << "**************************************"<<std::endl;
// Build a coarse lanczos std::cout << "Coarsen after refine"<<std::endl;
////////////////////////////////////////// std::cout << "**************************************"<<std::endl;
Chebyshev<CoarseVector> IRLCheby(0.2,40.0,71); // 1 iter Aggregates.Orthogonalise();
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
PlainHermOp<CoarseVector> IRLOp (CoarseOp); std::cout << "**************************************"<<std::endl;
int Nk=48; std::cout << "Building MultiRHS Coarse operator"<<std::endl;
int Nm=64; std::cout << "**************************************"<<std::endl;
ConjugateGradient<CoarseVector> coarseCG(4.0e-2,20000,true);
const int nrhs=12;
Coordinate mpi=GridDefaultMpi();
Coordinate rhMpi ({1,1,mpi[0],mpi[1],mpi[2],mpi[3]});
Coordinate rhLatt({nrhs,1,clatt[0],clatt[1],clatt[2],clatt[3]});
Coordinate rhSimd({vComplex::Nsimd(),1, 1,1,1,1});
GridCartesian *CoarseMrhs = new GridCartesian(rhLatt,rhSimd,rhMpi);
typedef MultiGeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> MultiGeneralCoarsenedMatrix_t;
MultiGeneralCoarsenedMatrix_t mrhs(geom,CoarseMrhs);
mrhs.CoarsenOperator(FineHermOp,Aggregates,Coarse5d);
std::cout << "**************************************"<<std::endl;
std::cout << " Coarse Lanczos "<<std::endl;
std::cout << "**************************************"<<std::endl;
typedef HermitianLinearOperator<MultiGeneralCoarsenedMatrix_t,CoarseVector> MrhsHermMatrix;
Chebyshev<CoarseVector> IRLCheby(0.01,42.0,301); // 1 iter
MrhsHermMatrix MrhsCoarseOp (mrhs);
CoarseVector pm_src(CoarseMrhs);
pm_src = ComplexD(1.0);
PowerMethod<CoarseVector> cPM;
cPM(MrhsCoarseOp,pm_src);
int Nk=192;
int Nm=384;
int Nstop=Nk; int Nstop=Nk;
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-5,20); int Nconv_test_interval=1;
ImplicitlyRestartedBlockLanczosCoarse<CoarseVector> IRL(MrhsCoarseOp,
Coarse5d,
CoarseMrhs,
nrhs,
IRLCheby,
Nstop,
Nconv_test_interval,
nrhs,
Nk,
Nm,
1e-5,10);
int Nconv; int Nconv;
std::vector<RealD> eval(Nm); std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d); std::vector<CoarseVector> evec(Nm,Coarse5d);
CoarseVector c_src(Coarse5d); std::vector<CoarseVector> c_src(nrhs,Coarse5d);
//c_src=1.0;
random(CRNG,c_src);
CoarseVector c_res(Coarse5d);
CoarseVector c_ref(Coarse5d);
PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src);
IRL.calc(eval,evec,c_src,Nconv);
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
////////////////////////////////////////// //////////////////////////////////////////
// Build a coarse space solver // Block projector for coarse/fine
////////////////////////////////////////// //////////////////////////////////////////
int maxit=20000;
ConjugateGradient<CoarseVector> CG(1.0e-8,maxit,false);
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,10000,false);
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
// HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,CoarseZeroGuesser); std::cout << "**************************************"<<std::endl;
HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,DeflCoarseGuesser); std::cout << "Calling mRHS HDCG"<<std::endl;
c_res=Zero(); std::cout << "**************************************"<<std::endl;
HPDSolve(c_src,c_res); c_ref = c_res; MultiRHSBlockProject<LatticeFermionD> MrhsProjector;
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl; MrhsProjector.Allocate(nbasis,FrbGrid,Coarse5d);
std::cout << GridLogMessage<<"ref norm "<<norm2(c_ref)<<std::endl; MrhsProjector.ImportBasis(Aggregates.subspace);
//////////////////////////////////////////////////////////////////////////
// Deflated (with real op EV's) solve for the projected coarse op
// Work towards ADEF1 in the coarse space
//////////////////////////////////////////////////////////////////////////
HPDSolver<CoarseVector> HPDSolveProj(CoarseOpProj,CG,DeflCoarseGuesser);
c_res=Zero();
HPDSolveProj(c_src,c_res);
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
std::cout << GridLogMessage<<"res norm "<<norm2(c_res)<<std::endl;
c_res = c_res - c_ref;
std::cout << "Projected solver error "<<norm2(c_res)<<std::endl;
////////////////////////////////////////////////////////////////////// std::cout << "**************************************"<<std::endl;
// Coarse ADEF1 with deflation space std::cout << " Recompute coarse evecs "<<std::endl;
////////////////////////////////////////////////////////////////////// std::cout << "**************************************"<<std::endl;
ChebyshevSmoother<CoarseVector,HermMatrix > evec.resize(Nm,Coarse5d);
CoarseSmoother(1.0,37.,8,CoarseOpProj); // just go to sloppy 0.1 convergence eval.resize(Nm);
// CoarseSmoother(0.1,37.,8,CoarseOpProj); // for(int r=0;r<nrhs;r++){
// CoarseSmoother(0.5,37.,6,CoarseOpProj); // 8 iter 0.36s random(CRNG,c_src[r]);
// CoarseSmoother(0.5,37.,12,CoarseOpProj); // 8 iter, 0.55s
// CoarseSmoother(0.5,37.,8,CoarseOpProj);// 7-9 iter
// CoarseSmoother(1.0,37.,8,CoarseOpProj); // 0.4 - 0.5s solve to 0.04, 7-9 iter
// ChebyshevSmoother<CoarseVector,HermMatrix > CoarseSmoother(0.5,36.,10,CoarseOpProj); // 311
////////////////////////////////////////////////////////
// CG, Cheby mode spacing 200,200
// Unprojected Coarse CG solve to 1e-8 : 190 iters, 4.9s
// Unprojected Coarse CG solve to 4e-2 : 33 iters, 0.8s
// Projected Coarse CG solve to 1e-8 : 100 iters, 0.36s
////////////////////////////////////////////////////////
// CoarseSmoother(1.0,48.,8,CoarseOpProj); 48 evecs
////////////////////////////////////////////////////////
// ADEF1 Coarse solve to 1e-8 : 44 iters, 2.34s 2.1x gain
// ADEF1 Coarse solve to 4e-2 : 7 iters, 0.4s
// HDCG 38 iters 162s
//
// CoarseSmoother(1.0,40.,8,CoarseOpProj); 48 evecs
// ADEF1 Coarse solve to 1e-8 : 37 iters, 2.0s 2.1x gain
// ADEF1 Coarse solve to 4e-2 : 6 iters, 0.36s
// HDCG 38 iters 169s
TwoLevelADEF1defl<CoarseVector>
cADEF1(1.0e-8, 500,
CoarseOp,
CoarseSmoother,
evec,eval);
c_res=Zero();
cADEF1(c_src,c_res);
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
c_res = c_res - c_ref;
std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
// cADEF1.Tolerance = 4.0e-2;
// cADEF1.Tolerance = 1.0e-1;
cADEF1.Tolerance = 5.0e-2;
c_res=Zero();
cADEF1(c_src,c_res);
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
c_res = c_res - c_ref;
std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
//////////////////////////////////////////
// Build a smoother
//////////////////////////////////////////
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(10.0,100.0,10,FineHermOp); //499
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(3.0,100.0,10,FineHermOp); //383
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(1.0,100.0,10,FineHermOp); //328
// std::vector<RealD> los({0.5,1.0,3.0}); // 147/142/146 nbasis 1
// std::vector<RealD> los({1.0,2.0}); // Nbasis 24: 88,86 iterations
// std::vector<RealD> los({2.0,4.0}); // Nbasis 32 == 52, iters
// std::vector<RealD> los({2.0,4.0}); // Nbasis 40 == 36,36 iters
//
// Turns approx 2700 iterations into 340 fine multiplies with Nbasis 40
// Need to measure cost of coarse space.
//
// -- i) Reduce coarse residual -- 0.04
// -- ii) Lanczos on coarse space -- done
// -- iii) Possible 1 hop project and/or preconditioning it - easy - PrecCG it and
// use a limited stencil. Reread BFM code to check on evecs / deflation strategy with prec
//
std::vector<RealD> los({3.0}); // Nbasis 40 == 36,36 iters
// std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults)
std::vector<int> ords({7}); // Nbasis 40 == 40 iters (320 mults)
for(int l=0;l<los.size();l++){
RealD lo = los[l];
for(int o=0;o<ords.size();o++){
ConjugateGradient<CoarseVector> CGsloppy(4.0e-2,maxit,false);
HPDSolver<CoarseVector> HPDSolveSloppy(CoarseOp,CGsloppy,DeflCoarseGuesser);
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,10,FineHermOp); // 36 best case
ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,ords[o],FineHermOp); // 311
//////////////////////////////////////////
// Build a HDCG solver
//////////////////////////////////////////
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
HDCG(1.0e-8, 100,
FineHermOp,
Smoother,
HPDSolveSloppy,
HPDSolve,
Aggregates);
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
HDCGdefl(1.0e-8, 100,
FineHermOp,
Smoother,
cADEF1,
HPDSolve,
Aggregates);
result=Zero();
HDCGdefl(src,result);
result=Zero();
HDCG(src,result);
}
} }
// Standard CG IRL.calc(eval,evec,c_src,Nconv,LanczosType::irbl);
result=Zero();
CGfine(HermOpEO, src, result); ///////////////////////
// Deflation guesser object
///////////////////////
std::cout << "**************************************"<<std::endl;
std::cout << " Reimport coarse evecs "<<std::endl;
std::cout << "**************************************"<<std::endl;
MultiRHSDeflation<CoarseVector> MrhsGuesser;
MrhsGuesser.ImportEigenBasis(evec,eval);
//////////////////////////
// Extra HDCG parameters
//////////////////////////
int maxit=3000;
ConjugateGradient<CoarseVector> CG(5.0e-2,maxit,false);
RealD lo=2.0;
int ord = 7;
DoNothingGuesser<CoarseVector> DoNothing;
HPDSolver<CoarseVector> HPDSolveMrhs(MrhsCoarseOp,CG,DoNothing);
/////////////////////////////////////////////////
// Mirs smoother
/////////////////////////////////////////////////
RealD MirsShift = lo;
ShiftedHermOpLinearOperator<LatticeFermionD> ShiftedFineHermOp(HermOpEO,MirsShift);
CGSmoother<LatticeFermionD> CGsmooth(ord,ShiftedFineHermOp) ;
TwoLevelADEF2mrhs<LatticeFermion,CoarseVector>
HDCGmrhs(1.0e-8, 500,
FineHermOp,
CGsmooth,
HPDSolveMrhs, // Used in M1
HPDSolveMrhs, // Used in Vstart
MrhsProjector,
MrhsGuesser,
CoarseMrhs);
std::vector<LatticeFermionD> src_mrhs(nrhs,FrbGrid);
std::vector<LatticeFermionD> res_mrhs(nrhs,FrbGrid);
for(int r=0;r<nrhs;r++){
random(RNG5,src_mrhs[r]);
res_mrhs[r]=Zero();
}
HDCGmrhs(src_mrhs,res_mrhs);
// Standard CG
#if 1
{
std::cout << "**************************************"<<std::endl;
std::cout << "Calling red black CG"<<std::endl;
std::cout << "**************************************"<<std::endl;
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
result=Zero();
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,30000,false);
CGfine(HermOpEO, src, result);
}
#endif
Grid_finalize(); Grid_finalize();
return 0; return 0;
} }