1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-12 20:27:06 +01:00

Eigen::Tensor serialisation. Tested on single and double precision builds

This commit is contained in:
Michael Marshall
2019-03-20 22:27:41 +00:00
parent d921a99b1a
commit 12d8bf1ced
11 changed files with 974 additions and 79 deletions

View File

@ -4,11 +4,12 @@
Source file: ./tests/Test_serialisation.cc
Copyright (C) 2015-2016
Copyright (C) 2015-2019
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -28,6 +29,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/util/EigenUtil.h>
#include <typeinfo>
using namespace Grid;
using namespace Grid::QCD;
@ -80,26 +83,176 @@ double d = 2*M_PI;
bool b = false;
template <typename W, typename R, typename O>
void ioTest(const std::string &filename, const O &object, const std::string &name)
void ioTest(const std::string &filename, const O &object, const std::string &name,
const char * tag = "testobject", unsigned short Precision = 0 )
{
std::cout << "IO test: " << name << " -> " << filename << " ...";
// writer needs to be destroyed so that writing physically happens
{
W writer(filename);
write(writer, "testobject", object);
if( Precision )
writer.setPrecision(Precision);
write(writer, tag , object);
}
std::cout << " done. reading ...";
R reader(filename);
O buf;
bool good;
std::unique_ptr<O> buf( new O ); // In case object too big for stack
read(reader, "testobject", buf);
good = (object == buf);
std::cout << name << " IO test: " << (good ? "success" : "failure");
std::cout << std::endl;
if (!good) exit(EXIT_FAILURE);
read(reader, tag, *buf);
bool good = Serializable::CompareMember(object, *buf);
if (!good) {
std::cout << " failure!" << std::endl;
if (EigenIO::is_tensor<O>::value)
dump_tensor(*buf);
exit(EXIT_FAILURE);
}
std::cout << " done." << std::endl;
}
// Perform I/O tests on a range of tensor types
// Test coverage: scalars, complex and GridVectors in single, double and default precision
class TensorIO : public Serializable {
using TestScalar = ComplexD;
using SR3 = Eigen::Sizes<9,4,2>;
using SR5 = Eigen::Sizes<5,4,3,2,1>;
using ESO = Eigen::StorageOptions;
using TensorRank3 = Eigen::Tensor<ComplexF, 3, ESO::RowMajor>;
using TensorR5 = Eigen::TensorFixedSize<Real, SR5>;
using TensorR5Alt = Eigen::TensorFixedSize<Real, SR5, ESO::RowMajor>;
using Tensor942 = Eigen::TensorFixedSize<TestScalar, SR3, ESO::RowMajor>;
using aTensor942 = std::vector<Tensor942>;
using Perambulator = Eigen::Tensor<SpinColourVector, 6, ESO::RowMajor>;
using LSCTensor = Eigen::TensorFixedSize<SpinColourMatrix, Eigen::Sizes<6,5>>;
static const Real FlagR;
static const Complex Flag;
static const ComplexF FlagF;
static const TestScalar FlagTS;
static const char * const pszFilePrefix;
void Init(unsigned short Precision)
{
SequentialInit(Perambulator1, Flag, Precision);
SequentialInit(Perambulator2, Flag, Precision);
SequentialInit(tensorR5, FlagR, Precision);
SequentialInit(tensorRank3, FlagF, Precision);
SequentialInit(tensor_9_4_2, FlagTS, Precision);
for( auto &t : atensor_9_4_2 )
SequentialInit(t, FlagTS, Precision);
SequentialInit(MyLSCTensor, Flag, Precision);
}
// Perform an I/O test for a single Eigen tensor (of any type)
template <typename W, typename R, typename T, typename... IndexTypes>
static void TestOne(const char * MyTypeName, unsigned short Precision, std::string &filename,
const char * pszExtension, unsigned int &TestNum,
typename EigenIO::Traits<T>::scalar_type Flag, IndexTypes... otherDims)
{
using Traits = EigenIO::Traits<T>;
using scalar_type = typename Traits::scalar_type;
std::unique_ptr<T> pTensor{new T(otherDims...)};
SequentialInit( * pTensor, Flag, Precision );
filename = pszFilePrefix + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension;
ioTest<W, R, T>(filename, * pTensor, MyTypeName, MyTypeName);
}
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TensorIO
, SpinColourVector, spinColourVector
, SpinColourMatrix, spinColourMatrix
, std::vector<std::string>, DistilParameterNames
, std::vector<int>, DistilParameterValues
, Perambulator, Perambulator1
, Perambulator, Perambulator2
, TensorR5, tensorR5
, TensorRank3, tensorRank3
, Tensor942, tensor_9_4_2
, aTensor942, atensor_9_4_2
, LSCTensor, MyLSCTensor
);
TensorIO()
: DistilParameterNames {"do", "androids", "dream", "of", "electric", "sheep?"}
, DistilParameterValues{2,3,1,4,5,1}
, Perambulator1(2,3,1,4,5,1)
, Perambulator2(7,1,6,1,5,1)
, tensorRank3(7,3,2)
, atensor_9_4_2(3) {}
#define TEST_PARAMS( T ) #T, Precision, filename, pszExtension, TestNum
// Perform a series of I/O tests for Eigen tensors, including a serialisable object
template <typename WTR_, typename RDR_>
static void Test(const char * pszExtension, unsigned short Precision = 0)
{
// Perform a series of tests on progressively more complex tensors
unsigned int TestNum = 0;
std::string filename;
// Rank 1 tensor containing a single integer
using TensorSingle = Eigen::TensorFixedSize<Integer, Eigen::Sizes<1>>;
TestOne<WTR_, RDR_, TensorSingle>( TEST_PARAMS( TensorSingle ), 7 ); // lucky!
// Rather convoluted way of defining a single complex number
using TensorSimple = Eigen::Tensor<iMatrix<TestScalar,1>, 6>;
using I = typename TensorSimple::Index; // NB: Never specified, so same for all my test tensors
// Try progressively more complicated tensors
TestOne<WTR_, RDR_, TensorSimple, I,I,I,I,I,I>( TEST_PARAMS( TensorSimple ), FlagTS, 1,1,1,1,1,1 );
TestOne<WTR_, RDR_, TensorRank3, I, I, I>( TEST_PARAMS( TensorRank3 ), FlagF, 6, 3, 2 );
TestOne<WTR_, RDR_, Tensor942>(TEST_PARAMS( Tensor942 ), FlagTS);
TestOne<WTR_, RDR_, LSCTensor>(TEST_PARAMS( LSCTensor ), Flag );
// Now see whether we can write a tensor in one memory order and read back in the other
{
TestOne<WTR_, RDR_, TensorR5>(TEST_PARAMS( TensorR5 ), FlagR);
std::cout << " Testing alternate memory order read ... ";
TensorR5Alt t2;
RDR_ reader(filename);
::Grid::read(reader, "TensorR5", t2);
bool good = true;
TensorR5 cf;
SequentialInit( cf, FlagR, Precision );
for_all( t2, [&](typename EigenIO::Traits<TensorR5Alt>::scalar_type c, I n,
const std::array<I, TensorR5Alt::NumIndices> &TensorIndex,
const std::array<int, EigenIO::Traits<TensorR5Alt>::Rank> &GridTensorIndex ){
Real &r = cf(TensorIndex);
if( c != r ){
good = false;
std::cout << "\nError: " << n << ": " << c << " != " << r;
}
} );
if (!good) {
std::cout << std::endl;
dump_tensor(t2,"t2");
exit(EXIT_FAILURE);
}
std::cout << " done." << std::endl;
}
// Now test a serialisable object containing a number of tensors
{
static const char MyTypeName[] = "TensorIO";
filename = pszFilePrefix + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension;
std::unique_ptr<TensorIO> pObj{new TensorIO()};
pObj->Init(Precision);
ioTest<WTR_, RDR_, TensorIO>(filename, * pObj, MyTypeName, MyTypeName, Precision);
}
// Stress test. Too large for the XML or text readers and writers!
#ifdef STRESS_TEST
const std::type_info &tw = typeid( WTR_ );
if( tw == typeid( Hdf5Writer ) || tw == typeid( BinaryWriter ) ) {
using LCMTensor=Eigen::TensorFixedSize<iMatrix<iVector<iMatrix<iVector<LorentzColourMatrix,5>,2>,7>,3>,
Eigen::Sizes<2,4,11,10,9>, Eigen::StorageOptions::RowMajor>;
std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl;
TestOne<WTR_, RDR_, LCMTensor>(TEST_PARAMS( LCMTensor ), Flag);
}
#endif
}
};
const Real TensorIO::FlagR {-1.001};
const Complex TensorIO::Flag {1,-3.1415927};
const ComplexF TensorIO::FlagF {1,-3.1415927};
const TensorIO::TestScalar TensorIO::FlagTS{1,-3.1415927};
const char * const TensorIO::pszFilePrefix = "tensor_";
template <typename T>
void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
{
@ -121,12 +274,12 @@ void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
int main(int argc,char **argv)
{
Grid_init(&argc,&argv);
std::cout << std::boolalpha << "==== basic IO" << std::endl; // display true / false for boolean
GridSerialRNG rng;
rng.SeedFixedIntegers(std::vector<int>({42,10,81,9}));
std::cout << "==== basic IO" << std::endl;
XmlWriter WR("bother.xml");
// test basic type writing
@ -146,7 +299,6 @@ int main(int argc,char **argv)
// test serializable class writing
myclass obj(1234); // non-trivial constructor
std::vector<myclass> vec;
std::pair<myenum, myenum> pair;
std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl;
write(WR,"obj",obj);
@ -154,15 +306,15 @@ int main(int argc,char **argv)
vec.push_back(obj);
vec.push_back(myclass(5678));
vec.push_back(myclass(3838));
pair = std::make_pair(myenum::red, myenum::blue);
write(WR, "objvec", vec);
std::cout << "-- serialisable class writing to std::cout:" << std::endl;
std::cout << obj << std::endl;
std::cout << "-- serialisable class comparison:" << std::endl;
std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl;
std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl;
std::cout << "vec[0] == obj: " << (vec[0] == obj) << std::endl;
std::cout << "vec[1] == obj: " << (vec[1] == obj) << std::endl;
std::cout << "-- pair writing to std::cout:" << std::endl;
std::pair<myenum, myenum> pair = std::make_pair(myenum::red, myenum::blue);
std::cout << pair << std::endl;
// read tests
@ -184,7 +336,15 @@ int main(int argc,char **argv)
#ifdef HAVE_HDF5
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) ");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
std::cout << "\n==== detailed Hdf5 tensor tests (Grid::EigenIO)" << std::endl;
TensorIO::Test<Hdf5Writer, Hdf5Reader>(".h5");
#endif
std::cout << "\n==== detailed binary tensor tests (Grid::EigenIO)" << std::endl;
TensorIO::Test<BinaryWriter, BinaryReader>(".bin");
std::cout << "\n==== detailed xml tensor tests (Grid::EigenIO)" << std::endl;
TensorIO::Test<XmlWriter, XmlReader>(".xml", 6);
std::cout << "\n==== detailed text tensor tests (Grid::EigenIO)" << std::endl;
TensorIO::Test<TextWriter, TextReader>(".dat", 5);
std::cout << "\n==== vector flattening/reconstruction" << std::endl;
typedef std::vector<std::vector<std::vector<double>>> vec3d;
@ -227,4 +387,6 @@ int main(int argc,char **argv)
tensorConvTest(rng, ColourVector);
tensorConvTest(rng, SpinMatrix);
tensorConvTest(rng, SpinVector);
Grid_finalize();
}