mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-15 14:27:06 +01:00
Namespace and formatting changes
This commit is contained in:
@ -1,4 +1,4 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
@ -25,14 +25,14 @@ Author: Christoph Lehner <clehner@bnl.gov>
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CHEBYSHEV_H
|
||||
#define GRID_CHEBYSHEV_H
|
||||
|
||||
#include <Grid/algorithms/LinearOperator.h>
|
||||
|
||||
namespace Grid {
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
struct ChebyParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
|
||||
@ -41,337 +41,337 @@ struct ChebyParams : Serializable {
|
||||
int, Npoly);
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic Chebyshev approximations
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class Chebyshev : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
int order;
|
||||
RealD hi;
|
||||
RealD lo;
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic Chebyshev approximations
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class Chebyshev : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
int order;
|
||||
RealD hi;
|
||||
RealD lo;
|
||||
|
||||
public:
|
||||
void csv(std::ostream &out){
|
||||
RealD diff = hi-lo;
|
||||
RealD delta = (hi-lo)*1.0e-9;
|
||||
for (RealD x=lo; x<hi; x+=delta) {
|
||||
delta*=1.1;
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
return;
|
||||
public:
|
||||
void csv(std::ostream &out){
|
||||
RealD diff = hi-lo;
|
||||
RealD delta = (hi-lo)*1.0e-9;
|
||||
for (RealD x=lo; x<hi; x+=delta) {
|
||||
delta*=1.1;
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Convenience for plotting the approximation
|
||||
void PlotApprox(std::ostream &out) {
|
||||
out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
|
||||
out <<x<<"\t"<<approx(x)<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
Chebyshev(){};
|
||||
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CJ: the one we need for Lanczos
|
||||
void Init(RealD _lo,RealD _hi,int _order)
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
Coeffs.assign(0.,order);
|
||||
Coeffs[order-1] = 1.;
|
||||
};
|
||||
|
||||
void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
for(int j=0;j<order;j++){
|
||||
RealD s=0;
|
||||
for(int k=0;k<order;k++){
|
||||
RealD y=std::cos(M_PI*(k+0.5)/order);
|
||||
RealD x=0.5*(y*(hi-lo)+(hi+lo));
|
||||
RealD f=func(x);
|
||||
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
|
||||
}
|
||||
Coeffs[j] = s * 2.0/order;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void JacksonSmooth(void){
|
||||
RealD M=order;
|
||||
RealD alpha = M_PI/(M+2);
|
||||
RealD lmax = std::cos(alpha);
|
||||
RealD sumUsq =0;
|
||||
std::vector<RealD> U(M);
|
||||
std::vector<RealD> a(M);
|
||||
std::vector<RealD> g(M);
|
||||
for(int n=0;n<=M;n++){
|
||||
U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
|
||||
sumUsq += U[n]*U[n];
|
||||
}
|
||||
sumUsq = std::sqrt(sumUsq);
|
||||
|
||||
for(int i=1;i<=M;i++){
|
||||
a[i] = U[i]/sumUsq;
|
||||
}
|
||||
g[0] = 1.0;
|
||||
for(int m=1;m<=M;m++){
|
||||
g[m] = 0;
|
||||
for(int i=0;i<=M-m;i++){
|
||||
g[m]+= a[i]*a[m+i];
|
||||
}
|
||||
}
|
||||
for(int m=1;m<=M;m++){
|
||||
Coeffs[m]*=g[m];
|
||||
}
|
||||
}
|
||||
RealD approx(RealD x) // Convenience for plotting the approximation
|
||||
{
|
||||
RealD Tn;
|
||||
RealD Tnm;
|
||||
RealD Tnp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD T0=1;
|
||||
RealD T1=y;
|
||||
|
||||
RealD sum;
|
||||
sum = 0.5*Coeffs[0]*T0;
|
||||
sum+= Coeffs[1]*T1;
|
||||
|
||||
Tn =T1;
|
||||
Tnm=T0;
|
||||
for(int i=2;i<order;i++){
|
||||
Tnp=2*y*Tn-Tnm;
|
||||
Tnm=Tn;
|
||||
Tn =Tnp;
|
||||
sum+= Tn*Coeffs[i];
|
||||
}
|
||||
return sum;
|
||||
};
|
||||
|
||||
RealD approxD(RealD x)
|
||||
{
|
||||
RealD Un;
|
||||
RealD Unm;
|
||||
RealD Unp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD U0=1;
|
||||
RealD U1=2*y;
|
||||
|
||||
RealD sum;
|
||||
sum = Coeffs[1]*U0;
|
||||
sum+= Coeffs[2]*U1*2.0;
|
||||
|
||||
Un =U1;
|
||||
Unm=U0;
|
||||
for(int i=2;i<order-1;i++){
|
||||
Unp=2*y*Un-Unm;
|
||||
Unm=Un;
|
||||
Un =Unp;
|
||||
sum+= Un*Coeffs[i+1]*(i+1.0);
|
||||
}
|
||||
return sum/(0.5*(hi-lo));
|
||||
};
|
||||
|
||||
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
|
||||
RealD x = x0;
|
||||
RealD eps;
|
||||
|
||||
int i;
|
||||
for (i=0;i<maxiter;i++) {
|
||||
eps = approx(x) - z;
|
||||
if (fabs(eps / z) < resid)
|
||||
return x;
|
||||
x = x - eps / approxD(x);
|
||||
}
|
||||
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
GridBase *grid=in._grid;
|
||||
|
||||
// std::cout << "Chevyshef(): in._grid="<<in._grid<<std::endl;
|
||||
//std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
|
||||
|
||||
int vol=grid->gSites();
|
||||
|
||||
Field T0(grid); T0 = in;
|
||||
Field T1(grid);
|
||||
Field T2(grid);
|
||||
Field y(grid);
|
||||
|
||||
Field *Tnm = &T0;
|
||||
Field *Tn = &T1;
|
||||
Field *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
Linop.HermOp(T0,y);
|
||||
T1=y*xscale+in*mscale;
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
||||
for(int n=2;n<order;n++){
|
||||
|
||||
Linop.HermOp(*Tn,y);
|
||||
|
||||
y=xscale*y+mscale*(*Tn);
|
||||
|
||||
*Tnp=2.0*y-(*Tnm);
|
||||
|
||||
out=out+Coeffs[n]* (*Tnp);
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
// Convenience for plotting the approximation
|
||||
void PlotApprox(std::ostream &out) {
|
||||
out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
for(RealD x=lo;x<hi;x+=(hi-lo)/50.0){
|
||||
out <<x<<"\t"<<approx(x)<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
Chebyshev(){};
|
||||
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
|
||||
|
||||
template<class Field>
|
||||
class ChebyshevLanczos : public Chebyshev<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
int order;
|
||||
RealD alpha;
|
||||
RealD beta;
|
||||
RealD mu;
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CJ: the one we need for Lanczos
|
||||
void Init(RealD _lo,RealD _hi,int _order)
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
Coeffs.assign(0.,order);
|
||||
Coeffs[order-1] = 1.;
|
||||
};
|
||||
|
||||
public:
|
||||
ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
|
||||
void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
|
||||
{
|
||||
lo=_lo;
|
||||
hi=_hi;
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
for(int j=0;j<order;j++){
|
||||
RealD s=0;
|
||||
for(int k=0;k<order;k++){
|
||||
RealD y=std::cos(M_PI*(k+0.5)/order);
|
||||
RealD x=0.5*(y*(hi-lo)+(hi+lo));
|
||||
RealD f=func(x);
|
||||
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
|
||||
}
|
||||
Coeffs[j] = s * 2.0/order;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void JacksonSmooth(void){
|
||||
RealD M=order;
|
||||
RealD alpha = M_PI/(M+2);
|
||||
RealD lmax = std::cos(alpha);
|
||||
RealD sumUsq =0;
|
||||
std::vector<RealD> U(M);
|
||||
std::vector<RealD> a(M);
|
||||
std::vector<RealD> g(M);
|
||||
for(int n=0;n<=M;n++){
|
||||
U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
|
||||
sumUsq += U[n]*U[n];
|
||||
}
|
||||
sumUsq = std::sqrt(sumUsq);
|
||||
|
||||
for(int i=1;i<=M;i++){
|
||||
a[i] = U[i]/sumUsq;
|
||||
}
|
||||
g[0] = 1.0;
|
||||
for(int m=1;m<=M;m++){
|
||||
g[m] = 0;
|
||||
for(int i=0;i<=M-m;i++){
|
||||
g[m]+= a[i]*a[m+i];
|
||||
}
|
||||
}
|
||||
for(int m=1;m<=M;m++){
|
||||
Coeffs[m]*=g[m];
|
||||
}
|
||||
}
|
||||
RealD approx(RealD x) // Convenience for plotting the approximation
|
||||
{
|
||||
RealD Tn;
|
||||
RealD Tnm;
|
||||
RealD Tnp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD T0=1;
|
||||
RealD T1=y;
|
||||
|
||||
RealD sum;
|
||||
sum = 0.5*Coeffs[0]*T0;
|
||||
sum+= Coeffs[1]*T1;
|
||||
|
||||
Tn =T1;
|
||||
Tnm=T0;
|
||||
for(int i=2;i<order;i++){
|
||||
Tnp=2*y*Tn-Tnm;
|
||||
Tnm=Tn;
|
||||
Tn =Tnp;
|
||||
sum+= Tn*Coeffs[i];
|
||||
}
|
||||
return sum;
|
||||
};
|
||||
|
||||
RealD approxD(RealD x)
|
||||
{
|
||||
RealD Un;
|
||||
RealD Unm;
|
||||
RealD Unp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD U0=1;
|
||||
RealD U1=2*y;
|
||||
|
||||
RealD sum;
|
||||
sum = Coeffs[1]*U0;
|
||||
sum+= Coeffs[2]*U1*2.0;
|
||||
|
||||
Un =U1;
|
||||
Unm=U0;
|
||||
for(int i=2;i<order-1;i++){
|
||||
Unp=2*y*Un-Unm;
|
||||
Unm=Un;
|
||||
Un =Unp;
|
||||
sum+= Un*Coeffs[i+1]*(i+1.0);
|
||||
}
|
||||
return sum/(0.5*(hi-lo));
|
||||
};
|
||||
|
||||
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
|
||||
RealD x = x0;
|
||||
RealD eps;
|
||||
|
||||
int i;
|
||||
for (i=0;i<maxiter;i++) {
|
||||
eps = approx(x) - z;
|
||||
if (fabs(eps / z) < resid)
|
||||
return x;
|
||||
x = x - eps / approxD(x);
|
||||
}
|
||||
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
GridBase *grid=in._grid;
|
||||
|
||||
// std::cout << "Chevyshef(): in._grid="<<in._grid<<std::endl;
|
||||
//std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
|
||||
|
||||
int vol=grid->gSites();
|
||||
|
||||
Field T0(grid); T0 = in;
|
||||
Field T1(grid);
|
||||
Field T2(grid);
|
||||
Field y(grid);
|
||||
|
||||
Field *Tnm = &T0;
|
||||
Field *Tn = &T1;
|
||||
Field *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
Linop.HermOp(T0,y);
|
||||
T1=y*xscale+in*mscale;
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
||||
for(int n=2;n<order;n++){
|
||||
|
||||
Linop.HermOp(*Tn,y);
|
||||
|
||||
y=xscale*y+mscale*(*Tn);
|
||||
|
||||
*Tnp=2.0*y-(*Tnm);
|
||||
|
||||
out=out+Coeffs[n]* (*Tnp);
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class Field>
|
||||
class ChebyshevLanczos : public Chebyshev<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
int order;
|
||||
RealD alpha;
|
||||
RealD beta;
|
||||
RealD mu;
|
||||
|
||||
public:
|
||||
ChebyshevLanczos(RealD _alpha,RealD _beta,RealD _mu,int _order) :
|
||||
alpha(_alpha),
|
||||
beta(_beta),
|
||||
mu(_mu)
|
||||
{
|
||||
order=_order;
|
||||
Coeffs.resize(order);
|
||||
for(int i=0;i<_order;i++){
|
||||
Coeffs[i] = 0.0;
|
||||
}
|
||||
Coeffs[order-1]=1.0;
|
||||
};
|
||||
|
||||
void csv(std::ostream &out){
|
||||
for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
RealD approx(RealD xx) // Convenience for plotting the approximation
|
||||
{
|
||||
RealD Tn;
|
||||
RealD Tnm;
|
||||
RealD Tnp;
|
||||
Real aa = alpha * alpha;
|
||||
Real bb = beta * beta;
|
||||
|
||||
RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
|
||||
|
||||
RealD y= x;
|
||||
|
||||
RealD T0=1;
|
||||
RealD T1=y;
|
||||
|
||||
RealD sum;
|
||||
sum = 0.5*Coeffs[0]*T0;
|
||||
sum+= Coeffs[1]*T1;
|
||||
|
||||
Tn =T1;
|
||||
Tnm=T0;
|
||||
for(int i=2;i<order;i++){
|
||||
Tnp=2*y*Tn-Tnm;
|
||||
Tnm=Tn;
|
||||
Tn =Tnp;
|
||||
sum+= Tn*Coeffs[i];
|
||||
}
|
||||
return sum;
|
||||
};
|
||||
|
||||
// shift_Multiply in Rudy's code
|
||||
void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)
|
||||
{
|
||||
GridBase *grid=in._grid;
|
||||
Field tmp(grid);
|
||||
|
||||
RealD aa= alpha*alpha;
|
||||
RealD bb= beta * beta;
|
||||
|
||||
Linop.HermOp(in,out);
|
||||
out = out - mu*in;
|
||||
|
||||
Linop.HermOp(out,tmp);
|
||||
tmp = tmp - mu * out;
|
||||
|
||||
out = (2.0/ (aa-bb) ) * tmp - ((aa+bb)/(aa-bb))*in;
|
||||
};
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
GridBase *grid=in._grid;
|
||||
|
||||
int vol=grid->gSites();
|
||||
|
||||
Field T0(grid); T0 = in;
|
||||
Field T1(grid);
|
||||
Field T2(grid);
|
||||
Field y(grid);
|
||||
|
||||
Field *Tnm = &T0;
|
||||
Field *Tn = &T1;
|
||||
Field *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M )*in
|
||||
AminusMuSq(Linop,T0,T1);
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
||||
for(int n=2;n<order;n++){
|
||||
|
||||
AminusMuSq(Linop,*Tn,y);
|
||||
|
||||
*Tnp=2.0*y-(*Tnm);
|
||||
|
||||
out=out+Coeffs[n]* (*Tnp);
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
beta(_beta),
|
||||
mu(_mu)
|
||||
{
|
||||
order=_order;
|
||||
Coeffs.resize(order);
|
||||
for(int i=0;i<_order;i++){
|
||||
Coeffs[i] = 0.0;
|
||||
}
|
||||
Coeffs[order-1]=1.0;
|
||||
};
|
||||
}
|
||||
|
||||
void csv(std::ostream &out){
|
||||
for (RealD x=-1.2*alpha; x<1.2*alpha; x+=(2.0*alpha)/10000) {
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
RealD approx(RealD xx) // Convenience for plotting the approximation
|
||||
{
|
||||
RealD Tn;
|
||||
RealD Tnm;
|
||||
RealD Tnp;
|
||||
Real aa = alpha * alpha;
|
||||
Real bb = beta * beta;
|
||||
|
||||
RealD x = ( 2.0 * (xx-mu)*(xx-mu) - (aa+bb) ) / (aa-bb);
|
||||
|
||||
RealD y= x;
|
||||
|
||||
RealD T0=1;
|
||||
RealD T1=y;
|
||||
|
||||
RealD sum;
|
||||
sum = 0.5*Coeffs[0]*T0;
|
||||
sum+= Coeffs[1]*T1;
|
||||
|
||||
Tn =T1;
|
||||
Tnm=T0;
|
||||
for(int i=2;i<order;i++){
|
||||
Tnp=2*y*Tn-Tnm;
|
||||
Tnm=Tn;
|
||||
Tn =Tnp;
|
||||
sum+= Tn*Coeffs[i];
|
||||
}
|
||||
return sum;
|
||||
};
|
||||
|
||||
// shift_Multiply in Rudy's code
|
||||
void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)
|
||||
{
|
||||
GridBase *grid=in._grid;
|
||||
Field tmp(grid);
|
||||
|
||||
RealD aa= alpha*alpha;
|
||||
RealD bb= beta * beta;
|
||||
|
||||
Linop.HermOp(in,out);
|
||||
out = out - mu*in;
|
||||
|
||||
Linop.HermOp(out,tmp);
|
||||
tmp = tmp - mu * out;
|
||||
|
||||
out = (2.0/ (aa-bb) ) * tmp - ((aa+bb)/(aa-bb))*in;
|
||||
};
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
GridBase *grid=in._grid;
|
||||
|
||||
int vol=grid->gSites();
|
||||
|
||||
Field T0(grid); T0 = in;
|
||||
Field T1(grid);
|
||||
Field T2(grid);
|
||||
Field y(grid);
|
||||
|
||||
Field *Tnm = &T0;
|
||||
Field *Tn = &T1;
|
||||
Field *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M )*in
|
||||
AminusMuSq(Linop,T0,T1);
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
||||
for(int n=2;n<order;n++){
|
||||
|
||||
AminusMuSq(Linop,*Tn,y);
|
||||
|
||||
*Tnp=2.0*y-(*Tnm);
|
||||
|
||||
out=out+Coeffs[n]* (*Tnp);
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user