diff --git a/lib/qcd/action/pseudofermion/TwoFlavourRatio.h b/lib/qcd/action/pseudofermion/TwoFlavourRatio.h new file mode 100644 index 00000000..1098c85a --- /dev/null +++ b/lib/qcd/action/pseudofermion/TwoFlavourRatio.h @@ -0,0 +1,132 @@ +#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_H +#define QCD_PSEUDOFERMION_TWO_FLAVOUR_H + +namespace Grid{ + namespace QCD{ + + /////////////////////////////////////// + // Two flavour ratio + /////////////////////////////////////// + template + class TwoFlavourRatioPseudoFermionAction : public Action { + public: + INHERIT_IMPL_TYPES(Impl); + + private: + FermionOperator & NumOp;// the basic operator + FermionOperator & DenOp;// the basic operator + + OperatorFunction &DerivativeSolver; + OperatorFunction &ActionSolver; + + FermionField Phi; // the pseudo fermion field for this trajectory + + public: + TwoFlavourRatioPseudoFermionAction(FermionOperator &_NumOp, + FermionOperator &_DenOp, + OperatorFunction & DS, + OperatorFunction & AS + ) : NumOp(_NumOp), DenOp(_DenOp), DerivativeSolver(DS), ActionSolver(AS), Phi(Op.FermionGrid()) {}; + + virtual void init(const GaugeField &U, GridParallelRNG& pRNG) { + + // P(phi) = e^{- phi^dag V (MdagM)^-1 Vdag phi} + // + // phi = Vdag^{-1} Mdag eta + // + // P(eta) = e^{- eta^dag eta} + // + // e^{x^2/2 sig^2} => sig^2 = 0.5. + // + // So eta should be of width sig = 1/sqrt(2). + // and must multiply by 0.707.... + // + RealD scale = std::sqrt(0.5); + + FermionField eta(NumOp.FermionGrid()); + + gaussian(pRNG,eta); + + NumOp.ImportGauge(U); + DenOp.ImportGauge(U); + + MdagMLinearOperator ,FermionField> MdagMOp(NumOp); + + DenOp.Mdag(eta,Phi); // Mdag eta + ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta + NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta + + Phi=Phi*scale; + + }; + + ////////////////////////////////////////////////////// + // S = phi^dag V (Mdag M)^-1 Vdag phi + ////////////////////////////////////////////////////// + virtual RealD S(const GaugeField &U) { + + NumOp.ImportGauge(U); + DenOp.ImportGauge(U); + + FermionField X(NumOp.FermionGrid()); + FermionField Y(NumOp.FermionGrid()); + + MdagMLinearOperator ,FermionField> MdagMOp(DenOp); + + X=zero; + NumOp.Mdag(Phi,Y); // Vdag phi + ActionSolver(MdagMOp,Y,X); // MdagMinv Vdag phi + MdagMOp.Op(X,Y); // Y=Mdaginv Vdag phi + + RealD action = norm2(Y); + + return action; + }; + + ////////////////////////////////////////////////////// + // dS/du = phi^dag dV (Mdag M)^-1 V^dag phi + // - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi + // + phi^dag V (Mdag M)^-1 dV^dag phi + ////////////////////////////////////////////////////// + virtual void deriv(const GaugeField &U,GaugeField & dSdU) { + + NumOp.ImportGauge(U); + DenOp.ImportGauge(U); + + MdagMLinearOperator ,FermionField> MdagMOp(DenOp); + + FermionField X(NumOp.FermionGrid()); + FermionField Y(NumOp.FermionGrid()); + FermionField f1(NumOp.FermionGrid()); + + GaugeField force(FermOp.GaugeGrid()); + + X=zero; + + //f1=Vdag phi + NumOp.Mdag(phi,f1); + + //X = (Mdag M)^-1 V^dag phi + DerivativeSolver(MdagMOp,f1,X); + + //Y = (Mdag)^-1 V^dag phi + DenOp.M(X,Y); + + // phi^dag V (Mdag M)^-1 dV^dag phi + NumOp.MDeriv(force , X, Phi, DaggerYes ); dSdU=force; + + // phi^dag dV (Mdag M)^-1 V^dag phi + NumOp.MDeriv(force , Phi, X ,DaggerNo ); dSdU=dSdU+force; + + // - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi + // - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi + DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force; + DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force; + + dSdU = Ta(dSdU); + + }; + }; + } +} +#endif