1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-14 13:57:07 +01:00

Hadrons: Aslash field, tested

This commit is contained in:
2018-10-05 21:04:10 +01:00
parent c073341a10
commit 148fc052bd
5 changed files with 424 additions and 0 deletions

View File

@ -60,6 +60,14 @@ public:
const FermionField *vj,
int orthogdim);
template <typename TensorType> // output: rank 5 tensor, e.g. Eigen::Tensor<ComplexD, 5>
static void AslashField(TensorType &mat,
const FermionField *lhs_wi,
const FermionField *rhs_vj,
const std::vector<ComplexField> &emB0,
const std::vector<ComplexField> &emB1,
int orthogdim, double *t_kernel = nullptr, double *t_gsum = nullptr);
static void ContractWWVV(std::vector<PropagatorField> &WWVV,
const Eigen::Tensor<ComplexD,3> &WW_sd,
const FermionField *vs,
@ -617,6 +625,189 @@ void A2Autils<FImpl>::PionFieldVV(Eigen::Tensor<ComplexD,3> &mat,
PionFieldXX(mat,vi,vj,orthogdim,nog5);
}
// "A-slash" field w_i(x)^dag * i * A_mu * gamma_mu * v_j(x)
//
// With:
//
// B_0 = A_0 + i A_1
// B_1 = A_2 + i A_3
//
// then in spin space
//
// ( 0 0 -conj(B_1) -B_0 )
// i * A_mu g_mu = ( 0 0 -conj(B_0) B_1 )
// ( B_1 B_0 0 0 )
// ( conj(B_0) -conj(B_1) 0 0 )
template <class FImpl>
template <typename TensorType>
void A2Autils<FImpl>::AslashField(TensorType &mat,
const FermionField *lhs_wi,
const FermionField *rhs_vj,
const std::vector<ComplexField> &emB0,
const std::vector<ComplexField> &emB1,
int orthogdim, double *t_kernel, double *t_gsum)
{
typedef typename FermionField::vector_object vobj;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
typedef iSinglet<vector_type> Singlet_v;
typedef iSinglet<scalar_type> Singlet_s;
int Lblock = mat.dimension(3);
int Rblock = mat.dimension(4);
GridBase *grid = lhs_wi[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Nem = emB0.size();
assert(emB1.size() == Nem);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Nem;
int MFlvol = ld*Lblock*Rblock*Nem;
Vector<vector_type> lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++)
{
lvSum[r] = zero;
}
Vector<scalar_type> lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++)
{
lsSum[r] = scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// Nested parallelism would be ok
// Wasting cores here. Test case r
if (t_kernel) *t_kernel = -usecond();
parallel_for(int r=0;r<rd;r++)
{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++)
for(int b=0;b<e2;b++)
{
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++)
{
auto left = conjugate(lhs_wi[i]._odata[ss]);
for(int j=0;j<Rblock;j++)
{
SpinMatrix_v vv;
auto right = rhs_vj[j]._odata[ss];
for(int s1=0;s1<Ns;s1++)
for(int s2=0;s2<Ns;s2++)
{
vv()(s1,s2)() = left()(s2)(0) * right()(s1)(0)
+ left()(s2)(1) * right()(s1)(1)
+ left()(s2)(2) * right()(s1)(2);
}
// After getting the sitewise product do the mom phase loop
int base = Nem*i+Nem*Lblock*j+Nem*Lblock*Rblock*r;
for ( int m=0;m<Nem;m++)
{
int idx = m+base;
auto b0 = emB0[m]._odata[ss];
auto b1 = emB1[m]._odata[ss];
auto cb0 = conjugate(b0);
auto cb1 = conjugate(b1);
lvSum[idx] += - vv()(3,0)()*b0()()() - vv()(2,0)()*cb1()()()
+ vv()(3,1)()*b1()()() - vv()(2,1)()*cb0()()()
+ vv()(0,2)()*b1()()() + vv()(1,2)()*b0()()()
+ vv()(0,3)()*cb0()()() - vv()(1,3)()*cb1()()();
}
}
}
}
}
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++)
{
std::vector<int> icoor(Nd);
std::vector<scalar_type> extracted(Nsimd);
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int m=0;m<Nem;m++)
{
int ij_rdx = m+Nem*i+Nem*Lblock*j+Nem*Lblock*Rblock*rt;
extract<vector_type,scalar_type>(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++)
{
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nem*i+Nem*Lblock*j+Nem*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}
}
if (t_kernel) *t_kernel += usecond();
// ld loop and local only??
int pd = grid->_processors[orthogdim];
int pc = grid->_processor_coor[orthogdim];
parallel_for_nest2(int lt=0;lt<ld;lt++)
{
for(int pt=0;pt<pd;pt++)
{
int t = lt + pt*ld;
if (pt == pc)
{
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int m=0;m<Nem;m++)
{
int ij_dx = m+Nem*i + Nem*Lblock * j + Nem*Lblock * Rblock * lt;
mat(m,0,t,i,j) = lsSum[ij_dx];
}
}
else
{
const scalar_type zz(0.0);
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int m=0;m<Nem;m++)
{
mat(m,0,t,i,j) = zz;
}
}
}
}
if (t_gsum) *t_gsum = -usecond();
grid->GlobalSumVector(&mat(0,0,0,0,0),Nem*Nt*Lblock*Rblock);
if (t_gsum) *t_gsum += usecond();
}
////////////////////////////////////////////
// Schematic thoughts about more generalised four quark insertion