mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 14:04:32 +00:00 
			
		
		
		
	Namespace and formatting changes
This commit is contained in:
		@@ -1,4 +1,4 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
@@ -25,14 +25,14 @@ Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CHEBYSHEV_H
 | 
			
		||||
#define GRID_CHEBYSHEV_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/LinearOperator.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
struct ChebyParams : Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
 | 
			
		||||
@@ -41,337 +41,337 @@ struct ChebyParams : Serializable {
 | 
			
		||||
				  int, Npoly);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Generic Chebyshev approximations
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  class Chebyshev : public OperatorFunction<Field> {
 | 
			
		||||
  private:
 | 
			
		||||
    std::vector<RealD> Coeffs;
 | 
			
		||||
    int order;
 | 
			
		||||
    RealD hi;
 | 
			
		||||
    RealD lo;
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Generic Chebyshev approximations
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class Field>
 | 
			
		||||
class Chebyshev : public OperatorFunction<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  std::vector<RealD> Coeffs;
 | 
			
		||||
  int order;
 | 
			
		||||
  RealD hi;
 | 
			
		||||
  RealD lo;
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    void csv(std::ostream &out){
 | 
			
		||||
      RealD diff = hi-lo;
 | 
			
		||||
      RealD delta = (hi-lo)*1.0e-9;
 | 
			
		||||
      for (RealD x=lo; x<hi; x+=delta) {
 | 
			
		||||
	delta*=1.1;
 | 
			
		||||
	RealD f = approx(x);
 | 
			
		||||
	out<< x<<" "<<f<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
public:
 | 
			
		||||
  void csv(std::ostream &out){
 | 
			
		||||
    RealD diff = hi-lo;
 | 
			
		||||
    RealD delta = (hi-lo)*1.0e-9;
 | 
			
		||||
    for (RealD x=lo; x<hi; x+=delta) {
 | 
			
		||||
      delta*=1.1;
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    // Convenience for plotting the approximation
 | 
			
		||||
    void   PlotApprox(std::ostream &out) {
 | 
			
		||||
      out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
      for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
 | 
			
		||||
	out <<x<<"\t"<<approx(x)<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    Chebyshev(){};
 | 
			
		||||
    Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
 | 
			
		||||
    Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
 | 
			
		||||
    Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// CJ: the one we need for Lanczos
 | 
			
		||||
    void Init(RealD _lo,RealD _hi,int _order)
 | 
			
		||||
    {
 | 
			
		||||
      lo=_lo;
 | 
			
		||||
      hi=_hi;
 | 
			
		||||
      order=_order;
 | 
			
		||||
      
 | 
			
		||||
      if(order < 2) exit(-1);
 | 
			
		||||
      Coeffs.resize(order);
 | 
			
		||||
      Coeffs.assign(0.,order);
 | 
			
		||||
      Coeffs[order-1] = 1.;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
 | 
			
		||||
    {
 | 
			
		||||
      lo=_lo;
 | 
			
		||||
      hi=_hi;
 | 
			
		||||
      order=_order;
 | 
			
		||||
      
 | 
			
		||||
      if(order < 2) exit(-1);
 | 
			
		||||
      Coeffs.resize(order);
 | 
			
		||||
      for(int j=0;j<order;j++){
 | 
			
		||||
	RealD s=0;
 | 
			
		||||
	for(int k=0;k<order;k++){
 | 
			
		||||
	  RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
			
		||||
	  RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
			
		||||
	  RealD f=func(x);
 | 
			
		||||
	  s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
	}
 | 
			
		||||
	Coeffs[j] = s * 2.0/order;
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    void JacksonSmooth(void){
 | 
			
		||||
      RealD M=order;
 | 
			
		||||
      RealD alpha = M_PI/(M+2);
 | 
			
		||||
      RealD lmax = std::cos(alpha);
 | 
			
		||||
      RealD sumUsq =0;
 | 
			
		||||
      std::vector<RealD> U(M);
 | 
			
		||||
      std::vector<RealD> a(M);
 | 
			
		||||
      std::vector<RealD> g(M);
 | 
			
		||||
      for(int n=0;n<=M;n++){
 | 
			
		||||
	U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
 | 
			
		||||
	sumUsq += U[n]*U[n];
 | 
			
		||||
      }      
 | 
			
		||||
      sumUsq = std::sqrt(sumUsq);
 | 
			
		||||
 | 
			
		||||
      for(int i=1;i<=M;i++){
 | 
			
		||||
	a[i] = U[i]/sumUsq;
 | 
			
		||||
      }
 | 
			
		||||
      g[0] = 1.0;
 | 
			
		||||
      for(int m=1;m<=M;m++){
 | 
			
		||||
	g[m] = 0;
 | 
			
		||||
	for(int i=0;i<=M-m;i++){
 | 
			
		||||
	  g[m]+= a[i]*a[m+i];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      for(int m=1;m<=M;m++){
 | 
			
		||||
	Coeffs[m]*=g[m];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    RealD approx(RealD x) // Convenience for plotting the approximation
 | 
			
		||||
    {
 | 
			
		||||
      RealD Tn;
 | 
			
		||||
      RealD Tnm;
 | 
			
		||||
      RealD Tnp;
 | 
			
		||||
      
 | 
			
		||||
      RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
      RealD T0=1;
 | 
			
		||||
      RealD T1=y;
 | 
			
		||||
      
 | 
			
		||||
      RealD sum;
 | 
			
		||||
      sum = 0.5*Coeffs[0]*T0;
 | 
			
		||||
      sum+= Coeffs[1]*T1;
 | 
			
		||||
      
 | 
			
		||||
      Tn =T1;
 | 
			
		||||
      Tnm=T0;
 | 
			
		||||
      for(int i=2;i<order;i++){
 | 
			
		||||
	Tnp=2*y*Tn-Tnm;
 | 
			
		||||
	Tnm=Tn;
 | 
			
		||||
	Tn =Tnp;
 | 
			
		||||
	sum+= Tn*Coeffs[i];
 | 
			
		||||
      }
 | 
			
		||||
      return sum;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    RealD approxD(RealD x)
 | 
			
		||||
    {
 | 
			
		||||
      RealD Un;
 | 
			
		||||
      RealD Unm;
 | 
			
		||||
      RealD Unp;
 | 
			
		||||
      
 | 
			
		||||
      RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
      RealD U0=1;
 | 
			
		||||
      RealD U1=2*y;
 | 
			
		||||
      
 | 
			
		||||
      RealD sum;
 | 
			
		||||
      sum = Coeffs[1]*U0;
 | 
			
		||||
      sum+= Coeffs[2]*U1*2.0;
 | 
			
		||||
      
 | 
			
		||||
      Un =U1;
 | 
			
		||||
      Unm=U0;
 | 
			
		||||
      for(int i=2;i<order-1;i++){
 | 
			
		||||
	Unp=2*y*Un-Unm;
 | 
			
		||||
	Unm=Un;
 | 
			
		||||
	Un =Unp;
 | 
			
		||||
	sum+= Un*Coeffs[i+1]*(i+1.0);
 | 
			
		||||
      }
 | 
			
		||||
      return sum/(0.5*(hi-lo));
 | 
			
		||||
    };
 | 
			
		||||
    
 | 
			
		||||
    RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
 | 
			
		||||
      RealD x = x0;
 | 
			
		||||
      RealD eps;
 | 
			
		||||
      
 | 
			
		||||
      int i;
 | 
			
		||||
      for (i=0;i<maxiter;i++) {
 | 
			
		||||
	eps = approx(x) - z;
 | 
			
		||||
	if (fabs(eps / z) < resid)
 | 
			
		||||
	  return x;
 | 
			
		||||
	x = x - eps / approxD(x);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      return std::numeric_limits<double>::quiet_NaN();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // Implement the required interface
 | 
			
		||||
    void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
      GridBase *grid=in._grid;
 | 
			
		||||
 | 
			
		||||
      // std::cout << "Chevyshef(): in._grid="<<in._grid<<std::endl;
 | 
			
		||||
      //std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
 | 
			
		||||
 | 
			
		||||
      int vol=grid->gSites();
 | 
			
		||||
 | 
			
		||||
      Field T0(grid); T0 = in;  
 | 
			
		||||
      Field T1(grid); 
 | 
			
		||||
      Field T2(grid);
 | 
			
		||||
      Field y(grid);
 | 
			
		||||
      
 | 
			
		||||
      Field *Tnm = &T0;
 | 
			
		||||
      Field *Tn  = &T1;
 | 
			
		||||
      Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
      RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
      RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
      Linop.HermOp(T0,y);
 | 
			
		||||
      T1=y*xscale+in*mscale;
 | 
			
		||||
 | 
			
		||||
      // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
      out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
 | 
			
		||||
      for(int n=2;n<order;n++){
 | 
			
		||||
	
 | 
			
		||||
	Linop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
	y=xscale*y+mscale*(*Tn);
 | 
			
		||||
 | 
			
		||||
	*Tnp=2.0*y-(*Tnm);
 | 
			
		||||
 | 
			
		||||
	out=out+Coeffs[n]* (*Tnp);
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	Field *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
  // Convenience for plotting the approximation
 | 
			
		||||
  void   PlotApprox(std::ostream &out) {
 | 
			
		||||
    out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
    for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
 | 
			
		||||
      out <<x<<"\t"<<approx(x)<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  Chebyshev(){};
 | 
			
		||||
  Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
 | 
			
		||||
  Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
 | 
			
		||||
  Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
 | 
			
		||||
 | 
			
		||||
  template<class Field>
 | 
			
		||||
  class ChebyshevLanczos : public Chebyshev<Field> {
 | 
			
		||||
  private:
 | 
			
		||||
    std::vector<RealD> Coeffs;
 | 
			
		||||
    int order;
 | 
			
		||||
    RealD alpha;
 | 
			
		||||
    RealD beta;
 | 
			
		||||
    RealD mu;
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // CJ: the one we need for Lanczos
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order)
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    Coeffs.assign(0.,order);
 | 
			
		||||
    Coeffs[order-1] = 1.;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
 | 
			
		||||
  void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
 | 
			
		||||
  {
 | 
			
		||||
    lo=_lo;
 | 
			
		||||
    hi=_hi;
 | 
			
		||||
    order=_order;
 | 
			
		||||
      
 | 
			
		||||
    if(order < 2) exit(-1);
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int j=0;j<order;j++){
 | 
			
		||||
      RealD s=0;
 | 
			
		||||
      for(int k=0;k<order;k++){
 | 
			
		||||
	RealD y=std::cos(M_PI*(k+0.5)/order);
 | 
			
		||||
	RealD x=0.5*(y*(hi-lo)+(hi+lo));
 | 
			
		||||
	RealD f=func(x);
 | 
			
		||||
	s=s+f*std::cos( j*M_PI*(k+0.5)/order );
 | 
			
		||||
      }
 | 
			
		||||
      Coeffs[j] = s * 2.0/order;
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
  void JacksonSmooth(void){
 | 
			
		||||
    RealD M=order;
 | 
			
		||||
    RealD alpha = M_PI/(M+2);
 | 
			
		||||
    RealD lmax = std::cos(alpha);
 | 
			
		||||
    RealD sumUsq =0;
 | 
			
		||||
    std::vector<RealD> U(M);
 | 
			
		||||
    std::vector<RealD> a(M);
 | 
			
		||||
    std::vector<RealD> g(M);
 | 
			
		||||
    for(int n=0;n<=M;n++){
 | 
			
		||||
      U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
 | 
			
		||||
      sumUsq += U[n]*U[n];
 | 
			
		||||
    }      
 | 
			
		||||
    sumUsq = std::sqrt(sumUsq);
 | 
			
		||||
 | 
			
		||||
    for(int i=1;i<=M;i++){
 | 
			
		||||
      a[i] = U[i]/sumUsq;
 | 
			
		||||
    }
 | 
			
		||||
    g[0] = 1.0;
 | 
			
		||||
    for(int m=1;m<=M;m++){
 | 
			
		||||
      g[m] = 0;
 | 
			
		||||
      for(int i=0;i<=M-m;i++){
 | 
			
		||||
	g[m]+= a[i]*a[m+i];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    for(int m=1;m<=M;m++){
 | 
			
		||||
      Coeffs[m]*=g[m];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  RealD approx(RealD x) // Convenience for plotting the approximation
 | 
			
		||||
  {
 | 
			
		||||
    RealD Tn;
 | 
			
		||||
    RealD Tnm;
 | 
			
		||||
    RealD Tnp;
 | 
			
		||||
      
 | 
			
		||||
    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
    RealD T0=1;
 | 
			
		||||
    RealD T1=y;
 | 
			
		||||
      
 | 
			
		||||
    RealD sum;
 | 
			
		||||
    sum = 0.5*Coeffs[0]*T0;
 | 
			
		||||
    sum+= Coeffs[1]*T1;
 | 
			
		||||
      
 | 
			
		||||
    Tn =T1;
 | 
			
		||||
    Tnm=T0;
 | 
			
		||||
    for(int i=2;i<order;i++){
 | 
			
		||||
      Tnp=2*y*Tn-Tnm;
 | 
			
		||||
      Tnm=Tn;
 | 
			
		||||
      Tn =Tnp;
 | 
			
		||||
      sum+= Tn*Coeffs[i];
 | 
			
		||||
    }
 | 
			
		||||
    return sum;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  RealD approxD(RealD x)
 | 
			
		||||
  {
 | 
			
		||||
    RealD Un;
 | 
			
		||||
    RealD Unm;
 | 
			
		||||
    RealD Unp;
 | 
			
		||||
      
 | 
			
		||||
    RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
    RealD U0=1;
 | 
			
		||||
    RealD U1=2*y;
 | 
			
		||||
      
 | 
			
		||||
    RealD sum;
 | 
			
		||||
    sum = Coeffs[1]*U0;
 | 
			
		||||
    sum+= Coeffs[2]*U1*2.0;
 | 
			
		||||
      
 | 
			
		||||
    Un =U1;
 | 
			
		||||
    Unm=U0;
 | 
			
		||||
    for(int i=2;i<order-1;i++){
 | 
			
		||||
      Unp=2*y*Un-Unm;
 | 
			
		||||
      Unm=Un;
 | 
			
		||||
      Un =Unp;
 | 
			
		||||
      sum+= Un*Coeffs[i+1]*(i+1.0);
 | 
			
		||||
    }
 | 
			
		||||
    return sum/(0.5*(hi-lo));
 | 
			
		||||
  };
 | 
			
		||||
    
 | 
			
		||||
  RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
 | 
			
		||||
    RealD x = x0;
 | 
			
		||||
    RealD eps;
 | 
			
		||||
      
 | 
			
		||||
    int i;
 | 
			
		||||
    for (i=0;i<maxiter;i++) {
 | 
			
		||||
      eps = approx(x) - z;
 | 
			
		||||
      if (fabs(eps / z) < resid)
 | 
			
		||||
	return x;
 | 
			
		||||
      x = x - eps / approxD(x);
 | 
			
		||||
    }
 | 
			
		||||
      
 | 
			
		||||
    return std::numeric_limits<double>::quiet_NaN();
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  // Implement the required interface
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid=in._grid;
 | 
			
		||||
 | 
			
		||||
    // std::cout << "Chevyshef(): in._grid="<<in._grid<<std::endl;
 | 
			
		||||
    //std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int vol=grid->gSites();
 | 
			
		||||
 | 
			
		||||
    Field T0(grid); T0 = in;  
 | 
			
		||||
    Field T1(grid); 
 | 
			
		||||
    Field T2(grid);
 | 
			
		||||
    Field y(grid);
 | 
			
		||||
      
 | 
			
		||||
    Field *Tnm = &T0;
 | 
			
		||||
    Field *Tn  = &T1;
 | 
			
		||||
    Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
    // Tn=T1 = (xscale M + mscale)in
 | 
			
		||||
    RealD xscale = 2.0/(hi-lo);
 | 
			
		||||
    RealD mscale = -(hi+lo)/(hi-lo);
 | 
			
		||||
    Linop.HermOp(T0,y);
 | 
			
		||||
    T1=y*xscale+in*mscale;
 | 
			
		||||
 | 
			
		||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
    out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
 | 
			
		||||
    for(int n=2;n<order;n++){
 | 
			
		||||
	
 | 
			
		||||
      Linop.HermOp(*Tn,y);
 | 
			
		||||
 | 
			
		||||
      y=xscale*y+mscale*(*Tn);
 | 
			
		||||
 | 
			
		||||
      *Tnp=2.0*y-(*Tnm);
 | 
			
		||||
 | 
			
		||||
      out=out+Coeffs[n]* (*Tnp);
 | 
			
		||||
 | 
			
		||||
      // Cycle pointers to avoid copies
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
      Tn     =Tnp;
 | 
			
		||||
      Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class ChebyshevLanczos : public Chebyshev<Field> {
 | 
			
		||||
private:
 | 
			
		||||
  std::vector<RealD> Coeffs;
 | 
			
		||||
  int order;
 | 
			
		||||
  RealD alpha;
 | 
			
		||||
  RealD beta;
 | 
			
		||||
  RealD mu;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
 | 
			
		||||
    alpha(_alpha),
 | 
			
		||||
      beta(_beta),
 | 
			
		||||
          mu(_mu)
 | 
			
		||||
    {
 | 
			
		||||
      order=_order;
 | 
			
		||||
      Coeffs.resize(order);
 | 
			
		||||
      for(int i=0;i<_order;i++){
 | 
			
		||||
	Coeffs[i] = 0.0;
 | 
			
		||||
      }
 | 
			
		||||
      Coeffs[order-1]=1.0;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void csv(std::ostream &out){
 | 
			
		||||
      for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
 | 
			
		||||
	RealD f = approx(x);
 | 
			
		||||
	out<< x<<" "<<f<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    RealD approx(RealD xx) // Convenience for plotting the approximation
 | 
			
		||||
    {
 | 
			
		||||
      RealD Tn;
 | 
			
		||||
      RealD Tnm;
 | 
			
		||||
      RealD Tnp;
 | 
			
		||||
      Real aa = alpha * alpha;
 | 
			
		||||
      Real bb = beta  *  beta;
 | 
			
		||||
      
 | 
			
		||||
      RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
 | 
			
		||||
 | 
			
		||||
      RealD y= x;
 | 
			
		||||
      
 | 
			
		||||
      RealD T0=1;
 | 
			
		||||
      RealD T1=y;
 | 
			
		||||
      
 | 
			
		||||
      RealD sum;
 | 
			
		||||
      sum = 0.5*Coeffs[0]*T0;
 | 
			
		||||
      sum+= Coeffs[1]*T1;
 | 
			
		||||
      
 | 
			
		||||
      Tn =T1;
 | 
			
		||||
      Tnm=T0;
 | 
			
		||||
      for(int i=2;i<order;i++){
 | 
			
		||||
	Tnp=2*y*Tn-Tnm;
 | 
			
		||||
	Tnm=Tn;
 | 
			
		||||
	Tn =Tnp;
 | 
			
		||||
	sum+= Tn*Coeffs[i];
 | 
			
		||||
      }
 | 
			
		||||
      return sum;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    // shift_Multiply in Rudy's code
 | 
			
		||||
    void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out) 
 | 
			
		||||
    {
 | 
			
		||||
      GridBase *grid=in._grid;
 | 
			
		||||
      Field tmp(grid);
 | 
			
		||||
 | 
			
		||||
      RealD aa= alpha*alpha;
 | 
			
		||||
      RealD bb= beta * beta;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(in,out);
 | 
			
		||||
      out = out - mu*in;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(out,tmp);
 | 
			
		||||
      tmp = tmp - mu * out;
 | 
			
		||||
 | 
			
		||||
      out = (2.0/ (aa-bb) ) * tmp -  ((aa+bb)/(aa-bb))*in;
 | 
			
		||||
    };
 | 
			
		||||
    // Implement the required interface
 | 
			
		||||
    void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
      GridBase *grid=in._grid;
 | 
			
		||||
 | 
			
		||||
      int vol=grid->gSites();
 | 
			
		||||
 | 
			
		||||
      Field T0(grid); T0 = in;  
 | 
			
		||||
      Field T1(grid); 
 | 
			
		||||
      Field T2(grid);
 | 
			
		||||
      Field  y(grid);
 | 
			
		||||
      
 | 
			
		||||
      Field *Tnm = &T0;
 | 
			
		||||
      Field *Tn  = &T1;
 | 
			
		||||
      Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
      // Tn=T1 = (xscale M )*in
 | 
			
		||||
      AminusMuSq(Linop,T0,T1);
 | 
			
		||||
 | 
			
		||||
      // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
      out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
 | 
			
		||||
      for(int n=2;n<order;n++){
 | 
			
		||||
	
 | 
			
		||||
	AminusMuSq(Linop,*Tn,y);
 | 
			
		||||
 | 
			
		||||
	*Tnp=2.0*y-(*Tnm);
 | 
			
		||||
 | 
			
		||||
	out=out+Coeffs[n]* (*Tnp);
 | 
			
		||||
 | 
			
		||||
	// Cycle pointers to avoid copies
 | 
			
		||||
	Field *swizzle = Tnm;
 | 
			
		||||
	Tnm    =Tn;
 | 
			
		||||
	Tn     =Tnp;
 | 
			
		||||
	Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
      }
 | 
			
		||||
    beta(_beta),
 | 
			
		||||
    mu(_mu)
 | 
			
		||||
  {
 | 
			
		||||
    order=_order;
 | 
			
		||||
    Coeffs.resize(order);
 | 
			
		||||
    for(int i=0;i<_order;i++){
 | 
			
		||||
      Coeffs[i] = 0.0;
 | 
			
		||||
    }
 | 
			
		||||
    Coeffs[order-1]=1.0;
 | 
			
		||||
  };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
  void csv(std::ostream &out){
 | 
			
		||||
    for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
 | 
			
		||||
      RealD f = approx(x);
 | 
			
		||||
      out<< x<<" "<<f<<std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  RealD approx(RealD xx) // Convenience for plotting the approximation
 | 
			
		||||
  {
 | 
			
		||||
    RealD Tn;
 | 
			
		||||
    RealD Tnm;
 | 
			
		||||
    RealD Tnp;
 | 
			
		||||
    Real aa = alpha * alpha;
 | 
			
		||||
    Real bb = beta  *  beta;
 | 
			
		||||
      
 | 
			
		||||
    RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
 | 
			
		||||
 | 
			
		||||
    RealD y= x;
 | 
			
		||||
      
 | 
			
		||||
    RealD T0=1;
 | 
			
		||||
    RealD T1=y;
 | 
			
		||||
      
 | 
			
		||||
    RealD sum;
 | 
			
		||||
    sum = 0.5*Coeffs[0]*T0;
 | 
			
		||||
    sum+= Coeffs[1]*T1;
 | 
			
		||||
      
 | 
			
		||||
    Tn =T1;
 | 
			
		||||
    Tnm=T0;
 | 
			
		||||
    for(int i=2;i<order;i++){
 | 
			
		||||
      Tnp=2*y*Tn-Tnm;
 | 
			
		||||
      Tnm=Tn;
 | 
			
		||||
      Tn =Tnp;
 | 
			
		||||
      sum+= Tn*Coeffs[i];
 | 
			
		||||
    }
 | 
			
		||||
    return sum;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // shift_Multiply in Rudy's code
 | 
			
		||||
  void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out) 
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid=in._grid;
 | 
			
		||||
    Field tmp(grid);
 | 
			
		||||
 | 
			
		||||
    RealD aa= alpha*alpha;
 | 
			
		||||
    RealD bb= beta * beta;
 | 
			
		||||
 | 
			
		||||
    Linop.HermOp(in,out);
 | 
			
		||||
    out = out - mu*in;
 | 
			
		||||
 | 
			
		||||
    Linop.HermOp(out,tmp);
 | 
			
		||||
    tmp = tmp - mu * out;
 | 
			
		||||
 | 
			
		||||
    out = (2.0/ (aa-bb) ) * tmp -  ((aa+bb)/(aa-bb))*in;
 | 
			
		||||
  };
 | 
			
		||||
  // Implement the required interface
 | 
			
		||||
  void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid=in._grid;
 | 
			
		||||
 | 
			
		||||
    int vol=grid->gSites();
 | 
			
		||||
 | 
			
		||||
    Field T0(grid); T0 = in;  
 | 
			
		||||
    Field T1(grid); 
 | 
			
		||||
    Field T2(grid);
 | 
			
		||||
    Field  y(grid);
 | 
			
		||||
      
 | 
			
		||||
    Field *Tnm = &T0;
 | 
			
		||||
    Field *Tn  = &T1;
 | 
			
		||||
    Field *Tnp = &T2;
 | 
			
		||||
 | 
			
		||||
    // Tn=T1 = (xscale M )*in
 | 
			
		||||
    AminusMuSq(Linop,T0,T1);
 | 
			
		||||
 | 
			
		||||
    // sum = .5 c[0] T0 + c[1] T1
 | 
			
		||||
    out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
 | 
			
		||||
    for(int n=2;n<order;n++){
 | 
			
		||||
	
 | 
			
		||||
      AminusMuSq(Linop,*Tn,y);
 | 
			
		||||
 | 
			
		||||
      *Tnp=2.0*y-(*Tnm);
 | 
			
		||||
 | 
			
		||||
      out=out+Coeffs[n]* (*Tnp);
 | 
			
		||||
 | 
			
		||||
      // Cycle pointers to avoid copies
 | 
			
		||||
      Field *swizzle = Tnm;
 | 
			
		||||
      Tnm    =Tn;
 | 
			
		||||
      Tn     =Tnp;
 | 
			
		||||
      Tnp    =swizzle;
 | 
			
		||||
	  
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -26,127 +26,127 @@ with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
			   /*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#ifndef INCLUDED_FORECAST_H
 | 
			
		||||
#define INCLUDED_FORECAST_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  // Abstract base class.
 | 
			
		||||
  // Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
 | 
			
		||||
  // and returns a forecasted solution to the system D*psi = phi (psi).
 | 
			
		||||
  template<class Matrix, class Field>
 | 
			
		||||
  class Forecast
 | 
			
		||||
// Abstract base class.
 | 
			
		||||
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
 | 
			
		||||
// and returns a forecasted solution to the system D*psi = phi (psi).
 | 
			
		||||
template<class Matrix, class Field>
 | 
			
		||||
class Forecast
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
 | 
			
		||||
// used to forecast solutions across poles of the EOFA heatbath.
 | 
			
		||||
//
 | 
			
		||||
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
 | 
			
		||||
template<class Matrix, class Field>
 | 
			
		||||
class ChronoForecast : public Forecast<Matrix,Field>
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
 | 
			
		||||
  {
 | 
			
		||||
    public:
 | 
			
		||||
      virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
 | 
			
		||||
    int degree = prev_solns.size();
 | 
			
		||||
    Field chi(phi); // forecasted solution
 | 
			
		||||
 | 
			
		||||
    // Trivial cases
 | 
			
		||||
    if(degree == 0){ chi = zero; return chi; }
 | 
			
		||||
    else if(degree == 1){ return prev_solns[0]; }
 | 
			
		||||
 | 
			
		||||
    RealD dot;
 | 
			
		||||
    ComplexD xp;
 | 
			
		||||
    Field r(phi); // residual
 | 
			
		||||
    Field Mv(phi);
 | 
			
		||||
    std::vector<Field> v(prev_solns); // orthonormalized previous solutions
 | 
			
		||||
    std::vector<Field> MdagMv(degree,phi);
 | 
			
		||||
 | 
			
		||||
    // Array to hold the matrix elements
 | 
			
		||||
    std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
 | 
			
		||||
 | 
			
		||||
    // Solution and source vectors
 | 
			
		||||
    std::vector<ComplexD> a(degree);
 | 
			
		||||
    std::vector<ComplexD> b(degree);
 | 
			
		||||
 | 
			
		||||
    // Orthonormalize the vector basis
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
      v[i] *= 1.0/std::sqrt(norm2(v[i]));
 | 
			
		||||
      for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Perform sparse matrix multiplication and construct rhs
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
      b[i] = innerProduct(v[i],phi);
 | 
			
		||||
      Mat.M(v[i],Mv);
 | 
			
		||||
      Mat.Mdag(Mv,MdagMv[i]);
 | 
			
		||||
      G[i][i] = innerProduct(v[i],MdagMv[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Construct the matrix
 | 
			
		||||
    for(int j=0; j<degree; j++){
 | 
			
		||||
      for(int k=j+1; k<degree; k++){
 | 
			
		||||
	G[j][k] = innerProduct(v[j],MdagMv[k]);
 | 
			
		||||
	G[k][j] = std::conj(G[j][k]);
 | 
			
		||||
      }}
 | 
			
		||||
 | 
			
		||||
    // Gauss-Jordan elimination with partial pivoting
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
 | 
			
		||||
      // Perform partial pivoting
 | 
			
		||||
      int k = i;
 | 
			
		||||
      for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } }
 | 
			
		||||
      if(k != i){
 | 
			
		||||
	xp = b[k];
 | 
			
		||||
	b[k] = b[i];
 | 
			
		||||
	b[i] = xp;
 | 
			
		||||
	for(int j=0; j<degree; j++){
 | 
			
		||||
	  xp = G[k][j];
 | 
			
		||||
	  G[k][j] = G[i][j];
 | 
			
		||||
	  G[i][j] = xp;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Convert matrix to upper triangular form
 | 
			
		||||
      for(int j=i+1; j<degree; j++){
 | 
			
		||||
	xp = G[j][i]/G[i][i];
 | 
			
		||||
	b[j] -= xp * b[i];
 | 
			
		||||
	for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Use Gaussian elimination to solve equations and calculate initial guess
 | 
			
		||||
    chi = zero;
 | 
			
		||||
    r = phi;
 | 
			
		||||
    for(int i=degree-1; i>=0; i--){
 | 
			
		||||
      a[i] = 0.0;
 | 
			
		||||
      for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
 | 
			
		||||
      a[i] = (b[i]-a[i])/G[i][i];
 | 
			
		||||
      chi += a[i]*v[i];
 | 
			
		||||
      r -= a[i]*MdagMv[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    RealD true_r(0.0);
 | 
			
		||||
    ComplexD tmp;
 | 
			
		||||
    for(int i=0; i<degree; i++){
 | 
			
		||||
      tmp = -b[i];
 | 
			
		||||
      for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
 | 
			
		||||
      tmp = std::conj(tmp)*tmp;
 | 
			
		||||
      true_r += std::sqrt(tmp.real());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    RealD error = std::sqrt(norm2(r)/norm2(phi));
 | 
			
		||||
    std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
 | 
			
		||||
 | 
			
		||||
    return chi;
 | 
			
		||||
  };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  // Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
 | 
			
		||||
  // used to forecast solutions across poles of the EOFA heatbath.
 | 
			
		||||
  //
 | 
			
		||||
  // Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
 | 
			
		||||
  template<class Matrix, class Field>
 | 
			
		||||
  class ChronoForecast : public Forecast<Matrix,Field>
 | 
			
		||||
  {
 | 
			
		||||
    public:
 | 
			
		||||
      Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
 | 
			
		||||
      {
 | 
			
		||||
        int degree = prev_solns.size();
 | 
			
		||||
        Field chi(phi); // forecasted solution
 | 
			
		||||
 | 
			
		||||
        // Trivial cases
 | 
			
		||||
        if(degree == 0){ chi = zero; return chi; }
 | 
			
		||||
        else if(degree == 1){ return prev_solns[0]; }
 | 
			
		||||
 | 
			
		||||
        RealD dot;
 | 
			
		||||
        ComplexD xp;
 | 
			
		||||
        Field r(phi); // residual
 | 
			
		||||
        Field Mv(phi);
 | 
			
		||||
        std::vector<Field> v(prev_solns); // orthonormalized previous solutions
 | 
			
		||||
        std::vector<Field> MdagMv(degree,phi);
 | 
			
		||||
 | 
			
		||||
        // Array to hold the matrix elements
 | 
			
		||||
        std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
 | 
			
		||||
 | 
			
		||||
        // Solution and source vectors
 | 
			
		||||
        std::vector<ComplexD> a(degree);
 | 
			
		||||
        std::vector<ComplexD> b(degree);
 | 
			
		||||
 | 
			
		||||
        // Orthonormalize the vector basis
 | 
			
		||||
        for(int i=0; i<degree; i++){
 | 
			
		||||
          v[i] *= 1.0/std::sqrt(norm2(v[i]));
 | 
			
		||||
          for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Perform sparse matrix multiplication and construct rhs
 | 
			
		||||
        for(int i=0; i<degree; i++){
 | 
			
		||||
          b[i] = innerProduct(v[i],phi);
 | 
			
		||||
          Mat.M(v[i],Mv);
 | 
			
		||||
          Mat.Mdag(Mv,MdagMv[i]);
 | 
			
		||||
          G[i][i] = innerProduct(v[i],MdagMv[i]);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Construct the matrix
 | 
			
		||||
        for(int j=0; j<degree; j++){
 | 
			
		||||
        for(int k=j+1; k<degree; k++){
 | 
			
		||||
          G[j][k] = innerProduct(v[j],MdagMv[k]);
 | 
			
		||||
          G[k][j] = std::conj(G[j][k]);
 | 
			
		||||
        }}
 | 
			
		||||
 | 
			
		||||
        // Gauss-Jordan elimination with partial pivoting
 | 
			
		||||
        for(int i=0; i<degree; i++){
 | 
			
		||||
 | 
			
		||||
          // Perform partial pivoting
 | 
			
		||||
          int k = i;
 | 
			
		||||
          for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } }
 | 
			
		||||
          if(k != i){
 | 
			
		||||
            xp = b[k];
 | 
			
		||||
            b[k] = b[i];
 | 
			
		||||
            b[i] = xp;
 | 
			
		||||
            for(int j=0; j<degree; j++){
 | 
			
		||||
              xp = G[k][j];
 | 
			
		||||
              G[k][j] = G[i][j];
 | 
			
		||||
              G[i][j] = xp;
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          // Convert matrix to upper triangular form
 | 
			
		||||
          for(int j=i+1; j<degree; j++){
 | 
			
		||||
            xp = G[j][i]/G[i][i];
 | 
			
		||||
            b[j] -= xp * b[i];
 | 
			
		||||
            for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Use Gaussian elimination to solve equations and calculate initial guess
 | 
			
		||||
        chi = zero;
 | 
			
		||||
        r = phi;
 | 
			
		||||
        for(int i=degree-1; i>=0; i--){
 | 
			
		||||
          a[i] = 0.0;
 | 
			
		||||
          for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
 | 
			
		||||
          a[i] = (b[i]-a[i])/G[i][i];
 | 
			
		||||
          chi += a[i]*v[i];
 | 
			
		||||
          r -= a[i]*MdagMv[i];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        RealD true_r(0.0);
 | 
			
		||||
        ComplexD tmp;
 | 
			
		||||
        for(int i=0; i<degree; i++){
 | 
			
		||||
          tmp = -b[i];
 | 
			
		||||
          for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
 | 
			
		||||
          tmp = std::conj(tmp)*tmp;
 | 
			
		||||
          true_r += std::sqrt(tmp.real());
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        RealD error = std::sqrt(norm2(r)/norm2(phi));
 | 
			
		||||
        std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
 | 
			
		||||
 | 
			
		||||
        return chi;
 | 
			
		||||
      };
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -27,7 +27,8 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
double MultiShiftFunction::approx(double x)
 | 
			
		||||
{
 | 
			
		||||
  double a = norm;
 | 
			
		||||
@@ -53,4 +54,4 @@ void MultiShiftFunction::csv(std::ostream &out)
 | 
			
		||||
  }
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#ifndef MULTI_SHIFT_FUNCTION
 | 
			
		||||
#define MULTI_SHIFT_FUNCTION
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
class MultiShiftFunction {
 | 
			
		||||
public:
 | 
			
		||||
@@ -63,5 +63,5 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -58,8 +58,8 @@
 | 
			
		||||
 | 
			
		||||
/* Compute the partial fraction expansion coefficients (alpha) from the
 | 
			
		||||
 * factored form */
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace Approx {
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
NAMESPACE_BEGIN(Approx);
 | 
			
		||||
 | 
			
		||||
static void construct_partfrac(izd *z) {
 | 
			
		||||
  int dn = z -> dn, dd = z -> dd, type = z -> type;
 | 
			
		||||
@@ -723,5 +723,6 @@ int main(int argc, char** argv) {
 | 
			
		||||
  return EXIT_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif /* TEST */
 | 
			
		||||
NAMESPACE_END(Approx);
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -1,13 +1,13 @@
 | 
			
		||||
/* -*- Mode: C; comment-column: 22; fill-column: 79; -*- */
 | 
			
		||||
 | 
			
		||||
#ifdef __cplusplus
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace Approx {
 | 
			
		||||
#include <Grid/Namespace.h>
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
NAMESPACE_BEGIN(Approx);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifndef ZOLOTAREV_INTERNAL
 | 
			
		||||
#ifndef PRECISION
 | 
			
		||||
#define PRECISION double
 | 
			
		||||
@@ -83,5 +83,6 @@ void zolotarev_free(zolotarev_data *zdata);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef __cplusplus
 | 
			
		||||
}}
 | 
			
		||||
NAMESPACE_END(Approx);
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user