1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 09:45:36 +00:00

QedFVol: Implement charged propagator calculation within ScalarVP module

This commit is contained in:
James Harrison 2017-04-10 16:33:54 +01:00
parent 9f755e0379
commit 26ebe41fef
3 changed files with 225 additions and 23 deletions

View File

@ -100,7 +100,7 @@ void TChargedProp::execute(void)
{ {
GFSrc_ = env().getObject<ScalarField>(GFSrcName_); GFSrc_ = env().getObject<ScalarField>(GFSrcName_);
} }
// cache free scalar propagator // cache position-space free scalar propagator
if (!env().hasCreatedObject(prop0Name_)) if (!env().hasCreatedObject(prop0Name_))
{ {
prop0_ = env().createLattice<ScalarField>(prop0Name_); prop0_ = env().createLattice<ScalarField>(prop0Name_);

View File

@ -15,13 +15,7 @@ TScalarVP::TScalarVP(const std::string name)
// dependencies/products /////////////////////////////////////////////////////// // dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TScalarVP::getInput(void) std::vector<std::string> TScalarVP::getInput(void)
{ {
prop0Name_ = par().scalarProp + "_0"; std::vector<std::string> in = {par().source, par().emField};
propD1Name_ = par().scalarProp + "_D1";
propD1D1Name_ = par().scalarProp + "_D1D1";
propD2Name_ = par().scalarProp + "_D2";
std::vector<std::string> in = {par().source, par().emField, par().scalarProp,
prop0Name_, propD1Name_, propD1D1Name_,
propD2Name_};
return in; return in;
} }
@ -36,26 +30,229 @@ std::vector<std::string> TScalarVP::getOutput(void)
// setup /////////////////////////////////////////////////////////////////////// // setup ///////////////////////////////////////////////////////////////////////
void TScalarVP::setup(void) void TScalarVP::setup(void)
{ {
freeMomPropName_ = FREEMOMPROP(par().mass);
GFSrcName_ = "_" + getName() + "_DinvSrc";
prop0Name_ = getName() + "_prop0";
propQName_ = getName() + "_propQ";
propSunName_ = getName() + "_propSun";
propTadName_ = getName() + "_propTad";
phaseName_.clear(); phaseName_.clear();
muGFSrcName_.clear();
muProp0Name_.clear();
muPropQName_.clear();
muPropSunName_.clear();
muPropTadName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu) for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{ {
phaseName_.push_back("_shiftphase_" + std::to_string(mu)); phaseName_.push_back("_shiftphase_" + std::to_string(mu));
muGFSrcName.push_back("_" + getName() + "_DinvSrc_" + std::to_string(mu));
muProp0Name_.push_back(getName() + "_prop0_" + std::to_string(mu));
muPropQName_.push_back(getName() + "_propQ_" + std::to_string(mu));
muPropSunName_.push_back(getName() + "_propSun_" + std::to_string(mu));
muPropTadName_.push_back(getName() + "_propTad_" + std::to_string(mu));
} }
if (!env().hasRegisteredObject(freeMomPropName_))
{
env().registerLattice<ScalarField>(freeMomPropName_);
}
if (!env().hasRegisteredObject(phaseName_[0]))
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(phaseName_[mu]);
}
}
if (!env().hasRegisteredObject(GFSrcName_))
{
env().registerLattice<ScalarField>(GFSrcName_);
}
if (!env().hasRegisteredObject(muGFSrcName_[0]))
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muGFSrcName_[mu]);
}
}
if (!env().hasRegisteredObject(prop0Name_))
{
env().registerLattice<ScalarField>(prop0Name_);
}
if (!env().hasRegisteredObject(muProp0Name_[0]))
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muProp0Name_[mu]);
}
}
env().registerLattice<ScalarField>(propQName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muPropQName_[mu]);
}
env().registerLattice<ScalarField>(propSunName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muPropSunName_[mu]);
}
env().registerLattice<ScalarField>(propTadName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muPropTadName_[mu]);
}
env().registerLattice<ScalarField>(getName());
} }
// execution /////////////////////////////////////////////////////////////////// // execution ///////////////////////////////////////////////////////////////////
void TScalarVP::execute(void) void TScalarVP::execute(void)
{
// CACHING ANALYTIC EXPRESSIONS
ScalarField &source = *env().getObject<ScalarField>(par().source);
Complex ci(0.0,1.0);
FFT fft(env().getGrid());
// cache momentum-space free scalar propagator
if (!env().hasCreatedObject(freeMomPropName_))
{
LOG(Message) << "Caching momentum space free scalar propagator"
<< " (mass= " << par().mass << ")..." << std::endl;
freeMomProp_ = env().createLattice<ScalarField>(freeMomPropName_);
Scalar<SIMPL>::MomentumSpacePropagator(*freeMomProp_, par().mass);
}
else
{
freeMomProp_ = env().getObject<ScalarField>(freeMomPropName_);
}
// cache phases
if (!env().hasCreatedObject(phaseName_[0]))
{
std::vector<int> &l = env().getGrid()->_fdimensions;
LOG(Message) << "Caching shift phases..." << std::endl;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Real twoPiL = M_PI*2./l[mu];
phase_.push_back(env().createLattice<ScalarField>(phaseName_[mu]));
LatticeCoordinate(*(phase_[mu]), mu);
*(phase_[mu]) = exp(ci*twoPiL*(*(phase_[mu])));
}
}
else
{ {
for (unsigned int mu = 0; mu < env().getNd(); ++mu) for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{ {
phase_.push_back(env().getObject<ScalarField>(phaseName_[mu])); phase_.push_back(env().getObject<ScalarField>(phaseName_[mu]));
} }
}
// cache G*F*src
if (!env().hasCreatedObject(GFSrcName_))
{
GFSrc_ = env().createLattice<ScalarField>(GFSrcName_);
fft.FFT_all_dim(*GFSrc_, source, FFT::forward);
*GFSrc_ = (*freeMomProp_)*(*GFSrc_);
}
else
{
GFSrc_ = env().getObject<ScalarField>(GFSrcName_);
}
// cache G*exp(i*k_mu)*F*src
if (!env().hasCreatedObject(muGFSrcName_[0]))
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
muGFSrc_.push_back(env().createLattice<ScalarField>(muGFSrcName_[mu]));
fft.FFT_all_dim(*(muGFSrc_[mu]), source, FFT::forward);
*(muGFSrc_[mu]) = (*freeMomProp_)*(*phase_[mu])*(*muGFSrc_[mu]);
}
}
else
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
muGFSrc_.push_back(env().getObject<ScalarField>(muGFSrcName_[mu]));
}
}
// cache position-space free scalar propagators
if (!env().hasCreatedObject(prop0Name_))
{
prop0_ = env().createLattice<ScalarField>(prop0Name_);
fft.FFT_all_dim(*prop0_, *GFSrc_, FFT::backward);
}
else
{
prop0_ = env().getObject<ScalarField>(prop0Name_);
}
if (!env().hasCreatedObject(muProp0Name_[0]))
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
muProp0_.push_back(env().createLattice<ScalarField>(muProp0Name_[mu]));
fft.FFT_all_dim(*(muProp0_[mu]), *(muGFSrc_[mu]), FFT::backward);
}
}
else
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
muProp0_.push_back(env().getObject<ScalarField>(muProp0Name_[mu]));
}
}
// PROPAGATOR CALCULATION
// Propagator from unshifted source
ScalarField &propQ = *env().createLattice<ScalarField>(propQName_);
ScalarField &propSun = *env().createLattice<ScalarField>(propSunName_);
ScalarField &propTad = *env().createLattice<ScalarField>(propTadName_);
chargedProp(propQ, propSun, propTad, *GFSrc_, fft);
// Propagators from shifted sources
std::vector<ScalarField *> muPropQ_, muPropSun_, muPropTad_;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
muPropQ_.push_back(env().createLattice<ScalarField>(muPropQName_[mu]));
muPropSun_.push_back(env().createLattice<ScalarField>(muPropSunName_[mu]));
muPropTad_.push_back(env().createLattice<ScalarField>(muPropTadName_[mu]));
chargedProp(*(muPropQ_[mu]), *(muPropSun_[mu]), *(muPropTad_[mu]),
*(muGFSrc_[mu]), fft);
}
} }
void TScalarVP::momD1(ScalarField &s, EmField &A, FFT &fft) // Calculate O(q) and O(q^2) terms of momentum-space charged propagator
void TScalarVP::chargedProp(ScalarField &prop_q, ScalarField &prop_sun,
ScalarField &prop_tad, ScalarField &GFSrc,
FFT &fft)
{ {
Complex ci(0.0,1.0);
double q = par().charge;
ScalarField &G = *freeMomProp_;
ScalarField buf(env().getGrid());
LOG(Message) << "Computing charged scalar propagator"
<< " (mass= " << par().mass
<< ", charge= " << q << ")..." << std::endl;
// -q*G*momD1*G*F*Src (momD1 = F*D1*Finv)
buf = GFSrc;
momD1(buf, fft);
buf = G*buf;
prop_q = -q*buf;
// q*q*G*momD1*G*momD1*G*F*Src
momD1(buf, fft);
prop_sun = q*q*G*buf;
// -q*q*G*momD2*G*F*Src (momD2 = F*D2*Finv)
buf = GFSrc;
momD2(buf, fft);
prop_tad = -q*q*G*buf;
}
void TScalarVP::momD1(ScalarField &s, FFT &fft)
{
EmField &A = *env().getObject<EmField>(par().emField);
ScalarField buf(env().getGrid()), result(env().getGrid()), ScalarField buf(env().getGrid()), result(env().getGrid()),
Amu(env().getGrid()); Amu(env().getGrid());
Complex ci(0.0,1.0); Complex ci(0.0,1.0);
@ -83,27 +280,28 @@ void TScalarVP::momD1(ScalarField &s, EmField &A, FFT &fft)
s = result; s = result;
} }
void TScalarVP::momD2(ScalarField &s, EmField &Asquared, FFT &fft) void TScalarVP::momD2(ScalarField &s, FFT &fft)
{ {
EmField &A = *env().getObject<EmField>(par().emField);
ScalarField buf(env().getGrid()), result(env().getGrid()), ScalarField buf(env().getGrid()), result(env().getGrid()),
A2mu(env().getGrid()); Amu(env().getGrid());
result = zero; result = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu) for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{ {
A2mu = peekLorentz(Asquared, mu); Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s; buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward); fft.FFT_all_dim(buf, buf, FFT::backward);
buf = A2mu*buf; buf = Amu*Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward); fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + .5*buf; result = result + .5*buf;
} }
fft.FFT_all_dim(s, s, FFT::backward); fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu) for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{ {
A2mu = peekLorentz(Asquared, mu); Amu = peekLorentz(A, mu);
buf = A2mu*s; buf = Amu*Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward); fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + .5*adj(*phase_[mu])*buf; result = result + .5*adj(*phase_[mu])*buf;
} }

View File

@ -18,7 +18,7 @@ public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ScalarVPPar, GRID_SERIALIZABLE_CLASS_MEMBERS(ScalarVPPar,
std::string, emField, std::string, emField,
std::string, source, std::string, source,
std::string, scalarProp, double, mass,
double, charge, double, charge,
std::string, output); std::string, output);
}; };
@ -42,12 +42,16 @@ public:
// execution // execution
virtual void execute(void); virtual void execute(void);
private: private:
void momD1(ScalarField &s, EmField &A, FFT &fft); void momD1(ScalarField &s, FFT &fft);
void momD2(ScalarField &s, EmField &Asquared, FFT &fft); void momD2(ScalarField &s, FFT &fft);
private: private:
std::string prop0Name_, propD1Name_, propD1D1Name_, propD2Name_; std::string freeMomPropName_, GFSrcName_, prop0Name_,
std::vector<std::string> phaseName_; propQName_, propSunName_, propTadName_;
std::vector<ScalarField *> phase_; std::vector<std::string> phaseName_, muGFSrcName_, muProp0Name_,
muPropQName, muPropSunName_, muPropTadName_;
ScalarField *freeMomProp_, *GFSrc_, *prop0_;
std::vector<ScalarField *> phase_, muGFSrc_, muProp0_;
emField *A;
}; };
MODULE_REGISTER_NS(ScalarVP, TScalarVP, MScalar); MODULE_REGISTER_NS(ScalarVP, TScalarVP, MScalar);