mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-18 07:47:06 +01:00
Merge branch 'develop' into feature/zmobius_paramcompute
This commit is contained in:
@ -35,6 +35,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
#include <Grid/algorithms/approx/Zolotarev.h>
|
||||
#include <Grid/algorithms/approx/Chebyshev.h>
|
||||
#include <Grid/algorithms/approx/JacobiPolynomial.h>
|
||||
#include <Grid/algorithms/approx/Remez.h>
|
||||
#include <Grid/algorithms/approx/MultiShiftFunction.h>
|
||||
#include <Grid/algorithms/approx/Forecast.h>
|
||||
@ -43,11 +44,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
#include <Grid/algorithms/iterative/Deflation.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateResidual.h>
|
||||
#include <Grid/algorithms/iterative/NormalEquations.h>
|
||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
#include <Grid/algorithms/iterative/MinimalResidual.h>
|
||||
|
@ -1,3 +1,14 @@
|
||||
// blockZaxpy in bockPromote - 3s, 5%
|
||||
// noncoalesced linalg in Preconditionoer ~ 3s 5%
|
||||
// Lancos tuning or replace 10-20s ~ 25%, open ended
|
||||
// setup tuning 5s ~ 8%
|
||||
// -- e.g. ordermin, orderstep tunables.
|
||||
// MdagM path without norm in LinOp code. few seconds
|
||||
|
||||
// Mdir calc blocking kernels
|
||||
// Fuse kernels in blockMaskedInnerProduct
|
||||
// preallocate Vectors in Cayley 5D ~ few percent few seconds
|
||||
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
@ -34,15 +45,36 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj,class CComplex>
|
||||
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
|
||||
const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
|
||||
const Lattice<vobj> &fineX,
|
||||
const Lattice<vobj> &fineY)
|
||||
{
|
||||
typedef decltype(innerProduct(vobj(),vobj())) dotp;
|
||||
|
||||
GridBase *coarse(CoarseInner.Grid());
|
||||
GridBase *fine (fineX.Grid());
|
||||
|
||||
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
|
||||
Lattice<dotp> fine_inner_msk(fine);
|
||||
|
||||
// Multiply could be fused with innerProduct
|
||||
// Single block sum kernel could do both masks.
|
||||
fine_inner = localInnerProduct(fineX,fineY);
|
||||
mult(fine_inner_msk, fine_inner,FineMask);
|
||||
blockSum(CoarseInner,fine_inner_msk);
|
||||
}
|
||||
|
||||
|
||||
class Geometry {
|
||||
// int dimension;
|
||||
public:
|
||||
int npoint;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
|
||||
int base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
@ -52,10 +84,10 @@ public:
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[2*d ] = d+base;
|
||||
directions[2*d+1] = d+base;
|
||||
displacements[2*d ] = +1;
|
||||
displacements[2*d+1] = -1;
|
||||
directions[d ] = d+base;
|
||||
directions[d+_d] = d+base;
|
||||
displacements[d ] = +1;
|
||||
displacements[d+_d]= -1;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
@ -63,7 +95,7 @@ public:
|
||||
//// report back
|
||||
std::cout<<GridLogMessage<<"directions :";
|
||||
for(int d=0;d<npoint;d++) std::cout<< directions[d]<< " ";
|
||||
std::cout <<std::endl;
|
||||
std::cout<<std::endl;
|
||||
std::cout<<GridLogMessage<<"displacements :";
|
||||
for(int d=0;d<npoint;d++) std::cout<< displacements[d]<< " ";
|
||||
std::cout<<std::endl;
|
||||
@ -115,10 +147,10 @@ public:
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
|
||||
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 2"<<std::endl; // Really have to do twice? Yuck
|
||||
// blockOrthogonalise(InnerProd,subspace);
|
||||
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
|
||||
// CheckOrthogonal();
|
||||
}
|
||||
@ -128,7 +160,7 @@ public:
|
||||
for(int i=0;i<nbasis;i++){
|
||||
blockProject(iProj,subspace[i],subspace);
|
||||
eProj=Zero();
|
||||
thread_for(ss, CoarseGrid->oSites(),{
|
||||
accelerator_for(ss, CoarseGrid->oSites(),1,{
|
||||
eProj[ss](i)=CComplex(1.0);
|
||||
});
|
||||
eProj=eProj - iProj;
|
||||
@ -146,61 +178,9 @@ public:
|
||||
void CreateSubspaceRandom(GridParallelRNG &RNG){
|
||||
for(int i=0;i<nbasis;i++){
|
||||
random(RNG,subspace[i]);
|
||||
std::cout<<GridLogMessage<<" norm subspace["<<i<<"] "<<norm2(subspace[i])<<std::endl;
|
||||
}
|
||||
Orthogonalise();
|
||||
}
|
||||
|
||||
/*
|
||||
virtual void CreateSubspaceLanczos(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
||||
{
|
||||
// Run a Lanczos with sloppy convergence
|
||||
const int Nstop = nn;
|
||||
const int Nk = nn+20;
|
||||
const int Np = nn+20;
|
||||
const int Nm = Nk+Np;
|
||||
const int MaxIt= 10000;
|
||||
RealD resid = 1.0e-3;
|
||||
|
||||
Chebyshev<FineField> Cheb(0.5,64.0,21);
|
||||
ImplicitlyRestartedLanczos<FineField> IRL(hermop,Cheb,Nstop,Nk,Nm,resid,MaxIt);
|
||||
// IRL.lock = 1;
|
||||
|
||||
FineField noise(FineGrid); gaussian(RNG,noise);
|
||||
FineField tmp(FineGrid);
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<FineField> evec(Nm,FineGrid);
|
||||
|
||||
int Nconv;
|
||||
IRL.calc(eval,evec,
|
||||
noise,
|
||||
Nconv);
|
||||
|
||||
// pull back nn vectors
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = evec[b];
|
||||
|
||||
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
|
||||
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
noise = tmp - sqrt(eval[b])*subspace[b] ;
|
||||
|
||||
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
|
||||
|
||||
noise = tmp + eval[b]*subspace[b] ;
|
||||
|
||||
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
|
||||
|
||||
}
|
||||
Orthogonalise();
|
||||
for(int b=0;b<nn;b++){
|
||||
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
|
||||
}
|
||||
}
|
||||
*/
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||
|
||||
RealD scale;
|
||||
@ -232,54 +212,316 @@ public:
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
|
||||
Orthogonalise();
|
||||
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#if 1
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
Chebyshev<FineField> Cheb(0.1,64.0,900);
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
auto y_v = y.View();
|
||||
auto Tn_v = Tn->View();
|
||||
auto Tnp_v = Tnp->View();
|
||||
auto Tnm_v = Tnm->View();
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
#endif
|
||||
#if 0
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
FineField combined(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
Cheb(hermop,noise,Mn);
|
||||
int b =0;
|
||||
#define FILTERb(llo,hhi,oorder) \
|
||||
{ \
|
||||
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
|
||||
Cheb(hermop,noise,Mn); \
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; \
|
||||
subspace[b] = Mn; \
|
||||
hermop.Op(Mn,tmp); \
|
||||
std::cout<<GridLogMessage << oorder<< " Cheb filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
|
||||
b++; \
|
||||
}
|
||||
|
||||
scale = std::pow(norm2(Mn),-0.5);
|
||||
Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
// JacobiPolynomial<FineField> Cheb(0.002,60.0,1500,-0.5,3.5); \
|
||||
|
||||
hermop.Op(Mn,noise); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(noise)<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
Orthogonalise();
|
||||
RealD alpha=-0.8;
|
||||
RealD beta =-0.8;
|
||||
#define FILTER(llo,hhi,oorder) \
|
||||
{ \
|
||||
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
|
||||
/* JacobiPolynomial<FineField> Cheb(0.0,60.0,oorder,alpha,beta);*/\
|
||||
Cheb(hermop,noise,Mn); \
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; \
|
||||
subspace[b] = Mn; \
|
||||
hermop.Op(Mn,tmp); \
|
||||
std::cout<<GridLogMessage << oorder<< "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
|
||||
b++; \
|
||||
}
|
||||
|
||||
#define FILTERc(llo,hhi,oorder) \
|
||||
{ \
|
||||
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
|
||||
Cheb(hermop,noise,combined); \
|
||||
}
|
||||
|
||||
double node = 0.000;
|
||||
FILTERb(lo,hi,orderfilter);// 0
|
||||
// FILTERc(node,hi,51);// 0
|
||||
noise = Mn;
|
||||
int base = 0;
|
||||
int mult = 100;
|
||||
FILTER(node,hi,base+1*mult);
|
||||
FILTER(node,hi,base+2*mult);
|
||||
FILTER(node,hi,base+3*mult);
|
||||
FILTER(node,hi,base+4*mult);
|
||||
FILTER(node,hi,base+5*mult);
|
||||
FILTER(node,hi,base+6*mult);
|
||||
FILTER(node,hi,base+7*mult);
|
||||
FILTER(node,hi,base+8*mult);
|
||||
FILTER(node,hi,base+9*mult);
|
||||
FILTER(node,hi,base+10*mult);
|
||||
FILTER(node,hi,base+11*mult);
|
||||
FILTER(node,hi,base+12*mult);
|
||||
FILTER(node,hi,base+13*mult);
|
||||
FILTER(node,hi,base+14*mult);
|
||||
FILTER(node,hi,base+15*mult);
|
||||
assert(b==nn);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
FineField combined(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
Chebyshev<FineField> JacobiPoly(0.005,60.,1500);
|
||||
// JacobiPolynomial<FineField> JacobiPoly(0.002,60.0,1500,-0.5,3.5);
|
||||
//JacobiPolynomial<FineField> JacobiPoly(0.03,60.0,500,-0.5,3.5);
|
||||
// JacobiPolynomial<FineField> JacobiPoly(0.00,60.0,1000,-0.5,3.5);
|
||||
JacobiPoly(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
// scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
// subspace[b] = tmp; b++;
|
||||
// }
|
||||
}
|
||||
|
||||
#define FILTER(lambda) \
|
||||
{ \
|
||||
hermop.HermOp(subspace[0],tmp); \
|
||||
tmp = tmp - lambda *subspace[0]; \
|
||||
scale = std::pow(norm2(tmp),-0.5); \
|
||||
tmp=tmp*scale; \
|
||||
subspace[b] = tmp; \
|
||||
hermop.Op(subspace[b],tmp); \
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
|
||||
b++; \
|
||||
}
|
||||
// scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
// subspace[b] = tmp; b++;
|
||||
// }
|
||||
|
||||
FILTER(2.0e-5);
|
||||
FILTER(2.0e-4);
|
||||
FILTER(4.0e-4);
|
||||
FILTER(8.0e-4);
|
||||
FILTER(8.0e-4);
|
||||
|
||||
FILTER(2.0e-3);
|
||||
FILTER(3.0e-3);
|
||||
FILTER(4.0e-3);
|
||||
FILTER(5.0e-3);
|
||||
FILTER(6.0e-3);
|
||||
|
||||
FILTER(2.5e-3);
|
||||
FILTER(3.5e-3);
|
||||
FILTER(4.5e-3);
|
||||
FILTER(5.5e-3);
|
||||
FILTER(6.5e-3);
|
||||
|
||||
// FILTER(6.0e-5);//6
|
||||
// FILTER(7.0e-5);//8
|
||||
// FILTER(8.0e-5);//9
|
||||
// FILTER(9.0e-5);//3
|
||||
|
||||
/*
|
||||
// FILTER(1.0e-4);//10
|
||||
FILTER(2.0e-4);//11
|
||||
// FILTER(3.0e-4);//12
|
||||
// FILTER(4.0e-4);//13
|
||||
FILTER(5.0e-4);//14
|
||||
|
||||
FILTER(6.0e-3);//4
|
||||
FILTER(7.0e-4);//1
|
||||
FILTER(8.0e-4);//7
|
||||
FILTER(9.0e-4);//15
|
||||
FILTER(1.0e-3);//2
|
||||
|
||||
FILTER(2.0e-3);//2
|
||||
FILTER(3.0e-3);//2
|
||||
FILTER(4.0e-3);//2
|
||||
FILTER(5.0e-3);//2
|
||||
FILTER(6.0e-3);//2
|
||||
|
||||
FILTER(7.0e-3);//2
|
||||
FILTER(8.0e-3);//2
|
||||
FILTER(1.0e-2);//2
|
||||
*/
|
||||
std::cout << GridLogMessage <<"Jacobi filtering done" <<std::endl;
|
||||
assert(b==nn);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
};
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<CComplex > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
@ -293,7 +535,6 @@ public:
|
||||
CartesianStencil<siteVector,siteVector,int> Stencil;
|
||||
|
||||
std::vector<CoarseMatrix> A;
|
||||
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
@ -305,33 +546,71 @@ public:
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
|
||||
RealD Nin = norm2(in);
|
||||
// RealD Nin = norm2(in);
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
|
||||
double comms_usec = -usecond();
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
comms_usec += usecond();
|
||||
|
||||
auto in_v = in.View();
|
||||
auto out_v = out.View();
|
||||
thread_for(ss,Grid()->oSites(),{
|
||||
siteVector res = Zero();
|
||||
siteVector nbr;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
|
||||
GridStopWatch ArithmeticTimer;
|
||||
int osites=Grid()->oSites();
|
||||
// double flops = osites*Nsimd*nbasis*nbasis*8.0*geom.npoint;
|
||||
// double bytes = osites*nbasis*nbasis*geom.npoint*sizeof(CComplex);
|
||||
double usecs =-usecond();
|
||||
// assert(geom.npoint==9);
|
||||
|
||||
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
int lane=SIMTlane(Nsimd);
|
||||
for(int point=0;point<geom.npoint;point++){
|
||||
|
||||
SE=Stencil.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local&&SE->_permute) {
|
||||
permute(nbr,in_v[SE->_offset],ptype);
|
||||
} else if(SE->_is_local) {
|
||||
nbr = in_v[SE->_offset];
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
|
||||
} else {
|
||||
nbr = Stencil.CommBuf()[SE->_offset];
|
||||
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
|
||||
}
|
||||
synchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
|
||||
}
|
||||
auto A_point = A[point].View();
|
||||
res = res + A_point[ss]*nbr;
|
||||
}
|
||||
vstream(out_v[ss],res);
|
||||
coalescedWrite(out_v[ss](b),res,lane);
|
||||
});
|
||||
usecs +=usecond();
|
||||
|
||||
double nrm_usec=-usecond();
|
||||
RealD Nout= norm2(out);
|
||||
nrm_usec+=usecond();
|
||||
|
||||
/*
|
||||
std::cout << GridLogMessage << "\tNorm " << nrm_usec << " us" <<std::endl;
|
||||
std::cout << GridLogMessage << "\tHalo " << comms_usec << " us" <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << usecs << " us" <<std::endl;
|
||||
std::cout << GridLogMessage << "\t mflop/s " << flops/usecs<<std::endl;
|
||||
std::cout << GridLogMessage << "\t MB/s " << bytes/usecs<<std::endl;
|
||||
*/
|
||||
return Nout;
|
||||
};
|
||||
|
||||
@ -349,25 +628,54 @@ public:
|
||||
return norm2(out);
|
||||
}
|
||||
};
|
||||
|
||||
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
|
||||
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
|
||||
void MdirComms(const CoarseVector &in)
|
||||
{
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
|
||||
auto point = [dir, disp](){
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else
|
||||
return (4 * dir + 1 - disp) / 2;
|
||||
}();
|
||||
}
|
||||
void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
|
||||
{
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(_grid,out.Grid());
|
||||
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
auto out_v = out.View();
|
||||
auto in_v = in.View();
|
||||
thread_for(ss,Grid()->oSites(),{
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
|
||||
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
int lane=SIMTlane(Nsimd);
|
||||
SE=Stencil.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
|
||||
} else {
|
||||
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
|
||||
}
|
||||
synchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res,lane);
|
||||
});
|
||||
#if 0
|
||||
accelerator_for(ss,Grid()->oSites(),1,{
|
||||
|
||||
siteVector res = Zero();
|
||||
siteVector nbr;
|
||||
int ptype;
|
||||
@ -382,16 +690,65 @@ public:
|
||||
} else {
|
||||
nbr = Stencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
synchronise();
|
||||
|
||||
auto A_point = A[point].View();
|
||||
res = res + A_point[ss]*nbr;
|
||||
res = res + Aview_p[point][ss]*nbr;
|
||||
|
||||
vstream(out_v[ss],res);
|
||||
out_v[ss]=res;
|
||||
});
|
||||
#endif
|
||||
}
|
||||
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
|
||||
{
|
||||
this->MdirComms(in);
|
||||
int ndir=geom.npoint-1;
|
||||
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
|
||||
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
|
||||
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
for(int p=0;p<ndir;p++){
|
||||
MdirCalc(in,out[p],p);
|
||||
}
|
||||
};
|
||||
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
|
||||
|
||||
this->MdirComms(in);
|
||||
|
||||
int ndim = in.Grid()->Nd();
|
||||
|
||||
//////////////
|
||||
// 4D action like wilson
|
||||
// 0+ => 0
|
||||
// 0- => 1
|
||||
// 1+ => 2
|
||||
// 1- => 3
|
||||
// etc..
|
||||
//////////////
|
||||
// 5D action like DWF
|
||||
// 1+ => 0
|
||||
// 1- => 1
|
||||
// 2+ => 2
|
||||
// 2- => 3
|
||||
// etc..
|
||||
auto point = [dir, disp, ndim](){
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else if ( ndim==4 ) {
|
||||
return (4 * dir + 1 - disp) / 2;
|
||||
} else {
|
||||
return (4 * (dir-1) + 1 - disp) / 2;
|
||||
}
|
||||
}();
|
||||
|
||||
MdirCalc(in,out,point);
|
||||
|
||||
};
|
||||
|
||||
void Mdiag(const CoarseVector &in, CoarseVector &out){
|
||||
Mdir(in, out, 0, 0); // use the self coupling (= last) point of the stencil
|
||||
void Mdiag(const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
int point=geom.npoint-1;
|
||||
MdirCalc(in, out, point); // No comms
|
||||
};
|
||||
|
||||
|
||||
@ -401,25 +758,44 @@ public:
|
||||
geom(CoarseGrid._ndimension),
|
||||
hermitian(hermitian_),
|
||||
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
||||
A(geom.npoint,&CoarseGrid)
|
||||
A(geom.npoint,&CoarseGrid)
|
||||
{
|
||||
};
|
||||
|
||||
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace){
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
|
||||
typedef typename Fobj::scalar_type scalar_type;
|
||||
|
||||
FineField iblock(FineGrid); // contributions from within this block
|
||||
FineField oblock(FineGrid); // contributions from outwith this block
|
||||
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
|
||||
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
|
||||
|
||||
std::vector<FineComplexField> masks(geom.npoint,FineGrid);
|
||||
FineComplexField imask(FineGrid); // contributions from within this block
|
||||
FineComplexField omask(FineGrid); // contributions from outwith this block
|
||||
|
||||
FineComplexField evenmask(FineGrid);
|
||||
FineComplexField oddmask(FineGrid);
|
||||
|
||||
FineField phi(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
FineField zz(FineGrid); zz=Zero();
|
||||
FineField Mphi(FineGrid);
|
||||
FineField Mphie(FineGrid);
|
||||
FineField Mphio(FineGrid);
|
||||
std::vector<FineField> Mphi_p(geom.npoint,FineGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(FineGrid);
|
||||
Lattice<iScalar<vInteger> > coor (FineGrid);
|
||||
Lattice<iScalar<vInteger> > bcoor(FineGrid);
|
||||
Lattice<iScalar<vInteger> > bcb (FineGrid); bcb = Zero();
|
||||
|
||||
CoarseVector iProj(Grid());
|
||||
CoarseVector oProj(Grid());
|
||||
CoarseVector SelfProj(Grid());
|
||||
CoarseComplexField iZProj(Grid());
|
||||
CoarseComplexField oZProj(Grid());
|
||||
|
||||
CoarseScalar InnerProd(Grid());
|
||||
|
||||
// Orthogonalise the subblocks over the basis
|
||||
@ -428,69 +804,117 @@ public:
|
||||
// Compute the matrix elements of linop between this orthonormal
|
||||
// set of vectors.
|
||||
int self_stencil=-1;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int p=0;p<geom.npoint;p++)
|
||||
{
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
A[p]=Zero();
|
||||
if( geom.displacements[p]==0){
|
||||
self_stencil=p;
|
||||
}
|
||||
|
||||
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
|
||||
|
||||
LatticeCoordinate(coor,dir);
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
// Work out even and odd block checkerboarding for fast diagonal term
|
||||
///////////////////////////////////////////////////////
|
||||
if ( disp==1 ) {
|
||||
bcb = bcb + div(coor,block);
|
||||
}
|
||||
|
||||
if ( disp==0 ) {
|
||||
masks[p]= Zero();
|
||||
} else if ( disp==1 ) {
|
||||
masks[p] = where(mod(coor,block)==(block-1),one,zero);
|
||||
} else if ( disp==-1 ) {
|
||||
masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
|
||||
}
|
||||
}
|
||||
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
|
||||
oddmask = one-evenmask;
|
||||
|
||||
assert(self_stencil!=-1);
|
||||
|
||||
for(int i=0;i<nbasis;i++){
|
||||
|
||||
phi=Subspace.subspace[i];
|
||||
|
||||
std::cout<<GridLogMessage<<"("<<i<<").."<<std::endl;
|
||||
|
||||
// std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
|
||||
linop.OpDirAll(phi,Mphi_p);
|
||||
linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
|
||||
Mphi = Mphi_p[p];
|
||||
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
|
||||
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
|
||||
if ( (disp==-1) || (!hermitian ) ) {
|
||||
|
||||
LatticeCoordinate(coor,dir);
|
||||
|
||||
if ( disp==0 ){
|
||||
linop.OpDiag(phi,Mphi);
|
||||
}
|
||||
else {
|
||||
linop.OpDir(phi,Mphi,dir,disp);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Pick out contributions coming from this cell and neighbour cell
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
if ( disp==0 ) {
|
||||
iblock = Mphi;
|
||||
oblock = Zero();
|
||||
} else if ( disp==1 ) {
|
||||
oblock = where(mod(coor,block)==(block-1),Mphi,zz);
|
||||
iblock = where(mod(coor,block)!=(block-1),Mphi,zz);
|
||||
} else if ( disp==-1 ) {
|
||||
oblock = where(mod(coor,block)==(Integer)0,Mphi,zz);
|
||||
iblock = where(mod(coor,block)!=(Integer)0,Mphi,zz);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
Subspace.ProjectToSubspace(iProj,iblock);
|
||||
Subspace.ProjectToSubspace(oProj,oblock);
|
||||
// blockProject(iProj,iblock,Subspace.subspace);
|
||||
// blockProject(oProj,oblock,Subspace.subspace);
|
||||
auto iProj_v = iProj.View() ;
|
||||
auto oProj_v = oProj.View() ;
|
||||
auto A_p = A[p].View();
|
||||
auto A_self = A[self_stencil].View();
|
||||
thread_for(ss, Grid()->oSites(),{
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Pick out contributions coming from this cell and neighbour cell
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
omask = masks[p];
|
||||
imask = one-omask;
|
||||
|
||||
for(int j=0;j<nbasis;j++){
|
||||
if( disp!= 0 ) {
|
||||
A_p[ss](j,i) = oProj_v[ss](j);
|
||||
}
|
||||
A_self[ss](j,i) = A_self[ss](j,i) + iProj_v[ss](j);
|
||||
|
||||
blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
|
||||
|
||||
auto iZProj_v = iZProj.View() ;
|
||||
auto oZProj_v = oZProj.View() ;
|
||||
auto A_p = A[p].View();
|
||||
auto A_self = A[self_stencil].View();
|
||||
|
||||
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
|
||||
// if( disp!= 0 ) { accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });}
|
||||
// accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_self[ss](j,i),A_self(ss)(j,i)+iZProj_v(ss)); });
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Faster alternate self coupling.. use hermiticity to save 2x
|
||||
///////////////////////////////////////////
|
||||
{
|
||||
mult(tmp,phi,evenmask); linop.Op(tmp,Mphie);
|
||||
mult(tmp,phi,oddmask ); linop.Op(tmp,Mphio);
|
||||
|
||||
{
|
||||
auto tmp_ = tmp.View();
|
||||
auto evenmask_ = evenmask.View();
|
||||
auto oddmask_ = oddmask.View();
|
||||
auto Mphie_ = Mphie.View();
|
||||
auto Mphio_ = Mphio.View();
|
||||
accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{
|
||||
coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
|
||||
});
|
||||
}
|
||||
|
||||
blockProject(SelfProj,tmp,Subspace.subspace);
|
||||
|
||||
auto SelfProj_ = SelfProj.View();
|
||||
auto A_self = A[self_stencil].View();
|
||||
|
||||
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
|
||||
for(int j=0;j<nbasis;j++){
|
||||
coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
}
|
||||
if(hermitian) {
|
||||
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
|
||||
ForceHermitian();
|
||||
}
|
||||
// AssertHermitian();
|
||||
// ForceDiagonal();
|
||||
}
|
||||
|
||||
#if 0
|
||||
///////////////////////////
|
||||
@ -513,17 +937,26 @@ public:
|
||||
std::cout<<GridLogMessage<< iProj <<std::endl;
|
||||
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
|
||||
#endif
|
||||
// ForceHermitian();
|
||||
// AssertHermitian();
|
||||
// ForceDiagonal();
|
||||
}
|
||||
|
||||
|
||||
void ForceHermitian(void) {
|
||||
for(int d=0;d<4;d++){
|
||||
int dd=d+1;
|
||||
A[2*d] = adj(Cshift(A[2*d+1],dd,1));
|
||||
CoarseMatrix Diff (Grid());
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
if(disp==-1) {
|
||||
// Find the opposite link
|
||||
for(int pp=0;pp<geom.npoint;pp++){
|
||||
int dirp = geom.directions[pp];
|
||||
int dispp = geom.displacements[pp];
|
||||
if ( (dirp==dir) && (dispp==1) ){
|
||||
// Diff = adj(Cshift(A[p],dir,1)) - A[pp];
|
||||
// std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl;
|
||||
A[pp] = adj(Cshift(A[p],dir,1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// A[8] = 0.5*(A[8] + adj(A[8]));
|
||||
}
|
||||
void AssertHermitian(void) {
|
||||
CoarseMatrix AA (Grid());
|
||||
|
@ -47,6 +47,7 @@ public:
|
||||
// Support for coarsening to a multigrid
|
||||
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
|
||||
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
|
||||
virtual void OpDirAll (const Field &in, std::vector<Field> &out) = 0; // Abstract base
|
||||
|
||||
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
|
||||
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
|
||||
@ -83,6 +84,9 @@ public:
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
_Mat.MdirAll(in,out);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
@ -93,8 +97,7 @@ public:
|
||||
_Mat.MdagM(in,out,n1,n2);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
_Mat.MdagM(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
@ -116,6 +119,9 @@ public:
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
assert(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
assert(0);
|
||||
@ -154,6 +160,9 @@ public:
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
_Mat.MdirAll(in,out);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
@ -162,7 +171,6 @@ public:
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
_Mat.M(in,out);
|
||||
|
||||
ComplexD dot= innerProduct(in,out); n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
@ -183,6 +191,9 @@ public:
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
_Mat.Mdir(in,out,dir,disp);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
_Mat.MdirAll(in,out);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
@ -234,6 +245,9 @@ public:
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
};
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
@ -320,9 +334,135 @@ public:
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
|
||||
{
|
||||
public:
|
||||
virtual RealD Mpc (const Field& in, Field& out) = 0;
|
||||
virtual RealD MpcDag (const Field& in, Field& out) = 0;
|
||||
virtual void MpcDagMpc(const Field& in, Field& out, RealD& ni, RealD& no) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = in.Checkerboard();
|
||||
ni = Mpc(in,tmp);
|
||||
no = MpcDag(tmp,out);
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
|
||||
assert(0);
|
||||
}
|
||||
virtual void HermOp(const Field& in, Field& out) {
|
||||
assert(0);
|
||||
}
|
||||
void Op(const Field& in, Field& out) {
|
||||
Mpc(in, out);
|
||||
}
|
||||
void AdjOp(const Field& in, Field& out) {
|
||||
MpcDag(in, out);
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag(const Field& in, Field& out) {
|
||||
assert(0); // must coarsen the unpreconditioned system
|
||||
}
|
||||
void OpDir(const Field& in, Field& out, int dir, int disp) {
|
||||
assert(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Matrix, class Field>
|
||||
class NonHermitianSchurDiagMooeeOperator : public NonHermitianSchurOperatorBase<Field>
|
||||
{
|
||||
public:
|
||||
Matrix& _Mat;
|
||||
NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){};
|
||||
virtual RealD Mpc(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = !in.Checkerboard();
|
||||
|
||||
_Mat.Meooe(in, tmp);
|
||||
_Mat.MooeeInv(tmp, out);
|
||||
_Mat.Meooe(out, tmp);
|
||||
|
||||
_Mat.Mooee(in, out);
|
||||
|
||||
return axpy_norm(out, -1.0, tmp, out);
|
||||
}
|
||||
virtual RealD MpcDag(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in, tmp);
|
||||
_Mat.MooeeInvDag(tmp, out);
|
||||
_Mat.MeooeDag(out, tmp);
|
||||
|
||||
_Mat.MooeeDag(in, out);
|
||||
|
||||
return axpy_norm(out, -1.0, tmp, out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>
|
||||
{
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
|
||||
public:
|
||||
NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){};
|
||||
virtual RealD Mpc(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.Meooe(in, out);
|
||||
_Mat.MooeeInv(out, tmp);
|
||||
_Mat.Meooe(tmp, out);
|
||||
_Mat.MooeeInv(out, tmp);
|
||||
|
||||
return axpy_norm(out, -1.0, tmp, in);
|
||||
}
|
||||
virtual RealD MpcDag(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInvDag(in, out);
|
||||
_Mat.MeooeDag(out, tmp);
|
||||
_Mat.MooeeInvDag(tmp, out);
|
||||
_Mat.MeooeDag(out, tmp);
|
||||
|
||||
return axpy_norm(out, -1.0, tmp, in);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Matrix, class Field>
|
||||
class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>
|
||||
{
|
||||
protected:
|
||||
Matrix& _Mat;
|
||||
|
||||
public:
|
||||
NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){};
|
||||
|
||||
virtual RealD Mpc(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInv(in, out);
|
||||
_Mat.Meooe(out, tmp);
|
||||
_Mat.MooeeInv(tmp, out);
|
||||
_Mat.Meooe(out, tmp);
|
||||
|
||||
return axpy_norm(out, -1.0, tmp, in);
|
||||
}
|
||||
virtual RealD MpcDag(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in, out);
|
||||
_Mat.MooeeInvDag(out, tmp);
|
||||
_Mat.MeooeDag(tmp, out);
|
||||
_Mat.MooeeInvDag(out, tmp);
|
||||
|
||||
return axpy_norm(out, -1.0, tmp, in);
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
|
||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
|
||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
|
||||
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
|
||||
|
@ -45,8 +45,13 @@ public:
|
||||
ni=M(in,tmp);
|
||||
no=Mdag(tmp,out);
|
||||
}
|
||||
virtual void MdagM(const Field &in, Field &out) {
|
||||
RealD ni, no;
|
||||
MdagM(in,out,ni,no);
|
||||
}
|
||||
virtual void Mdiag (const Field &in, Field &out)=0;
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -56,12 +61,12 @@ template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrix
|
||||
public:
|
||||
virtual GridBase *RedBlackGrid(void)=0;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Query the even even properties to make algorithmic decisions
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
virtual RealD Mass(void) { return 0.0; };
|
||||
virtual int ConstEE(void) { return 1; }; // Disable assumptions unless overridden
|
||||
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Query the even even properties to make algorithmic decisions
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
virtual RealD Mass(void) { return 0.0; };
|
||||
virtual int ConstEE(void) { return 1; }; // Disable assumptions unless overridden
|
||||
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
|
||||
|
||||
// half checkerboard operaions
|
||||
virtual void Meooe (const Field &in, Field &out)=0;
|
||||
|
@ -94,6 +94,24 @@ public:
|
||||
Coeffs.assign(0.,order);
|
||||
Coeffs[order-1] = 1.;
|
||||
};
|
||||
|
||||
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
|
||||
// Similar kick effect below the threshold as Lanczos filter approach
|
||||
void InitLowPass(RealD _lo,RealD _hi,int _order)
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
for(int j=0;j<order;j++){
|
||||
RealD k=(order-1.0);
|
||||
RealD s=std::cos( j*M_PI*(k+0.5)/order );
|
||||
Coeffs[j] = s * 2.0/order;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
|
||||
{
|
||||
@ -234,20 +252,20 @@ public:
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
Linop.HermOp(T0,y);
|
||||
T1=y*xscale+in*mscale;
|
||||
axpby(T1,xscale,mscale,y,in);
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
||||
// out = ()*T0 + Coeffs[1]*T1;
|
||||
axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
|
||||
for(int n=2;n<order;n++){
|
||||
|
||||
Linop.HermOp(*Tn,y);
|
||||
|
||||
y=xscale*y+mscale*(*Tn);
|
||||
|
||||
*Tnp=2.0*y-(*Tnm);
|
||||
|
||||
out=out+Coeffs[n]* (*Tnp);
|
||||
|
||||
// y=xscale*y+mscale*(*Tn);
|
||||
// *Tnp=2.0*y-(*Tnm);
|
||||
// out=out+Coeffs[n]* (*Tnp);
|
||||
axpby(y,xscale,mscale,y,(*Tn));
|
||||
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
|
||||
axpy(out,Coeffs[n],*Tnp,out);
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
|
129
Grid/algorithms/approx/JacobiPolynomial.h
Normal file
129
Grid/algorithms/approx/JacobiPolynomial.h
Normal file
@ -0,0 +1,129 @@
|
||||
#ifndef GRID_JACOBIPOLYNOMIAL_H
|
||||
#define GRID_JACOBIPOLYNOMIAL_H
|
||||
|
||||
#include <Grid/algorithms/LinearOperator.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Field>
|
||||
class JacobiPolynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
int order;
|
||||
RealD hi;
|
||||
RealD lo;
|
||||
RealD alpha;
|
||||
RealD beta;
|
||||
|
||||
public:
|
||||
void csv(std::ostream &out){
|
||||
csv(out,lo,hi);
|
||||
}
|
||||
void csv(std::ostream &out,RealD llo,RealD hhi){
|
||||
RealD diff = hhi-llo;
|
||||
RealD delta = diff*1.0e-5;
|
||||
for (RealD x=llo-delta; x<=hhi; x+=delta) {
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f <<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
JacobiPolynomial(){};
|
||||
JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta)
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
alpha=_alpha;
|
||||
beta=_beta;
|
||||
order=_order;
|
||||
};
|
||||
|
||||
RealD approx(RealD x) // Convenience for plotting the approximation
|
||||
{
|
||||
RealD Tn;
|
||||
RealD Tnm;
|
||||
RealD Tnp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD T0=1.0;
|
||||
RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
|
||||
|
||||
Tn =T1;
|
||||
Tnm=T0;
|
||||
for(int n=2;n<=order;n++){
|
||||
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
|
||||
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
|
||||
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
|
||||
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
|
||||
Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
|
||||
Tnm=Tn;
|
||||
Tn =Tnp;
|
||||
}
|
||||
return Tnp;
|
||||
};
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
GridBase *grid=in.Grid();
|
||||
|
||||
int vol=grid->gSites();
|
||||
|
||||
Field T0(grid);
|
||||
Field T1(grid);
|
||||
Field T2(grid);
|
||||
Field y(grid);
|
||||
|
||||
|
||||
Field *Tnm = &T0;
|
||||
Field *Tn = &T1;
|
||||
Field *Tnp = &T2;
|
||||
|
||||
// RealD T0=1.0;
|
||||
T0=in;
|
||||
|
||||
// RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
// = x * 2/(hi-lo) - (hi+lo)/(hi-lo)
|
||||
Linop.HermOp(T0,y);
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
Linop.HermOp(T0,y);
|
||||
y=y*xscale+in*mscale;
|
||||
|
||||
// RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
|
||||
RealD halfAmB = (alpha-beta)*0.5;
|
||||
RealD halfApBp2= (alpha+beta+2.0)*0.5;
|
||||
T1 = halfAmB * in + halfApBp2*y;
|
||||
|
||||
for(int n=2;n<=order;n++){
|
||||
|
||||
Linop.HermOp(*Tn,y);
|
||||
y=xscale*y+mscale*(*Tn);
|
||||
|
||||
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
|
||||
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
|
||||
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
|
||||
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
|
||||
|
||||
// Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
|
||||
cny=cny/cnp;
|
||||
cn1=cn1/cnp;
|
||||
cn1=cn1/cnp;
|
||||
cnm=cnm/cnp;
|
||||
|
||||
*Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm);
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
}
|
||||
out=*Tnp;
|
||||
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
222
Grid/algorithms/iterative/BiCGSTAB.h
Normal file
222
Grid/algorithms/iterative/BiCGSTAB.h
Normal file
@ -0,0 +1,222 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/BiCGSTAB.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: juettner <juettner@soton.ac.uk>
|
||||
Author: David Murphy <djmurphy@mit.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef GRID_BICGSTAB_H
|
||||
#define GRID_BICGSTAB_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for iterative processes based on operators
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template <class Field>
|
||||
class BiCGSTAB : public OperatorFunction<Field>
|
||||
{
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
|
||||
BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) :
|
||||
Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){};
|
||||
|
||||
void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi)
|
||||
{
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1);
|
||||
RealD a(0), bo(0), b(0), ssq(0);
|
||||
|
||||
Field p(src);
|
||||
Field r(src);
|
||||
Field rhat(src);
|
||||
Field v(src);
|
||||
Field s(src);
|
||||
Field t(src);
|
||||
Field h(src);
|
||||
|
||||
v = Zero();
|
||||
p = Zero();
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
Linop.Op(psi, v);
|
||||
b = norm2(v);
|
||||
|
||||
r = src - v;
|
||||
rhat = r;
|
||||
a = norm2(r);
|
||||
ssq = norm2(src);
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: mp " << b << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: r " << a << std::endl;
|
||||
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
// Check if guess is really REALLY good :)
|
||||
if(a <= rsq){ return; }
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch InnerTimer;
|
||||
GridStopWatch AxpyNormTimer;
|
||||
GridStopWatch LinearCombTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations; k++)
|
||||
{
|
||||
rho_prev = rho;
|
||||
|
||||
LinalgTimer.Start();
|
||||
InnerTimer.Start();
|
||||
ComplexD Crho = innerProduct(rhat,r);
|
||||
InnerTimer.Stop();
|
||||
rho = Crho.real();
|
||||
|
||||
beta = (rho / rho_prev) * (alpha / omega);
|
||||
|
||||
LinearCombTimer.Start();
|
||||
bo = beta * omega;
|
||||
auto p_v = p.View();
|
||||
auto r_v = r.View();
|
||||
auto v_v = v.View();
|
||||
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
|
||||
});
|
||||
LinearCombTimer.Stop();
|
||||
LinalgTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop.Op(p,v);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
InnerTimer.Start();
|
||||
ComplexD Calpha = innerProduct(rhat,v);
|
||||
InnerTimer.Stop();
|
||||
alpha = rho / Calpha.real();
|
||||
|
||||
LinearCombTimer.Start();
|
||||
auto h_v = h.View();
|
||||
auto psi_v = psi.View();
|
||||
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
|
||||
});
|
||||
|
||||
auto s_v = s.View();
|
||||
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
|
||||
});
|
||||
LinearCombTimer.Stop();
|
||||
LinalgTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop.Op(s,t);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
InnerTimer.Start();
|
||||
ComplexD Comega = innerProduct(t,s);
|
||||
InnerTimer.Stop();
|
||||
omega = Comega.real() / norm2(t);
|
||||
|
||||
LinearCombTimer.Start();
|
||||
auto t_v = t.View();
|
||||
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
|
||||
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
|
||||
});
|
||||
LinearCombTimer.Stop();
|
||||
|
||||
cp = norm2(r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
||||
|
||||
// Stopping condition
|
||||
if(cp <= rsq)
|
||||
{
|
||||
SolverTimer.Stop();
|
||||
Linop.Op(psi, v);
|
||||
p = v - src;
|
||||
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD resnorm = sqrt(norm2(p));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl;
|
||||
std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl;
|
||||
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time breakdown " << std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
|
||||
|
||||
if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
|
||||
|
||||
if(ErrorOnNoConverge){ assert(0); }
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
158
Grid/algorithms/iterative/BiCGSTABMixedPrec.h
Normal file
158
Grid/algorithms/iterative/BiCGSTABMixedPrec.h
Normal file
@ -0,0 +1,158 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
Author: David Murphy <djmurphy@mit.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef GRID_BICGSTAB_MIXED_PREC_H
|
||||
#define GRID_BICGSTAB_MIXED_PREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Mixed precision restarted defect correction BiCGSTAB
|
||||
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
|
||||
{
|
||||
public:
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid; // Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
LinearOperatorBase<FieldF> &Linop_f;
|
||||
LinearOperatorBase<FieldD> &Linop_d;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
|
||||
MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid,
|
||||
LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) :
|
||||
Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {};
|
||||
|
||||
void useGuesser(LinearFunction<FieldF>& g){
|
||||
guesser = &g;
|
||||
}
|
||||
|
||||
void operator() (const FieldD& src_d_in, FieldD& sol_d)
|
||||
{
|
||||
TotalInnerIterations = 0;
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
TotalTimer.Start();
|
||||
|
||||
int cb = src_d_in.Checkerboard();
|
||||
sol_d.Checkerboard() = cb;
|
||||
|
||||
RealD src_norm = norm2(src_d_in);
|
||||
RealD stop = src_norm * Tolerance*Tolerance;
|
||||
|
||||
GridBase* DoublePrecGrid = src_d_in.Grid();
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
tmp_d.Checkerboard() = cb;
|
||||
|
||||
FieldD tmp2_d(DoublePrecGrid);
|
||||
tmp2_d.Checkerboard() = cb;
|
||||
|
||||
FieldD src_d(DoublePrecGrid);
|
||||
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
|
||||
|
||||
RealD inner_tol = InnerTolerance;
|
||||
|
||||
FieldF src_f(SinglePrecGrid);
|
||||
src_f.Checkerboard() = cb;
|
||||
|
||||
FieldF sol_f(SinglePrecGrid);
|
||||
sol_f.Checkerboard() = cb;
|
||||
|
||||
BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||
CG_f.ErrorOnNoConverge = false;
|
||||
|
||||
GridStopWatch InnerCGtimer;
|
||||
|
||||
GridStopWatch PrecChangeTimer;
|
||||
|
||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
||||
|
||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++)
|
||||
{
|
||||
// Compute double precision rsd and also new RHS vector.
|
||||
Linop_d.Op(sol_d, tmp_d);
|
||||
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
|
||||
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl;
|
||||
|
||||
if(norm < OuterLoopNormMult * stop){
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl;
|
||||
break;
|
||||
}
|
||||
while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ??
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f, src_d);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
sol_f = Zero();
|
||||
|
||||
//Optionally improve inner solver guess (eg using known eigenvectors)
|
||||
if(guesser != NULL){ (*guesser)(src_f, sol_f); }
|
||||
|
||||
//Inner CG
|
||||
CG_f.Tolerance = inner_tol;
|
||||
InnerCGtimer.Start();
|
||||
CG_f(Linop_f, src_f, sol_f);
|
||||
InnerCGtimer.Stop();
|
||||
TotalInnerIterations += CG_f.IterationsToComplete;
|
||||
|
||||
//Convert sol back to double and add to double prec solution
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(tmp_d, sol_f);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
axpy(sol_d, 1.0, tmp_d, sol_d);
|
||||
}
|
||||
|
||||
//Final trial CG
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl;
|
||||
|
||||
BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||
CG_d(Linop_d, src_d_in, sol_d);
|
||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||
|
||||
TotalTimer.Stop();
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -52,6 +52,7 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
Integer PrintInterval; //GridLogMessages or Iterative
|
||||
RealD TrueResidual;
|
||||
|
||||
BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
|
||||
@ -306,7 +307,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
||||
|
||||
Linop.HermOp(X, AD);
|
||||
AD = AD-B;
|
||||
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AD)/norm2(B)) <<std::endl;
|
||||
TrueResidual = std::sqrt(norm2(AD)/norm2(B));
|
||||
std::cout << GridLogMessage <<"\tTrue residual is " << TrueResidual <<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
@ -442,7 +444,8 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
|
||||
|
||||
Linop.HermOp(Psi, AP);
|
||||
AP = AP-Src;
|
||||
std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
|
||||
TrueResidual = std::sqrt(norm2(AP)/norm2(Src));
|
||||
std::cout <<GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
@ -653,7 +656,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
||||
if ( rr > max_resid ) max_resid = rr;
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< sqrt(rrsum/sssum) << " max "<< sqrt(max_resid) <<std::endl;
|
||||
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
|
||||
|
||||
if ( max_resid < Tolerance*Tolerance ) {
|
||||
|
||||
@ -668,7 +671,8 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
||||
|
||||
for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]);
|
||||
for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b];
|
||||
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(normv(AD)/normv(B)) <<std::endl;
|
||||
TrueResidual = std::sqrt(normv(AD)/normv(B));
|
||||
std::cout << GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
|
@ -49,6 +49,7 @@ public:
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
RealD TrueResidual;
|
||||
|
||||
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: Tolerance(tol),
|
||||
@ -71,7 +72,6 @@ public:
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
|
||||
@ -82,6 +82,14 @@ public:
|
||||
cp = a;
|
||||
ssq = norm2(src);
|
||||
|
||||
// Handle trivial case of zero src
|
||||
if (ssq == 0.){
|
||||
psi = Zero();
|
||||
IterationsToComplete = 1;
|
||||
TrueResidual = 0.;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mp " << d << std::endl;
|
||||
@ -93,6 +101,7 @@ public:
|
||||
|
||||
// Check if guess is really REALLY good :)
|
||||
if (cp <= rsq) {
|
||||
TrueResidual = std::sqrt(a/ssq);
|
||||
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
|
||||
IterationsToComplete = 0;
|
||||
return;
|
||||
@ -142,7 +151,7 @@ public:
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
||||
<< " residual^2 " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
||||
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
@ -154,26 +163,33 @@ public:
|
||||
RealD resnorm = std::sqrt(norm2(p));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
|
||||
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
|
||||
<< "\tComputed residual " << std::sqrt(cp / ssq)
|
||||
<< "\tTrue residual " << true_residual
|
||||
<< "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogIterative << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
TrueResidual = true_residual;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
// Failed. Calculate true residual before giving up
|
||||
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
|
||||
TrueResidual = sqrt(norm2(p)/ssq);
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
|
@ -46,15 +46,19 @@ public:
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
int verbose;
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
|
||||
MaxIterations(maxit),
|
||||
shifts(_shifts)
|
||||
{
|
||||
verbose=1;
|
||||
IterationsToCompleteShift.resize(_shifts.order);
|
||||
TrueResidualShift.resize(_shifts.order);
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
|
||||
@ -125,6 +129,17 @@ public:
|
||||
// Residuals "r" are src
|
||||
// First search direction "p" is also src
|
||||
cp = norm2(src);
|
||||
|
||||
// Handle trivial case of zero src.
|
||||
if( cp == 0. ){
|
||||
for(int s=0;s<nshift;s++){
|
||||
psi[s] = Zero();
|
||||
IterationsToCompleteShift[s] = 1;
|
||||
TrueResidualShift[s] = 0.;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
|
||||
@ -270,6 +285,7 @@ public:
|
||||
for(int s=0;s<nshift;s++){
|
||||
|
||||
if ( (!converged[s]) ){
|
||||
IterationsToCompleteShift[s] = k;
|
||||
|
||||
RealD css = c * z[s][iz]* z[s][iz];
|
||||
|
||||
@ -299,7 +315,8 @@ public:
|
||||
axpy(r,-alpha[s],src,tmp);
|
||||
RealD rn = norm2(r);
|
||||
RealD cn = norm2(src);
|
||||
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<<std::sqrt(rn/cn)<<std::endl;
|
||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl;
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
|
@ -43,6 +43,11 @@ NAMESPACE_BEGIN(Grid);
|
||||
template<class Field>
|
||||
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
|
||||
{
|
||||
// If assume basis[j] are already orthonormal,
|
||||
// can take all inner products in parallel saving 2x bandwidth
|
||||
// Save 3x bandwidth on the second line of loop.
|
||||
// perhaps 2.5x speed up.
|
||||
// 2x overall in Multigrid Lanczos
|
||||
for(int j=0; j<k; ++j){
|
||||
auto ip = innerProduct(basis[j],w);
|
||||
w = w - ip*basis[j];
|
||||
@ -54,16 +59,15 @@ void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, i
|
||||
{
|
||||
typedef decltype(basis[0].View()) View;
|
||||
auto tmp_v = basis[0].View();
|
||||
std::vector<View> basis_v(basis.size(),tmp_v);
|
||||
Vector<View> basis_v(basis.size(),tmp_v);
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0].Grid();
|
||||
|
||||
|
||||
for(int k=0;k<basis.size();k++){
|
||||
basis_v[k] = basis[k].View();
|
||||
}
|
||||
|
||||
#if 0
|
||||
std::vector < vobj , commAllocator<vobj> > Bt(thread_max() * Nm); // Thread private
|
||||
|
||||
thread_region
|
||||
{
|
||||
vobj* B = Bt.data() + Nm * thread_num();
|
||||
@ -81,24 +85,89 @@ void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, i
|
||||
}
|
||||
});
|
||||
}
|
||||
#else
|
||||
|
||||
int nrot = j1-j0;
|
||||
|
||||
|
||||
uint64_t oSites =grid->oSites();
|
||||
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
|
||||
|
||||
// printf("BasisRotate %d %d nrot %d siteBlock %d\n",j0,j1,nrot,siteBlock);
|
||||
|
||||
Vector <vobj> Bt(siteBlock * nrot);
|
||||
auto Bp=&Bt[0];
|
||||
|
||||
// GPU readable copy of Eigen matrix
|
||||
Vector<double> Qt_jv(Nm*Nm);
|
||||
double *Qt_p = & Qt_jv[0];
|
||||
for(int k=0;k<Nm;++k){
|
||||
for(int j=0;j<Nm;++j){
|
||||
Qt_p[j*Nm+k]=Qt(j,k);
|
||||
}
|
||||
}
|
||||
|
||||
// Block the loop to keep storage footprint down
|
||||
vobj zz=Zero();
|
||||
for(uint64_t s=0;s<oSites;s+=siteBlock){
|
||||
|
||||
// remaining work in this block
|
||||
int ssites=MIN(siteBlock,oSites-s);
|
||||
|
||||
// zero out the accumulators
|
||||
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
|
||||
auto z=coalescedRead(zz);
|
||||
coalescedWrite(Bp[ss],z);
|
||||
});
|
||||
|
||||
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
|
||||
|
||||
int j =sj%nrot;
|
||||
int jj =j0+j;
|
||||
int ss =sj/nrot;
|
||||
int sss=ss+s;
|
||||
|
||||
for(int k=k0; k<k1; ++k){
|
||||
auto tmp = coalescedRead(Bp[ss*nrot+j]);
|
||||
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
|
||||
}
|
||||
});
|
||||
|
||||
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
|
||||
int j =sj%nrot;
|
||||
int jj =j0+j;
|
||||
int ss =sj/nrot;
|
||||
int sss=ss+s;
|
||||
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// Extract a single rotated vector
|
||||
template<class Field>
|
||||
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef decltype(basis[0].View()) View;
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0].Grid();
|
||||
|
||||
result.Checkerboard() = basis[0].Checkerboard();
|
||||
auto result_v=result.View();
|
||||
thread_for(ss, grid->oSites(),{
|
||||
vobj B = Zero();
|
||||
Vector<View> basis_v(basis.size(),result_v);
|
||||
for(int k=0;k<basis.size();k++){
|
||||
basis_v[k] = basis[k].View();
|
||||
}
|
||||
vobj zz=Zero();
|
||||
Vector<double> Qt_jv(Nm);
|
||||
double * Qt_j = & Qt_jv[0];
|
||||
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
|
||||
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
|
||||
auto B=coalescedRead(zz);
|
||||
for(int k=k0; k<k1; ++k){
|
||||
auto basis_k = basis[k].View();
|
||||
B +=Qt(j,k) * basis_k[ss];
|
||||
B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
|
||||
}
|
||||
result_v[ss] = B;
|
||||
coalescedWrite(result_v[ss], B);
|
||||
});
|
||||
}
|
||||
|
||||
@ -282,7 +351,7 @@ public:
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
int _MaxIter, // Max iterations
|
||||
RealD _betastp=0.0, // if beta(k) < betastp: converged
|
||||
int _MinRestart=1, int _orth_period = 1,
|
||||
int _MinRestart=0, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(Tester),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
@ -298,7 +367,7 @@ public:
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
int _MaxIter, // Max iterations
|
||||
RealD _betastp=0.0, // if beta(k) < betastp: converged
|
||||
int _MinRestart=1, int _orth_period = 1,
|
||||
int _MinRestart=0, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(SimpleTester),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
@ -347,7 +416,7 @@ until convergence
|
||||
GridBase *grid = src.Grid();
|
||||
assert(grid == evec[0].Grid());
|
||||
|
||||
GridLogIRL.TimingMode(1);
|
||||
// GridLogIRL.TimingMode(1);
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
@ -372,14 +441,17 @@ until convergence
|
||||
{
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
std::cout << GridLogIRL << " IRL source norm " << norm2(src) << std::endl;
|
||||
const int _MAX_ITER_IRL_MEVAPP_ = 50;
|
||||
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
|
||||
normalise(src_n);
|
||||
_HermOp(src_n,tmp);
|
||||
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
|
||||
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
|
||||
i=_MAX_ITER_IRL_MEVAPP_;
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
@ -577,11 +649,11 @@ until convergence
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
3. wk:=Avk−βkv_{k−1}
|
||||
4. αk:=(wk,vk) //
|
||||
5. wk:=wk−αkvk // wk orthog vk
|
||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
7. vk+1 := wk/βk+1
|
||||
3. wk:=Avk - b_k v_{k-1}
|
||||
4. ak:=(wk,vk) //
|
||||
5. wk:=wk-akvk // wk orthog vk
|
||||
6. bk+1 := ||wk||_2. If b_k+1 = 0 then Stop
|
||||
7. vk+1 := wk/b_k+1
|
||||
8. EndDo
|
||||
*/
|
||||
void step(std::vector<RealD>& lmd,
|
||||
@ -589,6 +661,7 @@ until convergence
|
||||
std::vector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
@ -600,20 +673,20 @@ until convergence
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
|
||||
ComplexD zalph = innerProduct(evec_k,w);
|
||||
RealD alph = real(zalph);
|
||||
|
||||
w = w - alph * evec_k;// 5. wk:=wk−αkvk
|
||||
w = w - alph * evec_k;
|
||||
|
||||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
RealD beta = normalise(w);
|
||||
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
if (k>0 && k % orth_period == 0) {
|
||||
if ( (k>0) && ( (k % orth_period) == 0 )) {
|
||||
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
std::cout<<GridLogIRL << "Orthogonalised " <<std::endl;
|
||||
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
|
||||
}
|
||||
|
||||
if(k < Nm-1) evec[k+1] = w;
|
||||
@ -621,6 +694,8 @@ until convergence
|
||||
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
if ( beta < tiny )
|
||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||
|
||||
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
|
@ -33,26 +33,78 @@ NAMESPACE_BEGIN(Grid);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form an NE solver calling a Herm solver
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class NormalEquations : public OperatorFunction<Field>{
|
||||
template<class Field> class NormalEquations {
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
|
||||
LinearFunction<Field> & _Guess;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations trick
|
||||
/////////////////////////////////////////////////////
|
||||
NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver)
|
||||
: _Matrix(Matrix), _HermitianSolver(HermitianSolver) {};
|
||||
NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
|
||||
LinearFunction<Field> &Guess)
|
||||
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
|
||||
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
Field src(in.Grid());
|
||||
Field tmp(in.Grid());
|
||||
|
||||
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
|
||||
_Matrix.Mdag(in,src);
|
||||
_HermitianSolver(src,out); // Mdag M out = Mdag in
|
||||
_Guess(src,out);
|
||||
_HermitianSolver(MdagMOp,src,out); // Mdag M out = Mdag in
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class HPDSolver {
|
||||
private:
|
||||
LinearOperatorBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
LinearFunction<Field> & _Guess;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations trick
|
||||
/////////////////////////////////////////////////////
|
||||
HPDSolver(LinearOperatorBase<Field> &Matrix,
|
||||
OperatorFunction<Field> &HermitianSolver,
|
||||
LinearFunction<Field> &Guess)
|
||||
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
|
||||
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
_Guess(in,out);
|
||||
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class Field> class MdagMSolver {
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
LinearFunction<Field> & _Guess;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations trick
|
||||
/////////////////////////////////////////////////////
|
||||
MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
|
||||
LinearFunction<Field> &Guess)
|
||||
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
|
||||
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
|
||||
_Guess(in,out);
|
||||
|
||||
_HermitianSolver(MdagMOp,in,out); // Mdag M out = Mdag in
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -30,12 +30,12 @@ template<class Field> class PowerMethod
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
|
||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.01) || (i==_MAX_ITER_EST_-1) ) {
|
||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
return evalMaxApprox;
|
||||
}
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
src_n = tmp;
|
||||
}
|
||||
assert(0);
|
||||
|
@ -38,10 +38,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
|
||||
|
||||
template<class Field>
|
||||
class PrecGeneralisedConjugateResidual : public OperatorFunction<Field> {
|
||||
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
@ -49,23 +50,29 @@ public:
|
||||
int mmax;
|
||||
int nstep;
|
||||
int steps;
|
||||
int level;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch MatTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
LinearOperatorBase<Field> &Linop;
|
||||
|
||||
PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
|
||||
void Level(int lv) { level=lv; };
|
||||
|
||||
PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
Linop(_Linop),
|
||||
Preconditioner(Prec),
|
||||
mmax(_mmax),
|
||||
nstep(_nstep)
|
||||
{
|
||||
level=1;
|
||||
verbose=1;
|
||||
};
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
|
||||
void operator() (const Field &src, Field &psi){
|
||||
|
||||
psi=Zero();
|
||||
RealD cp, ssq,rsq;
|
||||
@ -84,9 +91,9 @@ public:
|
||||
steps=0;
|
||||
for(int k=0;k<MaxIterations;k++){
|
||||
|
||||
cp=GCRnStep(Linop,src,psi,rsq);
|
||||
cp=GCRnStep(src,psi,rsq);
|
||||
|
||||
std::cout<<GridLogMessage<<"VPGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
|
||||
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
|
||||
|
||||
if(cp<rsq) {
|
||||
|
||||
@ -95,24 +102,26 @@ public:
|
||||
Linop.HermOp(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
RealD tr = norm2(r);
|
||||
std::cout<<GridLogMessage<<"PrecGeneralisedConjugateResidual: Converged on iteration " <<steps
|
||||
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
|
||||
<< " computed residual "<<sqrt(cp/ssq)
|
||||
<< " true residual " <<sqrt(tr/ssq)
|
||||
<< " target " <<Tolerance <<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Precon "<< PrecTimer.Elapsed() <<std::endl;
|
||||
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Matrix "<< MatTimer.Elapsed() <<std::endl;
|
||||
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
|
||||
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
|
||||
/*
|
||||
GCRLogLevel<<"PGCR Time elapsed: Precon "<< PrecTimer.Elapsed() <<std::endl;
|
||||
GCRLogLevel<<"PGCR Time elapsed: Matrix "<< MatTimer.Elapsed() <<std::endl;
|
||||
GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
std::cout<<GridLogMessage<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
||||
assert(0);
|
||||
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
}
|
||||
|
||||
RealD GCRnStep(LinearOperatorBase<Field> &Linop,const Field &src, Field &psi,RealD rsq){
|
||||
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
|
||||
|
||||
RealD cp;
|
||||
RealD a, b;
|
||||
@ -134,9 +143,7 @@ public:
|
||||
std::vector<Field> p(mmax,grid);
|
||||
std::vector<RealD> qq(mmax);
|
||||
|
||||
std::cout<<GridLogIterative<< " ************** "<< std::endl;
|
||||
std::cout<<GridLogIterative<< " GCRnStep("<<nstep<<")"<<std::endl;
|
||||
std::cout<<GridLogIterative<< " ************** "<< std::endl;
|
||||
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// initial guess x0 is taken as nonzero.
|
||||
@ -150,35 +157,15 @@ public:
|
||||
LinalgTimer.Start();
|
||||
r=src-Az;
|
||||
LinalgTimer.Stop();
|
||||
std::cout<<GridLogIterative<< " GCRnStep true residual r = src - A psi "<<norm2(r) <<std::endl;
|
||||
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
|
||||
|
||||
/////////////////////
|
||||
// p = Prec(r)
|
||||
/////////////////////
|
||||
|
||||
std::cout<<GridLogIterative<< " GCRnStep apply preconditioner z= M^-1 r "<< std::endl;
|
||||
std::cout<<GridLogIterative<< " --------------------------------------- "<< std::endl;
|
||||
PrecTimer.Start();
|
||||
Preconditioner(r,z);
|
||||
PrecTimer.Stop();
|
||||
std::cout<<GridLogIterative<< " --------------------------------------- "<< std::endl;
|
||||
std::cout<<GridLogIterative<< " GCRnStep called Preconditioner z "<< norm2(z) <<std::endl;
|
||||
|
||||
// MatTimer.Start();
|
||||
// Linop.HermOp(z,tmp);
|
||||
// MatTimer.Stop();
|
||||
|
||||
// LinalgTimer.Start();
|
||||
// ttmp=tmp;
|
||||
// tmp=tmp-r;
|
||||
// LinalgTimer.Stop();
|
||||
|
||||
/*
|
||||
std::cout<<GridLogMessage<<r<<std::endl;
|
||||
std::cout<<GridLogMessage<<z<<std::endl;
|
||||
std::cout<<GridLogMessage<<ttmp<<std::endl;
|
||||
std::cout<<GridLogMessage<<tmp<<std::endl;
|
||||
*/
|
||||
|
||||
MatTimer.Start();
|
||||
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
|
||||
@ -190,7 +177,6 @@ public:
|
||||
p[0]= z;
|
||||
q[0]= Az;
|
||||
qq[0]= zAAz;
|
||||
std::cout<<GridLogIterative<< " GCRnStep p0=z, q0 = A p0 " <<std::endl;
|
||||
|
||||
cp =norm2(r);
|
||||
LinalgTimer.Stop();
|
||||
@ -212,20 +198,16 @@ public:
|
||||
cp = axpy_norm(r,-a,q[peri_k],r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout<<GridLogMessage<< " VPGCR_step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
|
||||
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
|
||||
|
||||
if((k==nstep-1)||(cp<rsq)){
|
||||
return cp;
|
||||
}
|
||||
|
||||
|
||||
std::cout<<GridLogIterative<< " GCRnStep apply preconditioner z= M^-1 r "<< std::endl;
|
||||
std::cout<<GridLogIterative<< " --------------------------------------- "<< std::endl;
|
||||
PrecTimer.Start();
|
||||
Preconditioner(r,z);// solve Az = r
|
||||
PrecTimer.Stop();
|
||||
std::cout<<GridLogIterative<< " --------------------------------------- "<< std::endl;
|
||||
std::cout<<GridLogIterative<< " GCRnStep called Preconditioner z "<< norm2(z) <<std::endl;
|
||||
|
||||
MatTimer.Start();
|
||||
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
|
||||
|
@ -405,6 +405,70 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field>
|
||||
{
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Override RedBlack specialisation
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
|
||||
{
|
||||
GridBase* grid = _Matrix.RedBlackGrid();
|
||||
GridBase* fgrid = _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even, src_e, src);
|
||||
pickCheckerboard(Odd , src_o, src);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
|
||||
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
|
||||
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
||||
{
|
||||
GridBase* grid = _Matrix.RedBlackGrid();
|
||||
GridBase* fgrid = _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field sol_e(grid);
|
||||
Field src_e_i(grid);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o, tmp); assert( tmp.Checkerboard() == Even );
|
||||
src_e_i = src_e - tmp; assert( src_e_i.Checkerboard() == Even );
|
||||
_Matrix.MooeeInv(src_e_i, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
|
||||
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd );
|
||||
}
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
||||
{
|
||||
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o); assert(sol_o.Checkerboard() == Odd);
|
||||
}
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
|
||||
{
|
||||
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Site diagonal is identity, right preconditioned by Mee^inv
|
||||
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
|
||||
@ -482,5 +546,76 @@ namespace Grid {
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field>
|
||||
{
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
|
||||
|
||||
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
|
||||
{
|
||||
GridBase* grid = _Matrix.RedBlackGrid();
|
||||
GridBase* fgrid = _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even, src_e, src);
|
||||
pickCheckerboard(Odd , src_o, src);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
|
||||
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
|
||||
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
||||
{
|
||||
GridBase* grid = _Matrix.RedBlackGrid();
|
||||
GridBase* fgrid = _Matrix.Grid();
|
||||
|
||||
Field sol_o_i(grid);
|
||||
Field tmp(grid);
|
||||
Field sol_e(grid);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// MooeeInv due to pecond
|
||||
////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(sol_o, tmp);
|
||||
sol_o_i = tmp;
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o_i, tmp); assert( tmp.Checkerboard() == Even );
|
||||
tmp = src_e - tmp; assert( src_e.Checkerboard() == Even );
|
||||
_Matrix.MooeeInv(tmp, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
|
||||
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
setCheckerboard(sol, sol_o_i); assert( sol_o_i.Checkerboard() == Odd );
|
||||
};
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
||||
{
|
||||
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
|
||||
};
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
|
||||
{
|
||||
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user