1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-12 20:27:06 +01:00

Addedd Ta functionality to the tensor types

Merge remote-tracking branch 'upstream/master'

Conflicts:
	configure
This commit is contained in:
neo
2015-06-04 18:11:32 +09:00
149 changed files with 4367 additions and 1150 deletions

View File

@ -1,217 +0,0 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
const std::vector<int> WilsonMatrix::directions ({0,1,2,3, 0, 1, 2, 3});
const std::vector<int> WilsonMatrix::displacements({1,1,1,1,-1,-1,-1,-1});
int WilsonMatrix::HandOptDslash;
class WilsonCompressor {
public:
int mu;
int dag;
WilsonCompressor(int _dag){
mu=0;
dag=_dag;
assert((dag==0)||(dag==1));
}
void Point(int p) {
mu=p;
};
vHalfSpinColourVector operator () (const vSpinColourVector &in)
{
vHalfSpinColourVector ret;
int mudag=mu;
if (dag) {
mudag=(mu+Nd)%(2*Nd);
}
switch(mudag) {
case Xp:
spProjXp(ret,in);
break;
case Yp:
spProjYp(ret,in);
break;
case Zp:
spProjZp(ret,in);
break;
case Tp:
spProjTp(ret,in);
break;
case Xm:
spProjXm(ret,in);
break;
case Ym:
spProjYm(ret,in);
break;
case Zm:
spProjZm(ret,in);
break;
case Tm:
spProjTm(ret,in);
break;
default:
assert(0);
break;
}
return ret;
}
};
WilsonMatrix::WilsonMatrix(LatticeGaugeField &_Umu,GridCartesian &Fgrid,GridRedBlackCartesian &Hgrid, double _mass) :
CheckerBoardedSparseMatrixBase<LatticeFermion>(&Fgrid,&Hgrid),
Stencil ( _grid,npoint,Even,directions,displacements),
StencilEven(_cbgrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (_cbgrid,npoint,Odd ,directions,displacements), // source is Odd
mass(_mass),
Umu(_grid),
UmuEven(_cbgrid),
UmuOdd (_cbgrid)
{
// Allocate the required comms buffer
comm_buf.resize(Stencil._unified_buffer_size); // this is always big enough to contain EO
DoubleStore(Umu,_Umu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
void WilsonMatrix::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu)
{
LatticeColourMatrix U(_grid);
for(int mu=0;mu<Nd;mu++){
U = peekIndex<LorentzIndex>(Umu,mu);
pokeIndex<LorentzIndex>(Uds,U,mu);
U = adj(Cshift(U,mu,-1));
pokeIndex<LorentzIndex>(Uds,U,mu+4);
}
}
RealD WilsonMatrix::M(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerNo);
out = (4+mass)*in - 0.5*out ; // FIXME : axpby_norm! fusion fun
return norm2(out);
}
RealD WilsonMatrix::Mdag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerYes);
out = (4+mass)*in - 0.5*out ; // FIXME : axpby_norm! fusion fun
return norm2(out);
}
void WilsonMatrix::Meooe(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerNo);
} else {
DhopOE(in,out,DaggerNo);
}
out = (-0.5)*out; // FIXME : scale factor in Dhop
}
void WilsonMatrix::MeooeDag(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerYes);
} else {
DhopOE(in,out,DaggerYes);
}
out = (-0.5)*out; // FIXME : scale factor in Dhop
}
void WilsonMatrix::Mooee(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (4.0+mass)*in;
return ;
}
void WilsonMatrix::MooeeDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
Mooee(in,out);
}
void WilsonMatrix::MooeeInv(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (1.0/(4.0+mass))*in;
return ;
}
void WilsonMatrix::MooeeInvDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
MooeeInv(in,out);
}
void WilsonMatrix::DhopInternal(CartesianStencil & st,LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
WilsonCompressor compressor(dag);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
if ( dag == DaggerYes ) {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHand::DhopSiteDag(st,U,comm_buf,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOpt::DhopSiteDag(st,U,comm_buf,sss,in,out);
}
}
} else {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHand::DhopSite(st,U,comm_buf,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOpt::DhopSite(st,U,comm_buf,sss,in,out);
}
}
}
}
void WilsonMatrix::DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag);
}
void WilsonMatrix::DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag);
}
void WilsonMatrix::Dhop(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_grid); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Umu,in,out,dag);
}
}}

View File

@ -1,105 +0,0 @@
#ifndef GRID_QCD_WILSON_DOP_H
#define GRID_QCD_WILSON_DOP_H
namespace Grid {
namespace QCD {
// Should be in header?
const int Xp = 0;
const int Yp = 1;
const int Zp = 2;
const int Tp = 3;
const int Xm = 4;
const int Ym = 5;
const int Zm = 6;
const int Tm = 7;
class WilsonMatrix : public CheckerBoardedSparseMatrixBase<LatticeFermion>
{
//NB r=1;
public:
static int HandOptDslash;
double mass;
// GridBase * grid; // Inherited
// GridBase * cbgrid;
//Defines the stencils for even and odd
CartesianStencil Stencil;
CartesianStencil StencilEven;
CartesianStencil StencilOdd;
// Copy of the gauge field , with even and odd subsets
LatticeDoubledGaugeField Umu;
LatticeDoubledGaugeField UmuEven;
LatticeDoubledGaugeField UmuOdd;
static const int npoint=8;
static const std::vector<int> directions ;
static const std::vector<int> displacements;
static const int Xp,Xm,Yp,Ym,Zp,Zm,Tp,Tm;
// Comms buffer
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > comm_buf;
// Constructor
WilsonMatrix(LatticeGaugeField &_Umu,GridCartesian &Fgrid,GridRedBlackCartesian &Hgrid,double _mass);
// DoubleStore
void DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu);
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operaions
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
// non-hermitian hopping term; half cb or both
void Dhop (const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopInternal(CartesianStencil & st,LatticeDoubledGaugeField &U,
const LatticeFermion &in, LatticeFermion &out,int dag);
typedef iScalar<iMatrix<vComplex, Nc> > matrix;
};
class DiracOpt {
public:
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
static void DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out);
static void DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out);
};
class DiracOptHand {
public:
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
static void DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out);
static void DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out);
};
}
}
#endif

113
lib/qcd/LinalgUtils.h Normal file
View File

@ -0,0 +1,113 @@
#ifndef GRID_QCD_LINALG_UTILS_H
#define GRID_QCD_LINALG_UTILS_H
namespace Grid{
namespace QCD{
////////////////////////////////////////////////////////////////////////
//This file brings additional linear combination assist that is helpful
//to QCD such as chiral projectors and spin matrices applied to one of the inputs.
//These routines support five-D chiral fermions and contain s-subslice indexing
//on the 5d (rb4d) checkerboarded lattices
////////////////////////////////////////////////////////////////////////
template<class vobj>
void axpby_ssp(Lattice<vobj> &z, RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp = a*x._odata[ss+s]+b*y._odata[ss+sp];
vstream(z._odata[ss+s],tmp);
}
}
template<class vobj>
void ag5xpby_ssp(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp;
multGamma5(tmp(),a*x._odata[ss+s]());
tmp = tmp + b*y._odata[ss+sp];
vstream(z._odata[ss+s],tmp);
}
}
template<class vobj>
void axpbg5y_ssp(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp;
multGamma5(tmp(),b*y._odata[ss+sp]());
tmp = tmp + a*x._odata[ss+s];
vstream(z._odata[ss+s],tmp);
}
}
template<class vobj>
void ag5xpbg5y_ssp(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp1;
vobj tmp2;
tmp1 = a*x._odata[ss+s]+b*y._odata[ss+sp];
multGamma5(tmp2(),tmp1());
vstream(z._odata[ss+s],tmp2);
}
}
template<class vobj>
void axpby_ssp_pminus(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp;
spProj5m(tmp,y._odata[ss+sp]);
tmp = a*x._odata[ss+s]+b*tmp;
vstream(z._odata[ss+s],tmp);
}
}
template<class vobj>
void axpby_ssp_pplus(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp;
spProj5p(tmp,y._odata[ss+sp]);
tmp = a*x._odata[ss+s]+b*tmp;
vstream(z._odata[ss+s],tmp);
}
}
}}
#endif

View File

@ -4,6 +4,16 @@ namespace Grid{
namespace QCD {
static const int Xp = 0;
static const int Yp = 1;
static const int Zp = 2;
static const int Tp = 3;
static const int Xm = 4;
static const int Ym = 5;
static const int Zm = 6;
static const int Tm = 7;
static const int Nc=3;
static const int Ns=4;
static const int Nd=4;
@ -297,9 +307,10 @@ namespace QCD {
} //namespace QCD
} // Grid
#include <qcd/Grid_qcd_dirac.h>
#include <qcd/Grid_qcd_2spinor.h>
//#include <qcd/Grid_qcd_pauli.h>
#include <qcd/Grid_qcd_wilson_dop.h>
#include <qcd/SpaceTimeGrid.h>
#include <qcd/Dirac.h>
#include <qcd/TwoSpinor.h>
#include <qcd/LinalgUtils.h>
#include <qcd/action/Actions.h>
#endif

52
lib/qcd/SpaceTimeGrid.cc Normal file
View File

@ -0,0 +1,52 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
/////////////////////////////////////////////////////////////////
// Public interface
/////////////////////////////////////////////////////////////////
GridCartesian *SpaceTimeGrid::makeFourDimGrid(const std::vector<int> & latt,const std::vector<int> &simd,const std::vector<int> &mpi)
{
return new GridCartesian(latt,simd,mpi);
}
GridRedBlackCartesian *SpaceTimeGrid::makeFourDimRedBlackGrid(const GridCartesian *FourDimGrid)
{
return new GridRedBlackCartesian(FourDimGrid);
}
GridCartesian *SpaceTimeGrid::makeFiveDimGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4=FourDimGrid->_ndimension;
std::vector<int> latt5(1,Ls);
std::vector<int> simd5(1,1);
std::vector<int> mpi5(1,1);
for(int d=0;d<N4;d++){
latt5.push_back(FourDimGrid->_fdimensions[d]);
simd5.push_back(FourDimGrid->_simd_layout[d]);
mpi5.push_back(FourDimGrid->_processors[d]);
}
return new GridCartesian(latt5,simd5,mpi5);
}
GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimRedBlackGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4=FourDimGrid->_ndimension;
int cbd=1;
std::vector<int> latt5(1,Ls);
std::vector<int> simd5(1,1);
std::vector<int> mpi5(1,1);
std::vector<int> cb5(1,0);
for(int d=0;d<N4;d++){
latt5.push_back(FourDimGrid->_fdimensions[d]);
simd5.push_back(FourDimGrid->_simd_layout[d]);
mpi5.push_back(FourDimGrid->_processors[d]);
cb5.push_back( 1);
}
return new GridRedBlackCartesian(latt5,simd5,mpi5,cb5,cbd);
}
}}

18
lib/qcd/SpaceTimeGrid.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef GRID_QCD_SPACE_TIME_GRID_H
#define GRID_QCD_SPACE_TIME_GRID_H
namespace Grid {
namespace QCD {
class SpaceTimeGrid {
public:
static GridCartesian *makeFourDimGrid(const std::vector<int> & latt,const std::vector<int> &simd,const std::vector<int> &mpi);
static GridRedBlackCartesian *makeFourDimRedBlackGrid (const GridCartesian *FourDimGrid);
static GridCartesian *makeFiveDimGrid (int Ls,const GridCartesian *FourDimGrid);
static GridRedBlackCartesian *makeFiveDimRedBlackGrid(int Ls,const GridCartesian *FourDimGrid);
};
}}
#endif

98
lib/qcd/action/Actions.h Normal file
View File

@ -0,0 +1,98 @@
#ifndef GRID_QCD_ACTIONS_H
#define GRID_QCD_ACTIONS_H
// Some reorganisation likely required as both Chroma and IroIro
// are separating the concept of the operator from that of action.
//
// The FermAction contains methods to create
//
// * Linear operators (Hermitian and non-hermitian) .. my LinearOperator
// * System solvers (Hermitian and non-hermitian) .. my OperatorFunction
// * MultiShift System solvers (Hermitian and non-hermitian) .. my OperatorFunction
////////////////////////////////////////////
// Abstract base interface
////////////////////////////////////////////
#include <qcd/action/fermion/FermionOperator.h>
////////////////////////////////////////////
// Utility functions
////////////////////////////////////////////
#include <qcd/action/fermion/WilsonCompressor.h> //used by all wilson type fermions
#include <qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
////////////////////////////////////////////
// 4D formulations
////////////////////////////////////////////
#include <qcd/action/fermion/WilsonFermion.h>
//#include <qcd/action/fermion/CloverFermion.h>
////////////////////////////////////////////
// 5D formulations...
////////////////////////////////////////////
#include <qcd/action/fermion/WilsonFermion5D.h> // used by all 5d overlap types
//////////
// Cayley
//////////
#include <qcd/action/fermion/CayleyFermion5D.h>
#include <qcd/action/fermion/DomainWallFermion.h>
#include <qcd/action/fermion/DomainWallFermion.h>
#include <qcd/action/fermion/MobiusFermion.h>
#include <qcd/action/fermion/ScaledShamirFermion.h>
#include <qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h>
#include <qcd/action/fermion/MobiusZolotarevFermion.h>
#include <qcd/action/fermion/ShamirZolotarevFermion.h>
#include <qcd/action/fermion/OverlapWilsonCayleyZolotarevFermion.h>
//////////////////////
// Continued fraction
//////////////////////
#include <qcd/action/fermion/ContinuedFractionFermion5D.h>
#include <qcd/action/fermion/OverlapWilsonContfracTanhFermion.h>
#include <qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h>
//////////////////////
// Partial fraction
//////////////////////
#include <qcd/action/fermion/PartialFractionFermion5D.h>
// Chroma interface defining FermionAction
/*
template<typename T, typename P, typename Q> class FermAct4D : public FermionAction<T,P,Q>
virtual LinearOperator<T>* linOp(Handle< FermState<T,P,Q> > state) const = 0;
virtual LinearOperator<T>* lMdagM(Handle< FermState<T,P,Q> > state) const = 0;
virtual LinOpSystemSolver<T>* invLinOp(Handle< FermState<T,P,Q> > state,
virtual MdagMSystemSolver<T>* invMdagM(Handle< FermState<T,P,Q> > state,
virtual LinOpMultiSystemSolver<T>* mInvLinOp(Handle< FermState<T,P,Q> > state,
virtual MdagMMultiSystemSolver<T>* mInvMdagM(Handle< FermState<T,P,Q> > state,
virtual MdagMMultiSystemSolverAccumulate<T>* mInvMdagMAcc(Handle< FermState<T,P,Q> > state,
virtual SystemSolver<T>* qprop(Handle< FermState<T,P,Q> > state,
class DiffFermAct4D : public FermAct4D<T,P,Q>
virtual DiffLinearOperator<T,Q,P>* linOp(Handle< FermState<T,P,Q> > state) const = 0;
virtual DiffLinearOperator<T,Q,P>* lMdagM(Handle< FermState<T,P,Q> > state) const = 0;
*/
// Chroma interface defining GaugeAction
/*
template<typename P, typename Q> class GaugeAction
virtual const CreateGaugeState<P,Q>& getCreateState() const = 0;
virtual GaugeState<P,Q>* createState(const Q& q) const
virtual const GaugeBC<P,Q>& getGaugeBC() const
virtual const Set& getSet(void) const = 0;
virtual void deriv(P& result, const Handle< GaugeState<P,Q> >& state) const
virtual Double S(const Handle< GaugeState<P,Q> >& state) const = 0;
class LinearGaugeAction : public GaugeAction< multi1d<LatticeColorMatrix>, multi1d<LatticeColorMatrix> >
typedef multi1d<LatticeColorMatrix> P;
*/
#endif

View File

View File

@ -0,0 +1,346 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
CayleyFermion5D::CayleyFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5) :
WilsonFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_M5),
mass(_mass)
{
}
// override multiply
RealD CayleyFermion5D::M (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion Din(psi._grid);
// Assemble Din
for(int s=0;s<Ls;s++){
if ( s==0 ) {
// Din = bs psi[s] + cs[s] psi[s+1}
axpby_ssp_pminus(Din,bs[s],psi,cs[s],psi,s,s+1);
// Din+= -mass*cs[s] psi[s+1}
axpby_ssp_pplus (Din,1.0,Din,-mass*cs[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(Din,bs[s],psi,-mass*cs[s],psi,s,0);
axpby_ssp_pplus (Din,1.0,Din,cs[s],psi,s,s-1);
} else {
axpby_ssp_pminus(Din,bs[s],psi,cs[s],psi,s,s+1);
axpby_ssp_pplus(Din,1.0,Din,cs[s],psi,s,s-1);
}
}
DW(Din,chi,DaggerNo);
// ((b D_W + D_w hop terms +1) on s-diag
axpby(chi,1.0,1.0,chi,psi);
for(int s=0;s<Ls;s++){
if ( s==0 ){
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,mass,psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(chi,1.0,chi,mass,psi,s,0);
axpby_ssp_pplus (chi,1.0,chi,-1.0,psi,s,s-1);
} else {
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,-1.0,psi,s,s-1);
}
}
return norm2(chi);
}
RealD CayleyFermion5D::Mdag (const LatticeFermion &psi, LatticeFermion &chi)
{
// Under adjoint
//D1+ D1- P- -> D1+^dag P+ D2-^dag
//D2- P+ D2+ P-D1-^dag D2+dag
LatticeFermion Din(psi._grid);
// Apply Dw
DW(psi,Din,DaggerYes);
for(int s=0;s<Ls;s++){
// Collect the terms in DW
// Chi = bs Din[s] + cs[s] Din[s+1}
// Chi+= -mass*cs[s] psi[s+1}
if ( s==0 ) {
axpby_ssp_pplus (chi,bs[s],Din,cs[s+1],Din,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,-mass*cs[Ls-1],Din,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus (chi,bs[s],Din,-mass*cs[0],Din,s,0);
axpby_ssp_pminus(chi,1.0,chi,cs[s-1],Din,s,s-1);
} else {
axpby_ssp_pplus (chi,bs[s],Din,cs[s+1],Din,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,cs[s-1],Din,s,s-1);
}
// Collect the terms indept of DW
if ( s==0 ){
axpby_ssp_pplus (chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,mass,psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus (chi,1.0,chi,mass,psi,s,0);
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s-1);
} else {
axpby_ssp_pplus(chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s-1);
}
}
// ((b D_W + D_w hop terms +1) on s-diag
axpby (chi,1.0,1.0,chi,psi);
return norm2(chi);
}
// half checkerboard operations
void CayleyFermion5D::Meooe (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion tmp(psi._grid);
// Assemble the 5d matrix
for(int s=0;s<Ls;s++){
if ( s==0 ) {
// tmp = bs psi[s] + cs[s] psi[s+1}
// tmp+= -mass*cs[s] psi[s+1}
axpby_ssp_pminus(tmp,beo[s],psi,-ceo[s],psi ,s, s+1);
axpby_ssp_pplus(tmp,1.0,tmp,mass*ceo[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(tmp,beo[s],psi,mass*ceo[s],psi,s,0);
axpby_ssp_pplus(tmp,1.0,tmp,-ceo[s],psi,s,s-1);
} else {
axpby_ssp_pminus(tmp,beo[s],psi,-ceo[s],psi,s,s+1);
axpby_ssp_pplus (tmp,1.0,tmp,-ceo[s],psi,s,s-1);
}
}
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(tmp,chi,DaggerNo);
} else {
DhopOE(tmp,chi,DaggerNo);
}
}
void CayleyFermion5D::MeooeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion tmp(psi._grid);
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(psi,tmp,DaggerYes);
} else {
DhopOE(psi,tmp,DaggerYes);
}
// Assemble the 5d matrix
for(int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pplus(chi,beo[s],tmp, -ceo[s+1] ,tmp,s,s+1);
axpby_ssp_pminus(chi, 1.0,chi,mass*ceo[Ls-1],tmp,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus(chi,beo[s],tmp,mass*ceo[0],tmp,s,0);
axpby_ssp_pminus(chi,1.0,chi,-ceo[s-1],tmp,s,s-1);
} else {
axpby_ssp_pplus(chi,beo[s],tmp,-ceo[s+1],tmp,s,s+1);
axpby_ssp_pminus(chi,1.0 ,chi,-ceo[s-1],tmp,s,s-1);
}
}
}
void CayleyFermion5D::Mooee (const LatticeFermion &psi, LatticeFermion &chi)
{
for (int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pminus(chi,bee[s],psi ,-cee[s],psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,mass*cee[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(chi,bee[s],psi,mass*cee[s],psi,s,0);
axpby_ssp_pplus (chi,1.0,chi,-cee[s],psi,s,s-1);
} else {
axpby_ssp_pminus(chi,bee[s],psi,-cee[s],psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,-cee[s],psi,s,s-1);
}
}
}
void CayleyFermion5D::MooeeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
for (int s=0;s<Ls;s++){
// Assemble the 5d matrix
if ( s==0 ) {
axpby_ssp_pplus(chi,bee[s],psi,-cee[s+1] ,psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,mass*cee[Ls-1],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus(chi,bee[s],psi,mass*cee[0],psi,s,0);
axpby_ssp_pminus(chi,1.0,chi,-cee[s-1],psi,s,s-1);
} else {
axpby_ssp_pplus(chi,bee[s],psi,-cee[s+1],psi,s,s+1);
axpby_ssp_pminus(chi,1.0 ,chi,-cee[s-1],psi,s,s-1);
}
}
}
void CayleyFermion5D::MooeeInv (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply (L^{\prime})^{-1}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
axpby_ssp_pplus(chi,1.0,psi,-lee[s-1],chi,s,s-1);// recursion Psi[s] -lee P_+ chi[s-1]
}
// L_m^{-1}
for (int s=0;s<Ls-1;s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi,1.0,chi,-leem[s],chi,Ls-1,s);
}
// U_m^{-1} D^{-1}
for (int s=0;s<Ls-1;s++){
// Chi[s] + 1/d chi[s]
axpby_ssp_pplus(chi,1.0/dee[s],chi,-ueem[s]/dee[Ls-1],chi,s,Ls-1);
}
axpby_ssp(chi,1.0/dee[Ls-1],chi,0.0,chi,Ls-1,Ls-1); // Modest avoidable
// Apply U^{-1}
for (int s=Ls-2;s>=0;s--){
axpby_ssp_pminus (chi,1.0,chi,-uee[s],chi,s,s+1); // chi[Ls]
}
}
void CayleyFermion5D::MooeeInvDag (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply (U^{\prime})^{-dagger}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
axpby_ssp_pminus(chi,1.0,psi,-uee[s-1],chi,s,s-1);
}
// U_m^{-\dagger}
for (int s=0;s<Ls-1;s++){
axpby_ssp_pplus(chi,1.0,chi,-ueem[s],chi,Ls-1,s);
}
// L_m^{-\dagger} D^{-dagger}
for (int s=0;s<Ls-1;s++){
axpby_ssp_pminus(chi,1.0/dee[s],chi,-leem[s]/dee[Ls-1],chi,s,Ls-1);
}
axpby_ssp(chi,1.0/dee[Ls-1],chi,0.0,chi,Ls-1,Ls-1); // Modest avoidable
// Apply L^{-dagger}
for (int s=Ls-2;s>=0;s--){
axpby_ssp_pplus (chi,1.0,chi,-lee[s],chi,s,s+1); // chi[Ls]
}
}
// Tanh
void CayleyFermion5D::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c)
{
SetCoefficientsZolotarev(1.0,zdata,b,c);
}
//Zolo
void CayleyFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c)
{
///////////////////////////////////////////////////////////
// The Cayley coeffs (unprec)
///////////////////////////////////////////////////////////
omega.resize(Ls);
bs.resize(Ls);
cs.resize(Ls);
as.resize(Ls);
//
// Ts = ( [bs+cs]Dw )^-1 ( (bs+cs) Dw )
// -(g5 ------- -1 ) ( g5 --------- + 1 )
// ( {2+(bs-cs)Dw} ) ( 2+(bs-cs) Dw )
//
// bs = 1/2( (1/omega_s + 1)*b + (1/omega - 1)*c ) = 1/2( 1/omega(b+c) + (b-c) )
// cs = 1/2( (1/omega_s - 1)*b + (1/omega + 1)*c ) = 1/2( 1/omega(b+c) - (b-c) )
//
// bs+cs = 0.5*( 1/omega(b+c) + (b-c) + 1/omega(b+c) - (b-c) ) = 1/omega(b+c)
// bs-cs = 0.5*( 1/omega(b+c) + (b-c) - 1/omega(b+c) + (b-c) ) = b-c
//
// So
//
// Ts = ( [b+c]Dw/omega_s )^-1 ( (b+c) Dw /omega_s )
// -(g5 ------- -1 ) ( g5 --------- + 1 )
// ( {2+(b-c)Dw} ) ( 2+(b-c) Dw )
//
// Ts = ( [b+c]Dw )^-1 ( (b+c) Dw )
// -(g5 ------- -omega_s) ( g5 --------- + omega_s )
// ( {2+(b-c)Dw} ) ( 2+(b-c) Dw )
//
double bpc = b+c;
double bmc = b-c;
for(int i=0; i < Ls; i++){
as[i] = 1.0;
omega[i] = ((double)zdata->gamma[i])*zolo_hi; //NB reciprocal relative to Chroma NEF code
bs[i] = 0.5*(bpc/omega[i] + bmc);
cs[i] = 0.5*(bpc/omega[i] - bmc);
}
////////////////////////////////////////////////////////
// Constants for the preconditioned matrix Cayley form
////////////////////////////////////////////////////////
bee.resize(Ls);
cee.resize(Ls);
beo.resize(Ls);
ceo.resize(Ls);
for(int i=0;i<Ls;i++){
bee[i]=as[i]*(bs[i]*(4.0-M5) +1.0);
cee[i]=as[i]*(1.0-cs[i]*(4.0-M5));
beo[i]=as[i]*bs[i];
ceo[i]=-as[i]*cs[i];
}
aee.resize(Ls);
aeo.resize(Ls);
for(int i=0;i<Ls;i++){
aee[i]=cee[i];
aeo[i]=ceo[i];
}
//////////////////////////////////////////
// LDU decomposition of eeoo
//////////////////////////////////////////
dee.resize(Ls);
lee.resize(Ls);
leem.resize(Ls);
uee.resize(Ls);
ueem.resize(Ls);
for(int i=0;i<Ls;i++){
dee[i] = bee[i];
if ( i < Ls-1 ) {
lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column
leem[i]=mass*cee[Ls-1]/bee[0];
for(int j=0;j<i;j++) leem[i]*= aee[j]/bee[j+1];
uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row
ueem[i]=mass;
for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j];
ueem[i]*= aee[0]/bee[0];
} else {
lee[i] =0.0;
leem[i]=0.0;
uee[i] =0.0;
ueem[i]=0.0;
}
}
{
double delta_d=mass*cee[Ls-1];
for(int j=0;j<Ls-1;j++) delta_d *= cee[j]/bee[j];
dee[Ls-1] += delta_d;
}
}
}}

View File

@ -0,0 +1,62 @@
#ifndef GRID_QCD_CAYLEY_FERMION_H
#define GRID_QCD_CAYLEY_FERMION_H
namespace Grid {
namespace QCD {
class CayleyFermion5D : public WilsonFermion5D
{
public:
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operations
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Instantiatable(void)=0;
// protected:
RealD mass;
// Cayley form Moebius (tanh and zolotarev)
std::vector<RealD> omega;
std::vector<RealD> bs; // S dependent coeffs
std::vector<RealD> cs;
std::vector<RealD> as;
// For preconditioning Cayley form
std::vector<RealD> bee;
std::vector<RealD> cee;
std::vector<RealD> aee;
std::vector<RealD> beo;
std::vector<RealD> ceo;
std::vector<RealD> aeo;
// LDU factorisation of the eeoo matrix
std::vector<RealD> lee;
std::vector<RealD> leem;
std::vector<RealD> uee;
std::vector<RealD> ueem;
std::vector<RealD> dee;
// Constructors
CayleyFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5);
protected:
void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
};
}
}
#endif

View File

@ -0,0 +1,171 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
void ContinuedFractionFermion5D::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale)
{
SetCoefficientsZolotarev(1.0/scale,zdata);
}
void ContinuedFractionFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
{
R=(1+this->mass)/(1-this->mass);
Beta.resize(Ls);
cc.resize(Ls);
cc_d.resize(Ls);
sqrt_cc.resize(Ls);
for(int i=0; i < Ls ; i++){
Beta[i] = zdata -> beta[i];
cc[i] = 1.0/Beta[i];
cc_d[i]=sqrt(cc[i]);
}
cc_d[Ls-1]=1.0;
for(int i=0; i < Ls-1 ; i++){
sqrt_cc[i]= sqrt(cc[i]*cc[i+1]);
}
sqrt_cc[Ls-2]=sqrt(cc[Ls-2]);
ZoloHiInv =1.0/zolo_hi;
double dw_diag = (4.0-M5)*ZoloHiInv;
See.resize(Ls);
Aee.resize(Ls);
int sign=1;
for(int s=0;s<Ls;s++){
Aee[s] = sign * Beta[s] * dw_diag;
sign = - sign;
}
Aee[Ls-1] += R;
See[0] = Aee[0];
for(int s=1;s<Ls;s++){
See[s] = Aee[s] - 1.0/See[s-1];
}
for(int s=0;s<Ls;s++){
std::cout <<"s = "<<s<<" Beta "<<Beta[s]<<" Aee "<<Aee[s] <<" See "<<See[s] <<std::endl;
}
}
RealD ContinuedFractionFermion5D::M (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion D(psi._grid);
DW(psi,D,DaggerNo);
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
ag5xpby_ssp(chi,cc[0]*Beta[0]*sign*ZoloHiInv,D,sqrt_cc[0],psi,s,s+1); // Multiplies Dw by G5 so Hw
} else if ( s==(Ls-1) ){
RealD R=(1.0+mass)/(1.0-mass);
ag5xpby_ssp(chi,Beta[s]*ZoloHiInv,D,sqrt_cc[s-1],psi,s,s-1);
ag5xpby_ssp(chi,R,psi,1.0,chi,s,s);
} else {
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*ZoloHiInv,D,sqrt_cc[s],psi,s,s+1);
axpby_ssp(chi,1.0,chi,sqrt_cc[s-1],psi,s,s-1);
}
sign=-sign;
}
return norm2(chi);
}
RealD ContinuedFractionFermion5D::Mdag (const LatticeFermion &psi, LatticeFermion &chi)
{
// This matrix is already hermitian. (g5 Dw) = Dw dag g5 = (g5 Dw)dag
// The rest of matrix is symmetric.
// Can ignore "dag"
return M(psi,chi);
}
void ContinuedFractionFermion5D::Meooe (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
} else {
DhopOE(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
}
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==(Ls-1) ){
ag5xpby_ssp(chi,Beta[s]*ZoloHiInv,chi,0.0,chi,s,s);
} else {
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*ZoloHiInv,chi,0.0,chi,s,s);
}
sign=-sign;
}
}
void ContinuedFractionFermion5D::MeooeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
Meooe(psi,chi);
}
void ContinuedFractionFermion5D::Mooee (const LatticeFermion &psi, LatticeFermion &chi)
{
double dw_diag = (4.0-M5)*ZoloHiInv;
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
ag5xpby_ssp(chi,cc[0]*Beta[0]*sign*dw_diag,psi,sqrt_cc[0],psi,s,s+1); // Multiplies Dw by G5 so Hw
} else if ( s==(Ls-1) ){
// Drop the CC here.
double R=(1+mass)/(1-mass);
ag5xpby_ssp(chi,Beta[s]*dw_diag,psi,sqrt_cc[s-1],psi,s,s-1);
ag5xpby_ssp(chi,R,psi,1.0,chi,s,s);
} else {
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*dw_diag,psi,sqrt_cc[s],psi,s,s+1);
axpby_ssp(chi,1.0,chi,sqrt_cc[s-1],psi,s,s-1);
}
sign=-sign;
}
}
void ContinuedFractionFermion5D::MooeeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
Mooee(psi,chi);
}
void ContinuedFractionFermion5D::MooeeInv (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply Linv
axpby_ssp(chi,1.0/cc_d[0],psi,0.0,psi,0,0);
for(int s=1;s<Ls;s++){
axpbg5y_ssp(chi,1.0/cc_d[s],psi,-1.0/See[s-1],chi,s,s-1);
}
// Apply Dinv
for(int s=0;s<Ls;s++){
ag5xpby_ssp(chi,1.0/See[s],chi,0.0,chi,s,s); //only appearance of See[0]
}
// Apply Uinv = (Linv)^T
axpby_ssp(chi,1.0/cc_d[Ls-1],chi,0.0,chi,Ls-1,Ls-1);
for(int s=Ls-2;s>=0;s--){
axpbg5y_ssp(chi,1.0/cc_d[s],chi,-1.0*cc_d[s+1]/See[s]/cc_d[s],chi,s,s+1);
}
}
void ContinuedFractionFermion5D::MooeeInvDag (const LatticeFermion &psi, LatticeFermion &chi)
{
MooeeInv(psi,chi);
}
// Constructors
ContinuedFractionFermion5D::ContinuedFractionFermion5D(
LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5) :
WilsonFermion5D(_Umu,
FiveDimGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimRedBlackGrid,M5),
mass(_mass)
{
assert((Ls&0x1)==1); // Odd Ls required
}
}
}

View File

@ -0,0 +1,59 @@
#ifndef GRID_QCD_CONTINUED_FRACTION_H
#define GRID_QCD_CONTINUED_FRACTION_H
namespace Grid {
namespace QCD {
class ContinuedFractionFermion5D : public WilsonFermion5D
{
public:
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operaions
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
// virtual void Instantiatable(void)=0;
virtual void Instantiatable(void) =0;
// Constructors
ContinuedFractionFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5);
protected:
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);;
Approx::zolotarev_data *zdata;
// Cont frac
RealD mass;
RealD R;
RealD ZoloHiInv;
std::vector<double> Beta;
std::vector<double> cc;;
std::vector<double> cc_d;;
std::vector<double> sqrt_cc;
std::vector<double> See;
std::vector<double> Aee;
};
}
}
#endif

View File

@ -0,0 +1,46 @@
#ifndef GRID_QCD_DOMAIN_WALL_FERMION_H
#define GRID_QCD_DOMAIN_WALL_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class DomainWallFermion : public CayleyFermion5D
{
public:
virtual void Instantiatable(void) {};
// Constructors
DomainWallFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5) :
CayleyFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
RealD eps = 1.0;
Approx::zolotarev_data *zdata = Approx::grid_higham(eps,this->Ls);// eps is ignored for higham
assert(zdata->n==this->Ls);
std::cout << "DomainWallFermion with Ls="<<Ls<<std::endl;
// Call base setter
this->CayleyFermion5D::SetCoefficientsTanh(zdata,1.0,0.0);
}
};
}
}
#endif

View File

@ -0,0 +1,48 @@
#ifndef GRID_QCD_FERMION_OPERATOR_H
#define GRID_QCD_FERMION_OPERATOR_H
namespace Grid {
namespace QCD {
//////////////////////////////////////////////////////////////////////////////
// Four component fermions
// Should type template the vector and gauge types
// Think about multiple representations
//////////////////////////////////////////////////////////////////////////////
template<class FermionField,class GaugeField>
class FermionOperator : public CheckerBoardedSparseMatrixBase<FermionField>
{
public:
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
virtual GridBase *FermionGrid(void) =0;
virtual GridBase *FermionRedBlackGrid(void) =0;
virtual GridBase *GaugeGrid(void) =0;
virtual GridBase *GaugeRedBlackGrid(void) =0;
// override multiply
virtual RealD M (const FermionField &in, FermionField &out)=0;
virtual RealD Mdag (const FermionField &in, FermionField &out)=0;
// half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out)=0;
virtual void MeooeDag (const FermionField &in, FermionField &out)=0;
virtual void Mooee (const FermionField &in, FermionField &out)=0;
virtual void MooeeDag (const FermionField &in, FermionField &out)=0;
virtual void MooeeInv (const FermionField &in, FermionField &out)=0;
virtual void MooeeInvDag (const FermionField &in, FermionField &out)=0;
// non-hermitian hopping term; half cb or both
virtual void Dhop (const FermionField &in, FermionField &out,int dag)=0;
virtual void DhopOE(const FermionField &in, FermionField &out,int dag)=0;
virtual void DhopEO(const FermionField &in, FermionField &out,int dag)=0;
};
}
}
#endif

View File

@ -0,0 +1,47 @@
#ifndef GRID_QCD_MOBIUS_FERMION_H
#define GRID_QCD_MOBIUS_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class MobiusFermion : public CayleyFermion5D
{
public:
virtual void Instantiatable(void) {};
// Constructors
MobiusFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD b, RealD c) :
CayleyFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
RealD eps = 1.0;
std::cout << "MobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<Ls<<" Tanh approx"<<std::endl;
Approx::zolotarev_data *zdata = Approx::grid_higham(eps,this->Ls);// eps is ignored for higham
assert(zdata->n==this->Ls);
// Call base setter
this->CayleyFermion5D::SetCoefficientsTanh(zdata,b,c);
}
};
}
}
#endif

View File

@ -0,0 +1,49 @@
#ifndef GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
#define GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class MobiusZolotarevFermion : public CayleyFermion5D
{
public:
virtual void Instantiatable(void) {};
// Constructors
MobiusZolotarevFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD b, RealD c,
RealD lo, RealD hi) :
CayleyFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
RealD eps = lo/hi;
Approx::zolotarev_data *zdata = Approx::grid_zolotarev(eps,this->Ls,0);// eps is ignored for higham
assert(zdata->n==this->Ls);
std::cout << "MobiusZolotarevFermion (b="<<b<<",c="<<c<<") with Ls= "<<Ls<<" Zolotarev range ["<<lo<<","<<hi<<"]"<<std::endl;
// Call base setter
this->CayleyFermion5D::SetCoefficientsZolotarev(hi,zdata,b,c);
}
};
}
}
#endif

View File

@ -0,0 +1,34 @@
#ifndef OVERLAP_WILSON_CAYLEY_TANH_FERMION_H
#define OVERLAP_WILSON_CAYLEY_TANH_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class OverlapWilsonCayleyTanhFermion : public MobiusFermion
{
public:
// Constructors
OverlapWilsonCayleyTanhFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD scale) :
// b+c=scale, b-c = 0 <=> b =c = scale/2
MobiusFermion(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,0.5*scale,0.5*scale)
{
}
};
}
}
#endif

View File

@ -0,0 +1,37 @@
#ifndef OVERLAP_WILSON_CAYLEY_ZOLOTAREV_FERMION_H
#define OVERLAP_WILSON_CAYLEY_ZOLOTAREV_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class OverlapWilsonCayleyZolotarevFermion : public MobiusZolotarevFermion
{
public:
// Constructors
OverlapWilsonCayleyZolotarevFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD lo, RealD hi) :
// b+c=1.0, b-c = 0 <=> b =c = 1/2
MobiusZolotarevFermion(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,0.5,0.5,lo,hi)
{}
};
}
}
#endif

View File

@ -0,0 +1,39 @@
#ifndef OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
#define OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class OverlapWilsonContFracTanhFermion : public ContinuedFractionFermion5D
{
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonContFracTanhFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD scale) :
// b+c=scale, b-c = 0 <=> b =c = scale/2
ContinuedFractionFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;// Even rational order
zdata = Approx::grid_higham(1.0,nrational);// eps is ignored for higham
SetCoefficientsTanh(zdata,scale);
}
};
}
}
#endif

View File

@ -0,0 +1,44 @@
#ifndef OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
#define OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class OverlapWilsonContFracZolotarevFermion : public ContinuedFractionFermion5D
{
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonContFracZolotarevFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD lo,RealD hi):
// b+c=scale, b-c = 0 <=> b =c = scale/2
ContinuedFractionFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;// Even rational order
RealD eps = lo/hi;
Approx::zolotarev_data *zdata = Approx::grid_zolotarev(eps,nrational,0);
SetCoefficientsZolotarev(hi,zdata);
}
};
}
}
#endif

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,49 @@
#ifndef GRID_QCD_PARTIAL_FRACTION_H
#define GRID_QCD_PARTIAL_FRACTION_H
namespace Grid {
namespace QCD {
class PartialFractionFermion5D : public WilsonFermion5D
{
public:
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operaions
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
private:
virtual void PartialFractionCoefficients(void);
Approx::zolotarev_data *zdata;
// Part frac
double R;
std::vector<double> p;
std::vector<double> q;
// Constructors
PartialFractionFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5);
};
}
}
#endif

View File

@ -0,0 +1,37 @@
#ifndef GRID_QCD_SCALED_SHAMIR_FERMION_H
#define GRID_QCD_SCALED_SHAMIR_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class ScaledShamirFermion : public MobiusFermion
{
public:
// Constructors
ScaledShamirFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD scale) :
// b+c=scale, b-c = 1 <=> 2b = scale+1; 2c = scale-1
MobiusFermion(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,0.5*(scale+1.0),0.5*(scale-1.0))
{
}
};
}
}
#endif

View File

@ -0,0 +1,39 @@
#ifndef GRID_QCD_SHAMIR_ZOLOTAREV_FERMION_H
#define GRID_QCD_SHAMIR_ZOLOTAREV_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class ShamirZolotarevFermion : public MobiusZolotarevFermion
{
public:
// Constructors
ShamirZolotarevFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD lo, RealD hi) :
// b+c = 1; b-c = 1 => b=1, c=0
MobiusZolotarevFermion(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,1.0,0.0,lo,hi)
{}
};
}
}
#endif

View File

@ -0,0 +1,61 @@
#ifndef GRID_QCD_WILSON_COMPRESSOR_H
#define GRID_QCD_WILSON_COMPRESSOR_H
namespace Grid {
namespace QCD {
class WilsonCompressor {
public:
int mu;
int dag;
WilsonCompressor(int _dag){
mu=0;
dag=_dag;
assert((dag==0)||(dag==1));
}
void Point(int p) {
mu=p;
};
vHalfSpinColourVector operator () (const vSpinColourVector &in)
{
vHalfSpinColourVector ret;
int mudag=mu;
if (dag) {
mudag=(mu+Nd)%(2*Nd);
}
switch(mudag) {
case Xp:
spProjXp(ret,in);
break;
case Yp:
spProjYp(ret,in);
break;
case Zp:
spProjZp(ret,in);
break;
case Tp:
spProjTp(ret,in);
break;
case Xm:
spProjXm(ret,in);
break;
case Ym:
spProjYm(ret,in);
break;
case Zm:
spProjZm(ret,in);
break;
case Tm:
spProjTm(ret,in);
break;
default:
assert(0);
break;
}
return ret;
}
};
}} // namespace close
#endif

View File

@ -0,0 +1,163 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
const std::vector<int> WilsonFermion::directions ({0,1,2,3, 0, 1, 2, 3});
const std::vector<int> WilsonFermion::displacements({1,1,1,1,-1,-1,-1,-1});
int WilsonFermion::HandOptDslash;
WilsonFermion::WilsonFermion(LatticeGaugeField &_Umu,
GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid,
RealD _mass) :
_grid(&Fgrid),
_cbgrid(&Hgrid),
Stencil (&Fgrid,npoint,Even,directions,displacements),
StencilEven(&Hgrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (&Hgrid,npoint,Odd ,directions,displacements), // source is Odd
mass(_mass),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd (&Hgrid)
{
// Allocate the required comms buffer
comm_buf.resize(Stencil._unified_buffer_size); // this is always big enough to contain EO
DoubleStore(Umu,_Umu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
void WilsonFermion::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid());
conformable(Umu._grid,GaugeGrid());
LatticeColourMatrix U(GaugeGrid());
for(int mu=0;mu<Nd;mu++){
U = peekIndex<LorentzIndex>(Umu,mu);
pokeIndex<LorentzIndex>(Uds,U,mu);
U = adj(Cshift(U,mu,-1));
pokeIndex<LorentzIndex>(Uds,U,mu+4);
}
}
RealD WilsonFermion::M(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerNo);
return axpy_norm(out,4+mass,in,out);
}
RealD WilsonFermion::Mdag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerYes);
return axpy_norm(out,4+mass,in,out);
}
void WilsonFermion::Meooe(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerNo);
} else {
DhopOE(in,out,DaggerNo);
}
}
void WilsonFermion::MeooeDag(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerYes);
} else {
DhopOE(in,out,DaggerYes);
}
}
void WilsonFermion::Mooee(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (4.0+mass)*in;
return ;
}
void WilsonFermion::MooeeDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
Mooee(in,out);
}
void WilsonFermion::MooeeInv(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (1.0/(4.0+mass))*in;
return ;
}
void WilsonFermion::MooeeInvDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
MooeeInv(in,out);
}
void WilsonFermion::DhopInternal(CartesianStencil & st,LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
WilsonCompressor compressor(dag);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
if ( dag == DaggerYes ) {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHand::DhopSiteDag(st,U,comm_buf,sss,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOpt::DhopSiteDag(st,U,comm_buf,sss,sss,in,out);
}
}
} else {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHand::DhopSite(st,U,comm_buf,sss,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOpt::DhopSite(st,U,comm_buf,sss,sss,in,out);
}
}
}
}
void WilsonFermion::DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag);
}
void WilsonFermion::DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag);
}
void WilsonFermion::Dhop(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_grid); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Umu,in,out,dag);
}
}}

View File

@ -0,0 +1,87 @@
#ifndef GRID_QCD_WILSON_FERMION_H
#define GRID_QCD_WILSON_FERMION_H
namespace Grid {
namespace QCD {
class WilsonFermion : public FermionOperator<LatticeFermion,LatticeGaugeField>
{
public:
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _grid ;}
GridBase *GaugeRedBlackGrid(void) { return _cbgrid ;}
GridBase *FermionGrid(void) { return _grid;}
GridBase *FermionRedBlackGrid(void) { return _cbgrid;}
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operaions
void Meooe (const LatticeFermion &in, LatticeFermion &out);
void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out); // remain virtual so we
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out); // can derive Clover
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out); // from Wilson bas
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
// non-hermitian hopping term; half cb or both
void Dhop (const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
///////////////////////////////////////////////////////////////
// Extra methods added by derived
///////////////////////////////////////////////////////////////
void DhopInternal(CartesianStencil & st,
LatticeDoubledGaugeField &U,
const LatticeFermion &in,
LatticeFermion &out,
int dag);
// Constructor
WilsonFermion(LatticeGaugeField &_Umu,GridCartesian &Fgrid,GridRedBlackCartesian &Hgrid,RealD _mass);
// DoubleStore
void DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
static int HandOptDslash; // these are a temporary hack
static int MortonOrder;
protected:
RealD mass;
GridBase * _grid;
GridBase * _cbgrid;
static const int npoint=8;
static const std::vector<int> directions ;
static const std::vector<int> displacements;
//Defines the stencils for even and odd
CartesianStencil Stencil;
CartesianStencil StencilEven;
CartesianStencil StencilOdd;
// Copy of the gauge field , with even and odd subsets
LatticeDoubledGaugeField Umu;
LatticeDoubledGaugeField UmuEven;
LatticeDoubledGaugeField UmuOdd;
// Comms buffer
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > comm_buf;
};
}
}
#endif

View File

@ -0,0 +1,186 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> WilsonFermion5D::directions ({1,2,3,4, 1, 2, 3, 4});
const std::vector<int> WilsonFermion5D::displacements({1,1,1,1,-1,-1,-1,-1});
int WilsonFermion5D::HandOptDslash;
// 5d lattice for DWF.
WilsonFermion5D::WilsonFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _M5) :
_FiveDimGrid(&FiveDimGrid),
_FiveDimRedBlackGrid(&FiveDimRedBlackGrid),
_FourDimGrid(&FourDimGrid),
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
Stencil (_FiveDimGrid,npoint,Even,directions,displacements),
StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements), // source is Odd
M5(_M5),
Umu(_FourDimGrid),
UmuEven(_FourDimRedBlackGrid),
UmuOdd (_FourDimRedBlackGrid),
Lebesgue(_FourDimGrid),
LebesgueEvenOdd(_FourDimRedBlackGrid)
{
// some assertions
assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4);
assert(FiveDimRedBlackGrid._ndimension==5);
assert(FourDimRedBlackGrid._ndimension==4);
assert(FiveDimRedBlackGrid._checker_dim==1);
// Dimension zero of the five-d is the Ls direction
Ls=FiveDimGrid._fdimensions[0];
assert(FiveDimRedBlackGrid._fdimensions[0]==Ls);
assert(FiveDimRedBlackGrid._processors[0] ==1);
assert(FiveDimRedBlackGrid._simd_layout[0]==1);
assert(FiveDimGrid._processors[0] ==1);
assert(FiveDimGrid._simd_layout[0] ==1);
// Other dimensions must match the decomposition of the four-D fields
for(int d=0;d<4;d++){
assert(FourDimRedBlackGrid._fdimensions[d] ==FourDimGrid._fdimensions[d]);
assert(FiveDimRedBlackGrid._fdimensions[d+1]==FourDimGrid._fdimensions[d]);
assert(FourDimRedBlackGrid._processors[d] ==FourDimGrid._processors[d]);
assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]);
assert(FiveDimRedBlackGrid._simd_layout[d+1]==FourDimGrid._simd_layout[d]);
assert(FiveDimGrid._fdimensions[d+1] ==FourDimGrid._fdimensions[d]);
assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FiveDimGrid._simd_layout[d+1] ==FourDimGrid._simd_layout[d]);
}
// Allocate the required comms buffer
comm_buf.resize(Stencil._unified_buffer_size); // this is always big enough to contain EO
DoubleStore(Umu,_Umu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
void WilsonFermion5D::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid());
conformable(Umu._grid,GaugeGrid());
LatticeColourMatrix U(GaugeGrid());
for(int mu=0;mu<Nd;mu++){
U = peekIndex<LorentzIndex>(Umu,mu);
pokeIndex<LorentzIndex>(Uds,U,mu);
U = adj(Cshift(U,mu,-1));
pokeIndex<LorentzIndex>(Uds,U,mu+4);
}
}
void WilsonFermion5D::DhopInternal(CartesianStencil & st, LebesgueOrder &lo,
LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
WilsonCompressor compressor(dag);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
// Not loop ordering and data layout.
// Designed to create
// - per thread reuse in L1 cache for U
// - 8 linear access unit stride streams per thread for Fermion for hw prefetchable.
if ( dag == DaggerYes ) {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
//int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOptHand::DhopSiteDag(st,U,comm_buf,sF,sU,in,out);
}
}
} else {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
// int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOpt::DhopSiteDag(st,U,comm_buf,sF,sU,in,out);
}
}
}
} else {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
// int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOptHand::DhopSite(st,U,comm_buf,sF,sU,in,out);
}
}
} else {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
// int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOpt::DhopSite(st,U,comm_buf,sF,sU,in,out);
}
}
}
}
}
void WilsonFermion5D::DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,in,out,dag);
}
void WilsonFermion5D::DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,in,out,dag);
}
void WilsonFermion5D::Dhop(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,FermionGrid()); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Lebesgue,Umu,in,out,dag);
}
void WilsonFermion5D::DW(const LatticeFermion &in, LatticeFermion &out,int dag)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,dag); // -0.5 is included
axpy(out,4.0-M5,in,out);
}
}
}

View File

@ -0,0 +1,121 @@
#ifndef GRID_QCD_DWF_H
#define GRID_QCD_DWF_H
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////////////
// This is the 4d red black case appropriate to support
//
// parity = (x+y+z+t)|2;
// generalised five dim fermions like mobius, zolotarev etc..
//
// i.e. even even contains fifth dim hopping term.
//
// [DIFFERS from original CPS red black implementation parity = (x+y+z+t+s)|2 ]
////////////////////////////
//ContFrac:
// Ls always odd. Rational poly deg is either Ls or Ls-1
//PartFrac
// Ls always odd. Rational poly deg is either Ls or Ls-1
//
//Cayley: Ls always even, Rational poly deg is Ls
//
// Just set nrational as Ls. Forget about Ls-1 cases.
//
// Require odd Ls for cont and part frac
////////////////////////////
////////////////////////////////////////////////////////////////////////////////
class WilsonFermion5D : public FermionOperator<LatticeFermion,LatticeGaugeField>
{
public:
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _FourDimGrid ;}
GridBase *GaugeRedBlackGrid(void) { return _FourDimRedBlackGrid ;}
GridBase *FermionGrid(void) { return _FiveDimGrid;}
GridBase *FermionRedBlackGrid(void) { return _FiveDimRedBlackGrid;}
// full checkerboard operations; leave unimplemented as abstract for now
//virtual RealD M (const LatticeFermion &in, LatticeFermion &out)=0;
//virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out)=0;
// half checkerboard operations; leave unimplemented as abstract for now
// virtual void Meooe (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void Mooee (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out)=0;
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW
void DW (const LatticeFermion &in, LatticeFermion &out,int dag);
void Dhop (const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
///////////////////////////////////////////////////////////////
// New methods added
///////////////////////////////////////////////////////////////
void DhopInternal(CartesianStencil & st,
LebesgueOrder &lo,
LatticeDoubledGaugeField &U,
const LatticeFermion &in,
LatticeFermion &out,
int dag);
// Constructors
WilsonFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _M5);
// DoubleStore
void DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
static int HandOptDslash; // these are a temporary hack
protected:
// Add these to the support from Wilson
GridBase *_FourDimGrid;
GridBase *_FourDimRedBlackGrid;
GridBase *_FiveDimGrid;
GridBase *_FiveDimRedBlackGrid;
static const int npoint=8;
static const std::vector<int> directions ;
static const std::vector<int> displacements;
double M5;
int Ls;
//Defines the stencils for even and odd
CartesianStencil Stencil;
CartesianStencil StencilEven;
CartesianStencil StencilOdd;
// Copy of the gauge field , with even and odd subsets
LatticeDoubledGaugeField Umu;
LatticeDoubledGaugeField UmuEven;
LatticeDoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > comm_buf;
};
}
}
#endif

View File

@ -4,8 +4,8 @@ namespace Grid {
namespace QCD {
void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out)
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out)
{
vHalfSpinColourVector tmp;
vHalfSpinColourVector chi;
@ -16,6 +16,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
//#define VERBOSE( A) if ( ss<10 ) { std::cout << "site " <<ss << " " #A " neigh " << offset << " perm "<< perm <<std::endl;}
// Xp
int ss = sF;
offset = st._offsets [Xp][ss];
local = st._is_local[Xp][ss];
perm = st._permute[Xp][ss];
@ -29,7 +30,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Xp),&chi());
mult(&Uchi(),&U._odata[sU](Xp),&chi());
spReconXp(result,Uchi);
// std::cout << "XP_RECON"<<std::endl;
@ -51,7 +52,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Yp),&chi());
mult(&Uchi(),&U._odata[sU](Yp),&chi());
accumReconYp(result,Uchi);
// Zp
@ -67,7 +68,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Zp),&chi());
mult(&Uchi(),&U._odata[sU](Zp),&chi());
accumReconZp(result,Uchi);
// Tp
@ -83,7 +84,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Tp),&chi());
mult(&Uchi(),&U._odata[sU](Tp),&chi());
accumReconTp(result,Uchi);
// Xm
@ -101,7 +102,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Xm),&chi());
mult(&Uchi(),&U._odata[sU](Xm),&chi());
accumReconXm(result,Uchi);
// std::cout << "XM_RECON_ACCUM"<<std::endl;
// std::cout << result()(0)(0) <<" "<<result()(0)(1) <<" "<<result()(0)(2) <<std::endl;
@ -124,7 +125,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Ym),&chi());
mult(&Uchi(),&U._odata[sU](Ym),&chi());
accumReconYm(result,Uchi);
// Zm
@ -140,7 +141,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Zm),&chi());
mult(&Uchi(),&U._odata[sU](Zm),&chi());
accumReconZm(result,Uchi);
// Tm
@ -156,15 +157,15 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Tm),&chi());
mult(&Uchi(),&U._odata[sU](Tm),&chi());
accumReconTm(result,Uchi);
vstream(out._odata[ss],result);
vstream(out._odata[ss],result*(-0.5));
}
void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out)
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out)
{
vHalfSpinColourVector tmp;
vHalfSpinColourVector chi;
@ -173,6 +174,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
int offset,local,perm, ptype;
// Xp
int ss=sF;
offset = st._offsets [Xm][ss];
local = st._is_local[Xm][ss];
perm = st._permute[Xm][ss];
@ -186,7 +188,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Xm),&chi());
mult(&Uchi(),&U._odata[sU](Xm),&chi());
spReconXp(result,Uchi);
// Yp
@ -202,7 +204,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Ym),&chi());
mult(&Uchi(),&U._odata[sU](Ym),&chi());
accumReconYp(result,Uchi);
// Zp
@ -218,7 +220,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Zm),&chi());
mult(&Uchi(),&U._odata[sU](Zm),&chi());
accumReconZp(result,Uchi);
// Tp
@ -234,7 +236,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Tm),&chi());
mult(&Uchi(),&U._odata[sU](Tm),&chi());
accumReconTp(result,Uchi);
// Xm
@ -252,7 +254,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Xp),&chi());
mult(&Uchi(),&U._odata[sU](Xp),&chi());
accumReconXm(result,Uchi);
// Ym
@ -269,7 +271,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Yp),&chi());
mult(&Uchi(),&U._odata[sU](Yp),&chi());
accumReconYm(result,Uchi);
// Zm
@ -285,7 +287,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Zp),&chi());
mult(&Uchi(),&U._odata[sU](Zp),&chi());
accumReconZm(result,Uchi);
// Tm
@ -301,9 +303,9 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Tp),&chi());
mult(&Uchi(),&U._odata[sU](Tp),&chi());
accumReconTm(result,Uchi);
vstream(out._odata[ss],result);
vstream(out._odata[ss],result*(-0.5));
}
}}

View File

@ -0,0 +1,42 @@
#ifndef GRID_QCD_DHOP_H
#define GRID_QCD_DHOP_H
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helper classes that implement Wilson stencil for a single site.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Generic version works for any Nc and with extra flavour indices
class DiracOpt {
public:
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
static void DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
static void DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
};
// Hand unrolled for Nc=3, one flavour
class DiracOptHand {
public:
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
static void DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
static void DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
};
}
}
#endif

View File

@ -27,7 +27,7 @@
Chi_12 = ref()(1)(2);
#define MULT_2SPIN(A)\
auto & ref(U._odata[ss](A)); \
auto & ref(U._odata[sU](A)); \
U_00 = ref()(0,0);\
U_10 = ref()(1,0);\
U_20 = ref()(2,0);\
@ -282,7 +282,7 @@ namespace QCD {
void DiracOptHand::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out)
int sF,int sU,const LatticeFermion &in, LatticeFermion &out)
{
REGISTER vComplex result_00; // 12 regs on knc
REGISTER vComplex result_01;
@ -338,7 +338,8 @@ void DiracOptHand::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
int offset,local,perm, ptype;
int ss=sF;
// Xp
offset = st._offsets [Xp][ss];
local = st._is_local[Xp][ss];
@ -514,24 +515,24 @@ void DiracOptHand::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
{
vSpinColourVector & ref (out._odata[ss]);
vstream(ref()(0)(0),result_00);
vstream(ref()(0)(1),result_01);
vstream(ref()(0)(2),result_02);
vstream(ref()(1)(0),result_10);
vstream(ref()(1)(1),result_11);
vstream(ref()(1)(2),result_12);
vstream(ref()(2)(0),result_20);
vstream(ref()(2)(1),result_21);
vstream(ref()(2)(2),result_22);
vstream(ref()(3)(0),result_30);
vstream(ref()(3)(1),result_31);
vstream(ref()(3)(2),result_32);
vstream(ref()(0)(0),result_00*(-0.5));
vstream(ref()(0)(1),result_01*(-0.5));
vstream(ref()(0)(2),result_02*(-0.5));
vstream(ref()(1)(0),result_10*(-0.5));
vstream(ref()(1)(1),result_11*(-0.5));
vstream(ref()(1)(2),result_12*(-0.5));
vstream(ref()(2)(0),result_20*(-0.5));
vstream(ref()(2)(1),result_21*(-0.5));
vstream(ref()(2)(2),result_22*(-0.5));
vstream(ref()(3)(0),result_30*(-0.5));
vstream(ref()(3)(1),result_31*(-0.5));
vstream(ref()(3)(2),result_32*(-0.5));
}
}
void DiracOptHand::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out)
int ss,int sU,const LatticeFermion &in, LatticeFermion &out)
{
REGISTER vComplex result_00; // 12 regs on knc
REGISTER vComplex result_01;
@ -752,18 +753,18 @@ void DiracOptHand::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
{
vSpinColourVector & ref (out._odata[ss]);
vstream(ref()(0)(0),result_00);
vstream(ref()(0)(1),result_01);
vstream(ref()(0)(2),result_02);
vstream(ref()(1)(0),result_10);
vstream(ref()(1)(1),result_11);
vstream(ref()(1)(2),result_12);
vstream(ref()(2)(0),result_20);
vstream(ref()(2)(1),result_21);
vstream(ref()(2)(2),result_22);
vstream(ref()(3)(0),result_30);
vstream(ref()(3)(1),result_31);
vstream(ref()(3)(2),result_32);
vstream(ref()(0)(0),result_00*(-0.5));
vstream(ref()(0)(1),result_01*(-0.5));
vstream(ref()(0)(2),result_02*(-0.5));
vstream(ref()(1)(0),result_10*(-0.5));
vstream(ref()(1)(1),result_11*(-0.5));
vstream(ref()(1)(2),result_12*(-0.5));
vstream(ref()(2)(0),result_20*(-0.5));
vstream(ref()(2)(1),result_21*(-0.5));
vstream(ref()(2)(2),result_22*(-0.5));
vstream(ref()(3)(0),result_30*(-0.5));
vstream(ref()(3)(1),result_31*(-0.5));
vstream(ref()(3)(2),result_32*(-0.5));
}
}
}}