1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 01:05:38 +01:00

Addedd Ta functionality to the tensor types

Merge remote-tracking branch 'upstream/master'

Conflicts:
	configure
This commit is contained in:
neo 2015-06-04 18:11:32 +09:00
commit 3055d2cf2c
149 changed files with 4367 additions and 1150 deletions

View File

@ -1,3 +1,5 @@
# additional include paths necessary to compile the C++ library
AM_CXXFLAGS = -I$(top_srcdir)/
SUBDIRS = lib tests benchmarks
filelist: $(SUBDIRS)

View File

@ -77,11 +77,12 @@ int main (int argc, char ** argv)
}
double stop=usecond();
double xbytes = Nloop*bytes*2*ncomm;
double dbytes = bytes;
double xbytes = Nloop*dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
double time = stop-start;
double time = stop-start; // microseconds
std::cout << lat<<"\t\t"<<Ls<<"\t\t"<<bytes<<"\t\t"<<xbytes/time<<"\t\t"<<bidibytes/time<<std::endl;
}
@ -152,7 +153,8 @@ int main (int argc, char ** argv)
double stop=usecond();
double xbytes = Nloop*bytes*2*ncomm;
double dbytes = bytes;
double xbytes = Nloop*dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;

156
benchmarks/Benchmark_dwf.cc Normal file
View File

@ -0,0 +1,156 @@
#include <Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
std::cout << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::vector<int> latt4 = GridDefaultLatt();
const int Ls=8;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
LatticeFermion src (FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=zero;
LatticeFermion ref(FGrid); ref=zero;
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
ColourMatrix cm = Complex(1.0,0.0);
LatticeGaugeField Umu(UGrid); random(RNG4,Umu);
LatticeGaugeField Umu5d(FGrid);
// replicate across fifth dimension
for(int ss=0;ss<Umu._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
Umu5d._odata[Ls*ss+s] = Umu._odata[ss];
}
}
////////////////////////////////////
// Naive wilson implementation
////////////////////////////////////
std::vector<LatticeColourMatrix> U(4,FGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = peekIndex<LorentzIndex>(Umu5d,mu);
}
if (1)
{
ref = zero;
for(int mu=0;mu<Nd;mu++){
tmp = U[mu]*Cshift(src,mu+1,1);
ref=ref + tmp + Gamma(Gmu[mu])*tmp;
tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu+1,-1);
ref=ref + tmp - Gamma(Gmu[mu])*tmp;
}
ref = -0.5*ref;
}
RealD mass=0.1;
RealD M5 =1.8;
DomainWallFermion Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
std::cout << "Calling Dw"<<std::endl;
int ncall=10;
double t0=usecond();
for(int i=0;i<ncall;i++){
Dw.Dhop(src,result,0);
}
double t1=usecond();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=1344*volume*ncall;
std::cout << "Called Dw"<<std::endl;
std::cout << "norm result "<< norm2(result)<<std::endl;
std::cout << "norm ref "<< norm2(ref)<<std::endl;
std::cout << "mflop/s = "<< flops/(t1-t0)<<std::endl;
err = ref-result;
std::cout << "norm diff "<< norm2(err)<<std::endl;
if (1)
{ // Naive wilson dag implementation
ref = zero;
for(int mu=0;mu<Nd;mu++){
// ref = src - Gamma(Gamma::GammaX)* src ; // 1+gamma_x
tmp = U[mu]*Cshift(src,mu+1,1);
for(int i=0;i<ref._odata.size();i++){
ref._odata[i]+= tmp._odata[i] - Gamma(Gmu[mu])*tmp._odata[i]; ;
}
tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu+1,-1);
for(int i=0;i<ref._odata.size();i++){
ref._odata[i]+= tmp._odata[i] + Gamma(Gmu[mu])*tmp._odata[i]; ;
}
}
ref = -0.5*ref;
}
Dw.Dhop(src,result,1);
std::cout << "Called DwDag"<<std::endl;
std::cout << "norm result "<< norm2(result)<<std::endl;
std::cout << "norm ref "<< norm2(ref)<<std::endl;
err = ref-result;
std::cout << "norm diff "<< norm2(err)<<std::endl;
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid);
LatticeFermion r_o (FrbGrid);
LatticeFermion r_eo (FGrid);
std::cout << "Calling Deo and Doe"<<std::endl;
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
Dw.DhopEO(src_o,r_e,DaggerNo);
Dw.DhopOE(src_e,r_o,DaggerNo);
Dw.Dhop(src,result,DaggerNo);
setCheckerboard(r_eo,r_o);
setCheckerboard(r_eo,r_e);
err = r_eo-result;
std::cout << "norm diff "<< norm2(err)<<std::endl;
pickCheckerboard(Even,src_e,err);
pickCheckerboard(Odd,src_o,err);
std::cout << "norm diff even "<< norm2(src_e)<<std::endl;
std::cout << "norm diff odd "<< norm2(src_o)<<std::endl;
Grid_finalize();
}

View File

@ -49,6 +49,7 @@ int main (int argc, char ** argv)
}
// Only one non-zero (y)
#if 0
Umu=zero;
Complex cone(1.0,0.0);
for(int nn=0;nn<Nd;nn++){
@ -59,6 +60,7 @@ int main (int argc, char ** argv)
}
pokeIndex<LorentzIndex>(Umu,U[nn],nn);
}
#endif
for(int mu=0;mu<Nd;mu++){
U[mu] = peekIndex<LorentzIndex>(Umu,mu);
@ -80,9 +82,9 @@ int main (int argc, char ** argv)
}
}
}
ref = -0.5*ref;
RealD mass=0.1;
WilsonMatrix Dw(Umu,Grid,RBGrid,mass);
WilsonFermion Dw(Umu,Grid,RBGrid,mass);
std::cout << "Calling Dw"<<std::endl;
int ncall=10000;
@ -91,7 +93,7 @@ int main (int argc, char ** argv)
Dw.Dhop(src,result,0);
}
double t1=usecond();
double flops=1320*volume*ncall;
double flops=1344*volume*ncall;
std::cout << "Called Dw"<<std::endl;
std::cout << "norm result "<< norm2(result)<<std::endl;
@ -129,6 +131,7 @@ int main (int argc, char ** argv)
}
}
}
ref = -0.5*ref;
Dw.Dhop(src,result,1);
std::cout << "Called DwDag"<<std::endl;
std::cout << "norm result "<< norm2(result)<<std::endl;

23
benchmarks/Make.inc Normal file
View File

@ -0,0 +1,23 @@
bin_PROGRAMS = Benchmark_comms Benchmark_dwf Benchmark_memory_bandwidth Benchmark_su3 Benchmark_wilson
Benchmark_comms_SOURCES=Benchmark_comms.cc
Benchmark_comms_LDADD=-lGrid
Benchmark_dwf_SOURCES=Benchmark_dwf.cc
Benchmark_dwf_LDADD=-lGrid
Benchmark_memory_bandwidth_SOURCES=Benchmark_memory_bandwidth.cc
Benchmark_memory_bandwidth_LDADD=-lGrid
Benchmark_su3_SOURCES=Benchmark_su3.cc
Benchmark_su3_LDADD=-lGrid
Benchmark_wilson_SOURCES=Benchmark_wilson.cc
Benchmark_wilson_LDADD=-lGrid

View File

@ -5,29 +5,4 @@ AM_LDFLAGS = -L$(top_builddir)/lib
#
# Test code
#
bin_PROGRAMS = Grid_wilson Grid_comms Grid_memory_bandwidth Grid_su3 Grid_wilson_cg_unprec Grid_wilson_evenodd Grid_wilson_cg_prec Grid_wilson_cg_schur
Grid_wilson_SOURCES = Grid_wilson.cc
Grid_wilson_LDADD = -lGrid
Grid_wilson_evenodd_SOURCES = Grid_wilson_evenodd.cc
Grid_wilson_evenodd_LDADD = -lGrid
Grid_wilson_cg_unprec_SOURCES = Grid_wilson_cg_unprec.cc
Grid_wilson_cg_unprec_LDADD = -lGrid
Grid_wilson_cg_prec_SOURCES = Grid_wilson_cg_prec.cc
Grid_wilson_cg_prec_LDADD = -lGrid
Grid_wilson_cg_schur_SOURCES = Grid_wilson_cg_schur.cc
Grid_wilson_cg_schur_LDADD = -lGrid
Grid_comms_SOURCES = Grid_comms.cc
Grid_comms_LDADD = -lGrid
Grid_su3_SOURCES = Grid_su3.cc Grid_su3_test.cc Grid_su3_expr.cc
Grid_su3_LDADD = -lGrid
Grid_memory_bandwidth_SOURCES = Grid_memory_bandwidth.cc
Grid_memory_bandwidth_LDADD = -lGrid
include Make.inc

4
configure vendored
View File

@ -3154,7 +3154,7 @@ END
fi
ac_config_headers="$ac_config_headers lib/Grid_config.h"
ac_config_headers="$ac_config_headers lib/GridConfig.h"
# Check whether --enable-silent-rules was given.
if test "${enable_silent_rules+set}" = set; then :
@ -7671,7 +7671,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
for ac_config_target in $ac_config_targets
do
case $ac_config_target in
"lib/Grid_config.h") CONFIG_HEADERS="$CONFIG_HEADERS lib/Grid_config.h" ;;
"lib/GridConfig.h") CONFIG_HEADERS="$CONFIG_HEADERS lib/GridConfig.h" ;;
"depfiles") CONFIG_COMMANDS="$CONFIG_COMMANDS depfiles" ;;
"docs/doxy.cfg") CONFIG_FILES="$CONFIG_FILES docs/doxy.cfg" ;;
"Makefile") CONFIG_FILES="$CONFIG_FILES Makefile" ;;

View File

@ -11,7 +11,7 @@ AC_CANONICAL_SYSTEM
AM_INIT_AUTOMAKE(subdir-objects)
AC_CONFIG_MACRO_DIR([m4])
AC_CONFIG_SRCDIR([lib/Grid.h])
AC_CONFIG_HEADERS([lib/Grid_config.h])
AC_CONFIG_HEADERS([lib/GridConfig.h])
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
AC_MSG_NOTICE([

8
lib/Cartesian.h Normal file
View File

@ -0,0 +1,8 @@
#ifndef GRID_CARTESIAN_H
#define GRID_CARTESIAN_H
#include <cartesian/Cartesian_base.h>
#include <cartesian/Cartesian_full.h>
#include <cartesian/Cartesian_red_black.h>
#endif

View File

@ -1,6 +1,6 @@
#ifndef GRID_COMMUNICATOR_H
#define GRID_COMMUNICATOR_H
#include <communicator/Grid_communicator_base.h>
#include <communicator/Communicator_base.h>
#endif

View File

@ -141,7 +141,7 @@ namespace Grid {
}
}
#include <lattice/Grid_lattice_comparison.h>
#include <lattice/Grid_lattice_where.h>
#include <lattice/Lattice_comparison.h>
#include <lattice/Lattice_where.h>
#endif

View File

@ -1,13 +1,13 @@
#ifndef _GRID_CSHIFT_H_
#define _GRID_CSHIFT_H_
#include <cshift/Grid_cshift_common.h>
#include <cshift/Cshift_common.h>
#ifdef GRID_COMMS_NONE
#include <cshift/Grid_cshift_none.h>
#include <cshift/Cshift_none.h>
#endif
#ifdef GRID_COMMS_MPI
#include <cshift/Grid_cshift_mpi.h>
#include <cshift/Cshift_mpi.h>
#endif
#endif

View File

@ -33,7 +33,7 @@
#define strong_inline __attribute__((always_inline)) inline
#include <Grid_config.h>
#include <GridConfig.h>
////////////////////////////////////////////////////////////
// Tunable header includes
@ -46,22 +46,22 @@
#include <malloc.h>
#endif
#include <Grid_aligned_allocator.h>
#include <AlignedAllocator.h>
#include <Grid_simd.h>
#include <Grid_threads.h>
#include <Simd.h>
#include <Threads.h>
#include <Grid_cartesian.h> // subdir aggregate
#include <Grid_math.h> // subdir aggregate
#include <Grid_lattice.h> // subdir aggregate
#include <Grid_comparison.h>
#include <Grid_cshift.h> // subdir aggregate
#include <Grid_stencil.h> // subdir aggregate
#include <Communicator.h> // subdir aggregate
#include <Cartesian.h> // subdir aggregate
#include <Tensors.h> // subdir aggregate
#include <Lattice.h> // subdir aggregate
#include <Comparison.h>
#include <Cshift.h> // subdir aggregate
#include <Stencil.h> // subdir aggregate
#include <Algorithms.h>// subdir aggregate
#include <Grid_algorithms.h>// subdir aggregate
#include <qcd/Grid_qcd.h>
#include <parallelIO/GridNerscIO.h>
#include <qcd/QCD.h>
#include <parallelIO/NerscIO.h>
namespace Grid {

View File

@ -1,5 +1,5 @@
/* lib/Grid_config.h. Generated from Grid_config.h.in by configure. */
/* lib/Grid_config.h.in. Generated from configure.ac by autoheader. */
/* lib/GridConfig.h. Generated from GridConfig.h.in by configure. */
/* lib/GridConfig.h.in. Generated from configure.ac by autoheader. */
/* AVX */
/* #undef AVX1 */

View File

@ -1,4 +1,4 @@
/* lib/Grid_config.h.in. Generated from configure.ac by autoheader. */
/* lib/GridConfig.h.in. Generated from configure.ac by autoheader. */
/* AVX */
#undef AVX1

View File

@ -142,7 +142,11 @@ void Grid_init(int *argc,char ***argv)
Grid_quiesce_nodes();
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--dslash-opt") ){
WilsonMatrix::HandOptDslash=1;
WilsonFermion::HandOptDslash=1;
WilsonFermion5D::HandOptDslash=1;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--lebesgue") ){
LebesgueOrder::UseLebesgueOrder=1;
}
GridParseLayout(*argv,*argc,
Grid_default_latt,

View File

@ -1,8 +0,0 @@
#ifndef GRID_CARTESIAN_H
#define GRID_CARTESIAN_H
#include <cartesian/Grid_cartesian_base.h>
#include <cartesian/Grid_cartesian_full.h>
#include <cartesian/Grid_cartesian_red_black.h>
#endif

View File

@ -1,16 +0,0 @@
#ifndef GRID_MATH_H
#define GRID_MATH_H
#include <math/Grid_math_traits.h>
#include <math/Grid_math_tensors.h>
#include <math/Grid_math_arith.h>
#include <math/Grid_math_inner.h>
#include <math/Grid_math_outer.h>
#include <math/Grid_math_transpose.h>
#include <math/Grid_math_trace.h>
#include <math/Grid_math_peek.h>
#include <math/Grid_math_poke.h>
#include <math/Grid_math_reality.h>
#endif

View File

@ -1,6 +1,6 @@
#ifndef GRID_LATTICE_H
#define GRID_LATTICE_H
#include <lattice/Grid_lattice_base.h>
#include <lattice/Lattice_base.h>
#endif

4
lib/Make.inc Normal file
View File

@ -0,0 +1,4 @@
HFILES=./Cshift.h ./simd/Grid_avx.h ./simd/Grid_vector_types.h ./simd/Grid_sse4.h ./simd/Grid_avx512.h ./simd/Old/Grid_vRealD.h ./simd/Old/Grid_vComplexD.h ./simd/Old/Grid_vInteger.h ./simd/Old/Grid_vComplexF.h ./simd/Old/Grid_vRealF.h ./simd/Grid_qpx.h ./Tensors.h ./Algorithms.h ./communicator/Communicator_base.h ./lattice/Lattice_rng.h ./lattice/Lattice_reduction.h ./lattice/Lattice_transfer.h ./lattice/Lattice_peekpoke.h ./lattice/Lattice_coordinate.h ./lattice/Lattice_comparison.h ./lattice/Lattice_overload.h ./lattice/Lattice_reality.h ./lattice/Lattice_local.h ./lattice/Lattice_conformable.h ./lattice/Lattice_where.h ./lattice/Lattice_arith.h ./lattice/Lattice_base.h ./lattice/Lattice_ET.h ./lattice/Lattice_transpose.h ./lattice/Lattice_trace.h ./Stencil.h ./tensors/Tensor_arith_sub.h ./tensors/Tensor_poke.h ./tensors/Tensor_arith_mul.h ./tensors/Tensor_class.h ./tensors/Tensor_transpose.h ./tensors/Tensor_arith_mac.h ./tensors/Tensor_arith_scalar.h ./tensors/Tensor_reality.h ./tensors/Tensor_trace.h ./tensors/Tensor_arith_add.h ./tensors/Tensor_outer.h ./tensors/Tensor_inner.h ./tensors/Tensor_traits.h ./tensors/Tensor_Ta.h ./tensors/Tensor_peek.h ./tensors/Tensor_arith.h ./tensors/Tensor_extract_merge.h ./Communicator.h ./Cartesian.h ./parallelIO/NerscIO.h ./qcd/QCD.h ./qcd/SpaceTimeGrid.h ./qcd/LinalgUtils.h ./qcd/TwoSpinor.h ./qcd/action/Actions.h ./qcd/action/fermion/CayleyFermion5D.h ./qcd/action/fermion/ScaledShamirFermion.h ./qcd/action/fermion/MobiusFermion.h ./qcd/action/fermion/OverlapWilsonContfracTanhFermion.h ./qcd/action/fermion/PartialFractionFermion5D.h ./qcd/action/fermion/ShamirZolotarevFermion.h ./qcd/action/fermion/FermionOperator.h ./qcd/action/fermion/WilsonFermion5D.h ./qcd/action/fermion/WilsonCompressor.h ./qcd/action/fermion/WilsonKernels.h ./qcd/action/fermion/DomainWallFermion.h ./qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h ./qcd/action/fermion/MobiusZolotarevFermion.h ./qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h ./qcd/action/fermion/WilsonFermion.h ./qcd/action/fermion/ContinuedFractionFermion5D.h ./qcd/action/fermion/OverlapWilsonCayleyZolotarevFermion.h ./qcd/Dirac.h ./cshift/Cshift_common.h ./cshift/Cshift_none.h ./cshift/Cshift_mpi.h ./Simd.h ./GridConfig.h ./cartesian/Cartesian_base.h ./cartesian/Cartesian_red_black.h ./cartesian/Cartesian_full.h ./AlignedAllocator.h ./Lattice.h ./Threads.h ./Comparison.h ./Grid.h ./algorithms/iterative/SchurRedBlack.h ./algorithms/iterative/NormalEquations.h ./algorithms/iterative/ConjugateGradient.h ./algorithms/approx/Chebyshev.h ./algorithms/approx/Zolotarev.h ./algorithms/approx/bigfloat.h ./algorithms/approx/bigfloat_double.h ./algorithms/approx/Remez.h ./algorithms/LinearOperator.h ./algorithms/SparseMatrix.h ./stencil/Lebesgue.h
CCFILES=./qcd/SpaceTimeGrid.cc ./qcd/action/fermion/WilsonKernels.cc ./qcd/action/fermion/PartialFractionFermion5D.cc ./qcd/action/fermion/CayleyFermion5D.cc ./qcd/action/fermion/WilsonKernelsHand.cc ./qcd/action/fermion/WilsonFermion.cc ./qcd/action/fermion/ContinuedFractionFermion5D.cc ./qcd/action/fermion/WilsonFermion5D.cc ./qcd/Dirac.cc ./GridInit.cc ./algorithms/approx/Remez.cc ./algorithms/approx/Zolotarev.cc ./stencil/Lebesgue.cc ./stencil/Stencil_common.cc

View File

@ -3,100 +3,26 @@ AM_CXXFLAGS = -I$(top_srcdir)/
extra_sources=
if BUILD_COMMS_MPI
extra_sources+=communicator/Grid_communicator_mpi.cc
extra_sources+=communicator/Communicator_mpi.cc
endif
if BUILD_COMMS_NONE
extra_sources+=communicator/Grid_communicator_none.cc
extra_sources+=communicator/Communicator_none.cc
endif
#
# Libraries
#
lib_LIBRARIES = libGrid.a
libGrid_a_SOURCES = \
Grid_init.cc \
stencil/Grid_stencil_common.cc \
qcd/Grid_qcd_dirac.cc \
qcd/Grid_qcd_dhop.cc \
qcd/Grid_qcd_dhop_hand.cc \
qcd/Grid_qcd_wilson_dop.cc \
algorithms/approx/Zolotarev.cc \
algorithms/approx/Remez.cc \
$(extra_sources)
include Make.inc
lib_LIBRARIES = libGrid.a
libGrid_a_SOURCES = $(CCFILES) $(extra_sources)
# qcd/action/fermion/PartialFractionFermion5D.cc\ \
#
# Include files
#
nobase_include_HEADERS = algorithms/approx/bigfloat.h \
algorithms/approx/Chebyshev.h \
algorithms/approx/Remez.h \
algorithms/approx/Zolotarev.h \
algorithms/iterative/ConjugateGradient.h \
algorithms/iterative/NormalEquations.h \
algorithms/iterative/SchurRedBlack.h \
algorithms/LinearOperator.h \
algorithms/SparseMatrix.h \
cartesian/Grid_cartesian_base.h \
cartesian/Grid_cartesian_full.h \
cartesian/Grid_cartesian_red_black.h \
communicator/Grid_communicator_base.h \
cshift/Grid_cshift_common.h \
cshift/Grid_cshift_mpi.h \
cshift/Grid_cshift_none.h \
Grid.h \
Grid_algorithms.h \
Grid_aligned_allocator.h \
Grid_cartesian.h \
Grid_communicator.h \
Grid_comparison.h \
Grid_cshift.h \
Grid_extract.h \
Grid_lattice.h \
Grid_math.h \
Grid_simd.h \
Grid_stencil.h \
Grid_threads.h \
lattice/Grid_lattice_arith.h \
lattice/Grid_lattice_base.h \
lattice/Grid_lattice_comparison.h \
lattice/Grid_lattice_conformable.h \
lattice/Grid_lattice_coordinate.h \
lattice/Grid_lattice_ET.h \
lattice/Grid_lattice_local.h \
lattice/Grid_lattice_overload.h \
lattice/Grid_lattice_peekpoke.h \
lattice/Grid_lattice_reality.h \
lattice/Grid_lattice_reduction.h \
lattice/Grid_lattice_rng.h \
lattice/Grid_lattice_trace.h \
lattice/Grid_lattice_transfer.h \
lattice/Grid_lattice_transpose.h \
lattice/Grid_lattice_where.h \
math/Grid_math_arith.h \
math/Grid_math_arith_add.h \
math/Grid_math_arith_mac.h \
math/Grid_math_arith_mul.h \
math/Grid_math_arith_scalar.h \
math/Grid_math_arith_sub.h \
math/Grid_math_inner.h \
math/Grid_math_outer.h \
math/Grid_math_peek.h \
math/Grid_math_poke.h \
math/Grid_math_reality.h \
math/Grid_math_tensors.h \
math/Grid_math_trace.h \
math/Grid_math_traits.h \
math/Grid_math_transpose.h \
parallelIO/GridNerscIO.h \
qcd/Grid_qcd.h \
qcd/Grid_qcd_2spinor.h \
qcd/Grid_qcd_dirac.h \
qcd/Grid_qcd_wilson_dop.h \
simd/Grid_vector_types.h \
simd/Grid_sse4.h \
simd/Grid_avx.h \
simd/Grid_avx512.h
nobase_include_HEADERS=$(HFILES)

View File

@ -1,6 +1,8 @@
#ifndef GRID_STENCIL_H
#define GRID_STENCIL_H
#include <stencil/Lebesgue.h> // subdir aggregate
//////////////////////////////////////////////////////////////////////////////////////////
// Must not lose sight that goal is to be able to construct really efficient
// gather to a point stencil code. CSHIFT is not the best way, so need
@ -40,28 +42,11 @@
namespace Grid {
class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal fill in.
public:
typedef uint32_t StencilInteger;
StencilInteger alignup(StencilInteger n){
n--; // 1000 0011 --> 1000 0010
n |= n >> 1; // 1000 0010 | 0100 0001 = 1100 0011
n |= n >> 2; // 1100 0011 | 0011 0000 = 1111 0011
n |= n >> 4; // 1111 0011 | 0000 1111 = 1111 1111
n |= n >> 8; // ... (At this point all bits are 1, so further bitwise-or
n |= n >> 16; // operations produce no effect.)
n++; // 1111 1111 --> 1 0000 0000
return n;
};
void LebesgueOrder(void);
std::vector<StencilInteger> _LebesgueReorder;
int _checkerboard;
int _npoints; // Move to template param?
GridBase * _grid;
@ -131,8 +116,8 @@ namespace Grid {
// Gather phase
int sshift [2];
if ( comm_dim ) {
sshift[0] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,0);
sshift[1] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,1);
sshift[0] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
if (splice_dim) {
GatherStartCommsSimd(source,dimension,shift,0x3,u_comm_buf,u_comm_offset,compress);
@ -179,8 +164,8 @@ namespace Grid {
std::vector<cobj,alignedAllocator<cobj> > send_buf(buffer_size); // hmm...
std::vector<cobj,alignedAllocator<cobj> > recv_buf(buffer_size);
int cb= (cbmask==0x2)? 1 : 0;
int sshift= _grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,cb);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
for(int x=0;x<rd;x++){
@ -266,8 +251,8 @@ namespace Grid {
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? 1 : 0;
int sshift= _grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,cb);
int cb = (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){

17
lib/Tensors.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef GRID_MATH_H
#define GRID_MATH_H
#include <tensors/Tensor_traits.h>
#include <tensors/Tensor_class.h>
#include <tensors/Tensor_arith.h>
#include <tensors/Tensor_inner.h>
#include <tensors/Tensor_outer.h>
#include <tensors/Tensor_transpose.h>
#include <tensors/Tensor_trace.h>
#include <tensors/Tensor_Ta.h>
#include <tensors/Tensor_peek.h>
#include <tensors/Tensor_poke.h>
#include <tensors/Tensor_reality.h>
#include <tensors/Tensor_extract_merge.h>
#endif

View File

@ -125,39 +125,7 @@ namespace Grid {
};
*/
// Chroma interface defining GaugeAction
/*
template<typename P, typename Q> class GaugeAction
virtual const CreateGaugeState<P,Q>& getCreateState() const = 0;
virtual GaugeState<P,Q>* createState(const Q& q) const
virtual const GaugeBC<P,Q>& getGaugeBC() const
virtual const Set& getSet(void) const = 0;
virtual void deriv(P& result, const Handle< GaugeState<P,Q> >& state) const
virtual Double S(const Handle< GaugeState<P,Q> >& state) const = 0;
class LinearGaugeAction : public GaugeAction< multi1d<LatticeColorMatrix>, multi1d<LatticeColorMatrix> >
typedef multi1d<LatticeColorMatrix> P;
typedef multi1d<LatticeColorMatrix> Q;
virtual void staple(LatticeColorMatrix& result,
const Handle< GaugeState<P,Q> >& state,
int mu, int cb) const = 0;
*/
// Chroma interface defining FermionAction
/*
template<typename T, typename P, typename Q> class FermAct4D : public FermionAction<T,P,Q>
virtual LinearOperator<T>* linOp(Handle< FermState<T,P,Q> > state) const = 0;
virtual LinearOperator<T>* lMdagM(Handle< FermState<T,P,Q> > state) const = 0;
virtual LinOpSystemSolver<T>* invLinOp(Handle< FermState<T,P,Q> > state,
virtual MdagMSystemSolver<T>* invMdagM(Handle< FermState<T,P,Q> > state,
virtual LinOpMultiSystemSolver<T>* mInvLinOp(Handle< FermState<T,P,Q> > state,
virtual MdagMMultiSystemSolver<T>* mInvMdagM(Handle< FermState<T,P,Q> > state,
virtual MdagMMultiSystemSolverAccumulate<T>* mInvMdagMAcc(Handle< FermState<T,P,Q> > state,
virtual SystemSolver<T>* qprop(Handle< FermState<T,P,Q> > state,
class DiffFermAct4D : public FermAct4D<T,P,Q>
virtual DiffLinearOperator<T,Q,P>* linOp(Handle< FermState<T,P,Q> > state) const = 0;
virtual DiffLinearOperator<T,Q,P>* lMdagM(Handle< FermState<T,P,Q> > state) const = 0;
*/
}
#endif

View File

@ -10,7 +10,7 @@ namespace Grid {
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SparseMatrixBase {
public:
GridBase *_grid;
virtual GridBase *Grid(void) =0;
// Full checkerboar operations
virtual RealD M (const Field &in, Field &out)=0;
virtual RealD Mdag (const Field &in, Field &out)=0;
@ -19,7 +19,6 @@ namespace Grid {
ni=M(in,tmp);
no=Mdag(tmp,out);
}
SparseMatrixBase(GridBase *grid) : _grid(grid) {};
};
/////////////////////////////////////////////////////////////////////////////////////////////
@ -27,7 +26,7 @@ namespace Grid {
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
public:
GridBase *_cbgrid;
virtual GridBase *RedBlackGrid(void)=0;
// half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0;
virtual void Mooee (const Field &in, Field &out)=0;
@ -62,9 +61,7 @@ namespace Grid {
Field tmp(in._grid);
ni=Mpc(in,tmp);
no=MpcDag(tmp,out);
// std::cout<<"MpcDagMpc "<<ni<<" "<<no<<std::endl;
}
CheckerBoardedSparseMatrixBase(GridBase *grid,GridBase *cbgrid) : SparseMatrixBase<Field>(grid), _cbgrid(cbgrid) {};
};
}

View File

@ -58,6 +58,8 @@
/* Compute the partial fraction expansion coefficients (alpha) from the
* factored form */
namespace Grid {
namespace Approx {
static void construct_partfrac(izd *z) {
int dn = z -> dn, dd = z -> dd, type = z -> type;
@ -291,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
* type = 1 for the approximation which is infinite at x = 0. */
zolotarev_data* bfm_zolotarev(PRECISION epsilon, int n, int type) {
zolotarev_data* grid_zolotarev(PRECISION epsilon, int n, int type) {
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
l, invlambda, xi, xisq, *tv, s, opl;
int m, czero, ts;
@ -412,7 +414,7 @@ zolotarev_data* bfm_zolotarev(PRECISION epsilon, int n, int type) {
return zd;
}
zolotarev_data* bfm_higham(PRECISION epsilon, int n) {
zolotarev_data* grid_higham(PRECISION epsilon, int n) {
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
int m, czero;
zolotarev_data *zd;
@ -502,6 +504,7 @@ zolotarev_data* bfm_higham(PRECISION epsilon, int n) {
free(d);
return zd;
}
}}
#ifdef TEST
@ -707,4 +710,6 @@ int main(int argc, char** argv) {
return EXIT_SUCCESS;
}
#endif /* TEST */

View File

@ -1,7 +1,8 @@
/* -*- Mode: C; comment-column: 22; fill-column: 79; -*- */
#ifdef __cplusplus
extern "C" {
namespace Grid {
namespace Approx {
#endif
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
@ -76,10 +77,10 @@ typedef struct {
* zolotarev_data structure. The arguments must satisfy the constraints that
* epsilon > 0, n > 0, and type = 0 or 1. */
ZOLOTAREV_DATA* bfm_higham(PRECISION epsilon, int n) ;
ZOLOTAREV_DATA* bfm_zolotarev(PRECISION epsilon, int n, int type);
ZOLOTAREV_DATA* grid_higham(PRECISION epsilon, int n) ;
ZOLOTAREV_DATA* grid_zolotarev(PRECISION epsilon, int n, int type);
#endif
#ifdef __cplusplus
}
}}
#endif

View File

@ -60,8 +60,8 @@ namespace Grid {
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix._cbgrid;
GridBase *fgrid= _Matrix._grid;
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field src_e(grid);
Field src_o(grid);

View File

@ -2,7 +2,6 @@
#define GRID_CARTESIAN_BASE_H
#include <Grid.h>
#include <Grid_communicator.h>
namespace Grid{
@ -21,7 +20,7 @@ public:
// Give Lattice access
template<class object> friend class Lattice;
GridBase(std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
// Physics Grid information.
@ -52,16 +51,13 @@ public:
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(std::vector<int> site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
inline int CheckerBoardFromOindex (int Oindex){
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
int CheckerBoardFromOindex (int Oindex){
std::vector<int> ocoor;
oCoorFromOindex(ocoor,Oindex);
int ss=0;
for(int d=0;d<_ndimension;d++){
ss=ss+ocoor[d];
}
return ss&0x1;
return CheckerBoard(ocoor);
}
//////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -18,15 +18,18 @@ public:
virtual int CheckerBoard(std::vector<int> site){
return 0;
}
virtual int CheckerBoardDestination(int cb,int shift){
virtual int CheckerBoardDestination(int cb,int shift,int dim){
return 0;
}
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift, int ocb){
return shift;
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
return shift;
}
GridCartesian(std::vector<int> &dimensions,
std::vector<int> &simd_layout,
std::vector<int> &processor_grid
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid
) : GridBase(processor_grid)
{
///////////////////////

View File

@ -0,0 +1,196 @@
#ifndef GRID_CARTESIAN_RED_BLACK_H
#define GRID_CARTESIAN_RED_BLACK_H
namespace Grid {
static const int CbRed =0;
static const int CbBlack=1;
static const int Even =CbRed;
static const int Odd =CbBlack;
// Perhaps these are misplaced and
// should be in sparse matrix.
// Also should make these a named enum type
static const int DaggerNo=0;
static const int DaggerYes=1;
// Specialise this for red black grids storing half the data like a chess board.
class GridRedBlackCartesian : public GridBase
{
public:
std::vector<int> _checker_dim_mask;
int _checker_dim;
virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1;
else return 0;
}
virtual int CheckerBoard(std::vector<int> site){
int linear=0;
assert(site.size()==_ndimension);
for(int d=0;d<_ndimension;d++){
if(_checker_dim_mask[d])
linear=linear+site[d];
}
return (linear&0x1);
}
// Depending on the cb of site, we toggle source cb.
// for block #b, element #e = (b, e)
// we need
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int ocb){
if(dim != _checker_dim) return shift;
int fulldim =_fdimensions[dim];
shift = (shift+fulldim)%fulldim;
// Probably faster with table lookup;
// or by looping over x,y,z and multiply rather than computing checkerboard.
if ( (source_cb+ocb)&1 ) {
return (shift)/2;
} else {
return (shift+1)/2;
}
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
if(dim != _checker_dim) return shift;
int ocb=CheckerBoardFromOindex(osite);
return CheckerBoardShiftForCB(source_cb,dim,shift,ocb);
}
virtual int CheckerBoardDestination(int source_cb,int shift,int dim){
if ( _checker_dim_mask[dim] ) {
// If _fdimensions[checker_dim] is odd, then shifting by 1 in other dims
// does NOT cause a parity hop.
int add=(dim==_checker_dim) ? 0 : _fdimensions[_checker_dim];
if ( (shift+add) &0x1) {
return 1-source_cb;
} else {
return source_cb;
}
} else {
return source_cb;
}
};
GridRedBlackCartesian(const GridBase *base) : GridRedBlackCartesian(base->_fdimensions,base->_simd_layout,base->_processors) {};
GridRedBlackCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const std::vector<int> &checker_dim_mask,
int checker_dim
) : GridBase(processor_grid)
{
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
}
GridRedBlackCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid) : GridBase(processor_grid)
{
std::vector<int> checker_dim_mask(dimensions.size(),1);
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,0);
}
void Init(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const std::vector<int> &checker_dim_mask,
int checker_dim)
{
///////////////////////
// Grid information
///////////////////////
_checker_dim = checker_dim;
assert(checker_dim_mask[checker_dim]==1);
_ndimension = dimensions.size();
assert(checker_dim_mask.size()==_ndimension);
assert(processor_grid.size()==_ndimension);
assert(simd_layout.size()==_ndimension);
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
_checker_dim_mask=checker_dim_mask;
for(int d=0;d<_ndimension;d++){
_fdimensions[d] = dimensions[d];
_gdimensions[d] = _fdimensions[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
if (d==_checker_dim) {
_gdimensions[d] = _gdimensions[d]/2; // Remove a checkerboard
}
_ldimensions[d] = _gdimensions[d]/_processors[d];
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d]= _ldimensions[d]/_simd_layout[d];
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if ( d==0 ) {
_ostride[d] = 1;
_istride[d] = 1;
} else {
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
_istride[d] = _istride[d-1]*_simd_layout[d-1];
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// subplane information
////////////////////////////////////////////////////////////////////////////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block =1;
int nblock=1;
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
for(int d=0;d<_ndimension;d++){
nblock/=_rdimensions[d];
_slice_block[d] =block;
_slice_stride[d]=_ostride[d]*_rdimensions[d];
_slice_nblock[d]=nblock;
block = block*_rdimensions[d];
}
};
protected:
virtual int oIndex(std::vector<int> &coor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) {
if( d==_checker_dim ) {
idx+=_ostride[d]*((coor[d]/2)%_rdimensions[d]);
} else {
idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
}
}
return idx;
};
};
}
#endif

View File

@ -1,134 +0,0 @@
#ifndef GRID_CARTESIAN_RED_BLACK_H
#define GRID_CARTESIAN_RED_BLACK_H
namespace Grid {
static const int CbRed =0;
static const int CbBlack=1;
static const int Even =CbRed;
static const int Odd =CbBlack;
static const int DaggerNo=0;
static const int DaggerYes=1;
// Specialise this for red black grids storing half the data like a chess board.
class GridRedBlackCartesian : public GridBase
{
public:
virtual int CheckerBoarded(int dim){
if( dim==0) return 1;
else return 0;
}
virtual int CheckerBoard(std::vector<int> site){
return (site[0]+site[1]+site[2]+site[3])&0x1;
}
// Depending on the cb of site, we toggle source cb.
// for block #b, element #e = (b, e)
// we need
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
if(dim != 0) return shift;
int fulldim =_fdimensions[0];
shift = (shift+fulldim)%fulldim;
// Probably faster with table lookup;
// or by looping over x,y,z and multiply rather than computing checkerboard.
int ocb=CheckerBoardFromOindex(osite);
if ( (source_cb+ocb)&1 ) {
return (shift)/2;
} else {
return (shift+1)/2;
}
}
virtual int CheckerBoardDestination(int source_cb,int shift){
if ((shift+_fdimensions[0])&0x1) {
return 1-source_cb;
} else {
return source_cb;
}
};
GridRedBlackCartesian(GridBase *base) : GridRedBlackCartesian(base->_fdimensions,base->_simd_layout,base->_processors) {};
GridRedBlackCartesian(std::vector<int> &dimensions,
std::vector<int> &simd_layout,
std::vector<int> &processor_grid ) : GridBase(processor_grid)
{
///////////////////////
// Grid information
///////////////////////
_ndimension = dimensions.size();
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_fsites = _gsites = _osites = _isites = 1;
for(int d=0;d<_ndimension;d++){
_fdimensions[d] = dimensions[d];
_gdimensions[d] = _fdimensions[d];
_fsites = _fsites * _fdimensions[d];
_gsites = _gsites * _gdimensions[d];
if (d==0) _gdimensions[0] = _gdimensions[0]/2; // Remove a checkerboard
_ldimensions[d] = _gdimensions[d]/_processors[d];
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d]= _ldimensions[d]/_simd_layout[d];
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if ( d==0 ) {
_ostride[d] = 1;
_istride[d] = 1;
} else {
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
_istride[d] = _istride[d-1]*_simd_layout[d-1];
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// subplane information
////////////////////////////////////////////////////////////////////////////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block =1;
int nblock=1;
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
for(int d=0;d<_ndimension;d++){
nblock/=_rdimensions[d];
_slice_block[d] =block;
_slice_stride[d]=_ostride[d]*_rdimensions[d];
_slice_nblock[d]=nblock;
block = block*_rdimensions[d];
}
};
protected:
virtual int oIndex(std::vector<int> &coor)
{
int idx=_ostride[0]*((coor[0]/2)%_rdimensions[0]);
for(int d=1;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
};
};
}
#endif

View File

@ -27,7 +27,7 @@ class CartesianCommunicator {
#endif
// Constructor
CartesianCommunicator(std::vector<int> &pdimensions_in);
CartesianCommunicator(const std::vector<int> &pdimensions_in);
// Wraps MPI_Cart routines
void ShiftedRanks(int dim,int shift,int & source, int & dest);

View File

@ -5,7 +5,7 @@ namespace Grid {
// Should error check all MPI calls.
CartesianCommunicator::CartesianCommunicator(std::vector<int> &processors)
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_ndimension = processors.size();
std::vector<int> periodic(_ndimension,1);

View File

@ -1,7 +1,7 @@
#include "Grid.h"
namespace Grid {
CartesianCommunicator::CartesianCommunicator(std::vector<int> &processors)
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_processors = processors;
_ndimension = processors.size();

View File

@ -153,7 +153,7 @@ PARALLEL_NESTED_LOOP2
//////////////////////////////////////////////////////
// local to node block strided copies
//////////////////////////////////////////////////////
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
{
int rd = rhs._grid->_rdimensions[dimension];
@ -175,7 +175,6 @@ PARALLEL_NESTED_LOOP2
if ( ocb&cbmask ) {
//lhs._odata[lo+o]=rhs._odata[ro+o];
vstream(lhs._odata[lo+o],rhs._odata[ro+o]);
}
}
@ -183,7 +182,7 @@ PARALLEL_NESTED_LOOP2
}
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
{
int rd = rhs._grid->_rdimensions[dimension];
@ -213,12 +212,12 @@ PARALLEL_NESTED_LOOP2
//////////////////////////////////////////////////////
// Local to node Cshift
//////////////////////////////////////////////////////
template<class vobj> void Cshift_local(Lattice<vobj>& ret,Lattice<vobj> &rhs,int dimension,int shift)
template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
sshift[0] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,0);
sshift[1] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,1);
sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even);
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Cshift_local(ret,rhs,dimension,shift,0x3);
@ -228,7 +227,7 @@ template<class vobj> void Cshift_local(Lattice<vobj>& ret,Lattice<vobj> &rhs,int
}
}
template<class vobj> Lattice<vobj> Cshift_local(Lattice<vobj> &ret,Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
template<class vobj> Lattice<vobj> Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid = rhs._grid;
int fd = grid->_fdimensions[dimension];
@ -239,8 +238,7 @@ template<class vobj> Lattice<vobj> Cshift_local(Lattice<vobj> &ret,Lattice<vobj>
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
ret.checkerboard = grid->CheckerBoardDestination(rhs.checkerboard,shift);
ret.checkerboard = grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
// the permute type
int permute_dim =grid->PermuteDim(dimension);
int permute_type=grid->PermuteType(dimension);
@ -250,9 +248,9 @@ template<class vobj> Lattice<vobj> Cshift_local(Lattice<vobj> &ret,Lattice<vobj>
int o = 0;
int bo = x * grid->_ostride[dimension];
int cb= (cbmask==0x2)? 1 : 0;
int cb= (cbmask==0x2)? Odd : Even;
int sshift = grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,cb);
int sshift = grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
int sx = (x+sshift)%rd;
int permute_slice=0;

View File

@ -4,7 +4,7 @@
namespace Grid {
template<class vobj> Lattice<vobj> Cshift(Lattice<vobj> &rhs,int dimension,int shift)
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
@ -17,7 +17,7 @@ template<class vobj> Lattice<vobj> Cshift(Lattice<vobj> &rhs,int dimension,int s
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift);
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
// the permute type
int simd_layout = rhs._grid->_simd_layout[dimension];
@ -35,12 +35,12 @@ template<class vobj> Lattice<vobj> Cshift(Lattice<vobj> &rhs,int dimension,int s
return ret;
}
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,Lattice<vobj> &rhs,int dimension,int shift)
template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
sshift[0] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,0);
sshift[1] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,1);
sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even);
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Cshift_comms(ret,rhs,dimension,shift,0x3);
@ -50,12 +50,12 @@ template<class vobj> void Cshift_comms(Lattice<vobj>& ret,Lattice<vobj> &rhs,int
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,Lattice<vobj> &rhs,int dimension,int shift)
template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vobj> &rhs,int dimension,int shift)
{
int sshift[2];
sshift[0] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,0);
sshift[1] = rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,1);
sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even);
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Cshift_comms_simd(ret,rhs,dimension,shift,0x3);
@ -65,7 +65,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,Lattice<vobj> &rh
}
}
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
@ -87,8 +87,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,Lattice<vobj> &rhs,int
std::vector<vobj,alignedAllocator<vobj> > send_buf(buffer_size);
std::vector<vobj,alignedAllocator<vobj> > recv_buf(buffer_size);
int cb= (cbmask==0x2)? 1 : 0;
int sshift= rhs._grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,cb);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
for(int x=0;x<rd;x++){
@ -124,7 +124,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,Lattice<vobj> &rhs,int
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs._grid;
const int Nsimd = grid->Nsimd();
@ -162,8 +162,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,Lattice<vobj> &r
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? 1 : 0;
int sshift= grid->CheckerBoardShift(rhs.checkerboard,dimension,shift,cb);
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){

View File

@ -1,10 +1,10 @@
#ifndef _GRID_CSHIFT_NONE_H_
#define _GRID_CSHIFT_NONE_H_
namespace Grid {
template<class vobj> Lattice<vobj> Cshift(Lattice<vobj> &rhs,int dimension,int shift)
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
Lattice<vobj> ret(rhs._grid);
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift);
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
Cshift_local(ret,rhs,dimension,shift);
return ret;
}

View File

@ -176,7 +176,7 @@ PARALLEL_FOR_LOOP
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(tmp,ss,expr);
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
@ -283,24 +283,23 @@ PARALLEL_FOR_LOOP
#include <lattice/Grid_lattice_conformable.h>
#include <lattice/Lattice_conformable.h>
#define GRID_LATTICE_EXPRESSION_TEMPLATES
#ifdef GRID_LATTICE_EXPRESSION_TEMPLATES
#include <lattice/Grid_lattice_ET.h>
#include <lattice/Lattice_ET.h>
#else
#include <lattice/Grid_lattice_overload.h>
#include <lattice/Lattice_overload.h>
#endif
#include <lattice/Grid_lattice_arith.h>
#include <lattice/Grid_lattice_trace.h>
#include <lattice/Grid_lattice_transpose.h>
#include <lattice/Grid_lattice_local.h>
#include <lattice/Grid_lattice_reduction.h>
#include <lattice/Grid_lattice_peekpoke.h>
#include <lattice/Grid_lattice_reality.h>
#include <Grid_extract.h>
#include <lattice/Grid_lattice_coordinate.h>
#include <lattice/Grid_lattice_rng.h>
#include <lattice/Grid_lattice_transfer.h>
#include <lattice/Lattice_arith.h>
#include <lattice/Lattice_trace.h>
#include <lattice/Lattice_transpose.h>
#include <lattice/Lattice_local.h>
#include <lattice/Lattice_reduction.h>
#include <lattice/Lattice_peekpoke.h>
#include <lattice/Lattice_reality.h>
#include <lattice/Lattice_coordinate.h>
#include <lattice/Lattice_rng.h>
#include <lattice/Lattice_transfer.h>

View File

@ -32,7 +32,6 @@ PARALLEL_FOR_LOOP
cbos=half._grid->CheckerBoard(coor);
if (cbos==cb) {
half._odata[ssh] = full._odata[ss];
ssh++;
}

View File

@ -1,11 +0,0 @@
#ifndef GRID_MATH_ARITH_H
#define GRID_MATH_ARITH_H
#include <math/Grid_math_arith_add.h>
#include <math/Grid_math_arith_sub.h>
#include <math/Grid_math_arith_mac.h>
#include <math/Grid_math_arith_mul.h>
#include <math/Grid_math_arith_scalar.h>
#endif

View File

@ -1,217 +0,0 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
const std::vector<int> WilsonMatrix::directions ({0,1,2,3, 0, 1, 2, 3});
const std::vector<int> WilsonMatrix::displacements({1,1,1,1,-1,-1,-1,-1});
int WilsonMatrix::HandOptDslash;
class WilsonCompressor {
public:
int mu;
int dag;
WilsonCompressor(int _dag){
mu=0;
dag=_dag;
assert((dag==0)||(dag==1));
}
void Point(int p) {
mu=p;
};
vHalfSpinColourVector operator () (const vSpinColourVector &in)
{
vHalfSpinColourVector ret;
int mudag=mu;
if (dag) {
mudag=(mu+Nd)%(2*Nd);
}
switch(mudag) {
case Xp:
spProjXp(ret,in);
break;
case Yp:
spProjYp(ret,in);
break;
case Zp:
spProjZp(ret,in);
break;
case Tp:
spProjTp(ret,in);
break;
case Xm:
spProjXm(ret,in);
break;
case Ym:
spProjYm(ret,in);
break;
case Zm:
spProjZm(ret,in);
break;
case Tm:
spProjTm(ret,in);
break;
default:
assert(0);
break;
}
return ret;
}
};
WilsonMatrix::WilsonMatrix(LatticeGaugeField &_Umu,GridCartesian &Fgrid,GridRedBlackCartesian &Hgrid, double _mass) :
CheckerBoardedSparseMatrixBase<LatticeFermion>(&Fgrid,&Hgrid),
Stencil ( _grid,npoint,Even,directions,displacements),
StencilEven(_cbgrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (_cbgrid,npoint,Odd ,directions,displacements), // source is Odd
mass(_mass),
Umu(_grid),
UmuEven(_cbgrid),
UmuOdd (_cbgrid)
{
// Allocate the required comms buffer
comm_buf.resize(Stencil._unified_buffer_size); // this is always big enough to contain EO
DoubleStore(Umu,_Umu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
void WilsonMatrix::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu)
{
LatticeColourMatrix U(_grid);
for(int mu=0;mu<Nd;mu++){
U = peekIndex<LorentzIndex>(Umu,mu);
pokeIndex<LorentzIndex>(Uds,U,mu);
U = adj(Cshift(U,mu,-1));
pokeIndex<LorentzIndex>(Uds,U,mu+4);
}
}
RealD WilsonMatrix::M(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerNo);
out = (4+mass)*in - 0.5*out ; // FIXME : axpby_norm! fusion fun
return norm2(out);
}
RealD WilsonMatrix::Mdag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerYes);
out = (4+mass)*in - 0.5*out ; // FIXME : axpby_norm! fusion fun
return norm2(out);
}
void WilsonMatrix::Meooe(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerNo);
} else {
DhopOE(in,out,DaggerNo);
}
out = (-0.5)*out; // FIXME : scale factor in Dhop
}
void WilsonMatrix::MeooeDag(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerYes);
} else {
DhopOE(in,out,DaggerYes);
}
out = (-0.5)*out; // FIXME : scale factor in Dhop
}
void WilsonMatrix::Mooee(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (4.0+mass)*in;
return ;
}
void WilsonMatrix::MooeeDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
Mooee(in,out);
}
void WilsonMatrix::MooeeInv(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (1.0/(4.0+mass))*in;
return ;
}
void WilsonMatrix::MooeeInvDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
MooeeInv(in,out);
}
void WilsonMatrix::DhopInternal(CartesianStencil & st,LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
WilsonCompressor compressor(dag);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
if ( dag == DaggerYes ) {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHand::DhopSiteDag(st,U,comm_buf,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOpt::DhopSiteDag(st,U,comm_buf,sss,in,out);
}
}
} else {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHand::DhopSite(st,U,comm_buf,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOpt::DhopSite(st,U,comm_buf,sss,in,out);
}
}
}
}
void WilsonMatrix::DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag);
}
void WilsonMatrix::DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag);
}
void WilsonMatrix::Dhop(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_grid); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Umu,in,out,dag);
}
}}

View File

@ -1,105 +0,0 @@
#ifndef GRID_QCD_WILSON_DOP_H
#define GRID_QCD_WILSON_DOP_H
namespace Grid {
namespace QCD {
// Should be in header?
const int Xp = 0;
const int Yp = 1;
const int Zp = 2;
const int Tp = 3;
const int Xm = 4;
const int Ym = 5;
const int Zm = 6;
const int Tm = 7;
class WilsonMatrix : public CheckerBoardedSparseMatrixBase<LatticeFermion>
{
//NB r=1;
public:
static int HandOptDslash;
double mass;
// GridBase * grid; // Inherited
// GridBase * cbgrid;
//Defines the stencils for even and odd
CartesianStencil Stencil;
CartesianStencil StencilEven;
CartesianStencil StencilOdd;
// Copy of the gauge field , with even and odd subsets
LatticeDoubledGaugeField Umu;
LatticeDoubledGaugeField UmuEven;
LatticeDoubledGaugeField UmuOdd;
static const int npoint=8;
static const std::vector<int> directions ;
static const std::vector<int> displacements;
static const int Xp,Xm,Yp,Ym,Zp,Zm,Tp,Tm;
// Comms buffer
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > comm_buf;
// Constructor
WilsonMatrix(LatticeGaugeField &_Umu,GridCartesian &Fgrid,GridRedBlackCartesian &Hgrid,double _mass);
// DoubleStore
void DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu);
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operaions
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
// non-hermitian hopping term; half cb or both
void Dhop (const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopInternal(CartesianStencil & st,LatticeDoubledGaugeField &U,
const LatticeFermion &in, LatticeFermion &out,int dag);
typedef iScalar<iMatrix<vComplex, Nc> > matrix;
};
class DiracOpt {
public:
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
static void DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out);
static void DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out);
};
class DiracOptHand {
public:
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
static void DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out);
static void DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out);
};
}
}
#endif

113
lib/qcd/LinalgUtils.h Normal file
View File

@ -0,0 +1,113 @@
#ifndef GRID_QCD_LINALG_UTILS_H
#define GRID_QCD_LINALG_UTILS_H
namespace Grid{
namespace QCD{
////////////////////////////////////////////////////////////////////////
//This file brings additional linear combination assist that is helpful
//to QCD such as chiral projectors and spin matrices applied to one of the inputs.
//These routines support five-D chiral fermions and contain s-subslice indexing
//on the 5d (rb4d) checkerboarded lattices
////////////////////////////////////////////////////////////////////////
template<class vobj>
void axpby_ssp(Lattice<vobj> &z, RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp = a*x._odata[ss+s]+b*y._odata[ss+sp];
vstream(z._odata[ss+s],tmp);
}
}
template<class vobj>
void ag5xpby_ssp(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp;
multGamma5(tmp(),a*x._odata[ss+s]());
tmp = tmp + b*y._odata[ss+sp];
vstream(z._odata[ss+s],tmp);
}
}
template<class vobj>
void axpbg5y_ssp(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp;
multGamma5(tmp(),b*y._odata[ss+sp]());
tmp = tmp + a*x._odata[ss+s];
vstream(z._odata[ss+s],tmp);
}
}
template<class vobj>
void ag5xpbg5y_ssp(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp1;
vobj tmp2;
tmp1 = a*x._odata[ss+s]+b*y._odata[ss+sp];
multGamma5(tmp2(),tmp1());
vstream(z._odata[ss+s],tmp2);
}
}
template<class vobj>
void axpby_ssp_pminus(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp;
spProj5m(tmp,y._odata[ss+sp]);
tmp = a*x._odata[ss+s]+b*tmp;
vstream(z._odata[ss+s],tmp);
}
}
template<class vobj>
void axpby_ssp_pplus(Lattice<vobj> &z,RealD a,const Lattice<vobj> &x,RealD b,const Lattice<vobj> &y,int s,int sp)
{
z.checkerboard = x.checkerboard;
conformable(x,y);
conformable(x,z);
GridBase *grid=x._grid;
int Ls = grid->_rdimensions[0];
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
vobj tmp;
spProj5p(tmp,y._odata[ss+sp]);
tmp = a*x._odata[ss+s]+b*tmp;
vstream(z._odata[ss+s],tmp);
}
}
}}
#endif

View File

@ -4,6 +4,16 @@ namespace Grid{
namespace QCD {
static const int Xp = 0;
static const int Yp = 1;
static const int Zp = 2;
static const int Tp = 3;
static const int Xm = 4;
static const int Ym = 5;
static const int Zm = 6;
static const int Tm = 7;
static const int Nc=3;
static const int Ns=4;
static const int Nd=4;
@ -297,9 +307,10 @@ namespace QCD {
} //namespace QCD
} // Grid
#include <qcd/Grid_qcd_dirac.h>
#include <qcd/Grid_qcd_2spinor.h>
//#include <qcd/Grid_qcd_pauli.h>
#include <qcd/Grid_qcd_wilson_dop.h>
#include <qcd/SpaceTimeGrid.h>
#include <qcd/Dirac.h>
#include <qcd/TwoSpinor.h>
#include <qcd/LinalgUtils.h>
#include <qcd/action/Actions.h>
#endif

52
lib/qcd/SpaceTimeGrid.cc Normal file
View File

@ -0,0 +1,52 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
/////////////////////////////////////////////////////////////////
// Public interface
/////////////////////////////////////////////////////////////////
GridCartesian *SpaceTimeGrid::makeFourDimGrid(const std::vector<int> & latt,const std::vector<int> &simd,const std::vector<int> &mpi)
{
return new GridCartesian(latt,simd,mpi);
}
GridRedBlackCartesian *SpaceTimeGrid::makeFourDimRedBlackGrid(const GridCartesian *FourDimGrid)
{
return new GridRedBlackCartesian(FourDimGrid);
}
GridCartesian *SpaceTimeGrid::makeFiveDimGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4=FourDimGrid->_ndimension;
std::vector<int> latt5(1,Ls);
std::vector<int> simd5(1,1);
std::vector<int> mpi5(1,1);
for(int d=0;d<N4;d++){
latt5.push_back(FourDimGrid->_fdimensions[d]);
simd5.push_back(FourDimGrid->_simd_layout[d]);
mpi5.push_back(FourDimGrid->_processors[d]);
}
return new GridCartesian(latt5,simd5,mpi5);
}
GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimRedBlackGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4=FourDimGrid->_ndimension;
int cbd=1;
std::vector<int> latt5(1,Ls);
std::vector<int> simd5(1,1);
std::vector<int> mpi5(1,1);
std::vector<int> cb5(1,0);
for(int d=0;d<N4;d++){
latt5.push_back(FourDimGrid->_fdimensions[d]);
simd5.push_back(FourDimGrid->_simd_layout[d]);
mpi5.push_back(FourDimGrid->_processors[d]);
cb5.push_back( 1);
}
return new GridRedBlackCartesian(latt5,simd5,mpi5,cb5,cbd);
}
}}

18
lib/qcd/SpaceTimeGrid.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef GRID_QCD_SPACE_TIME_GRID_H
#define GRID_QCD_SPACE_TIME_GRID_H
namespace Grid {
namespace QCD {
class SpaceTimeGrid {
public:
static GridCartesian *makeFourDimGrid(const std::vector<int> & latt,const std::vector<int> &simd,const std::vector<int> &mpi);
static GridRedBlackCartesian *makeFourDimRedBlackGrid (const GridCartesian *FourDimGrid);
static GridCartesian *makeFiveDimGrid (int Ls,const GridCartesian *FourDimGrid);
static GridRedBlackCartesian *makeFiveDimRedBlackGrid(int Ls,const GridCartesian *FourDimGrid);
};
}}
#endif

98
lib/qcd/action/Actions.h Normal file
View File

@ -0,0 +1,98 @@
#ifndef GRID_QCD_ACTIONS_H
#define GRID_QCD_ACTIONS_H
// Some reorganisation likely required as both Chroma and IroIro
// are separating the concept of the operator from that of action.
//
// The FermAction contains methods to create
//
// * Linear operators (Hermitian and non-hermitian) .. my LinearOperator
// * System solvers (Hermitian and non-hermitian) .. my OperatorFunction
// * MultiShift System solvers (Hermitian and non-hermitian) .. my OperatorFunction
////////////////////////////////////////////
// Abstract base interface
////////////////////////////////////////////
#include <qcd/action/fermion/FermionOperator.h>
////////////////////////////////////////////
// Utility functions
////////////////////////////////////////////
#include <qcd/action/fermion/WilsonCompressor.h> //used by all wilson type fermions
#include <qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
////////////////////////////////////////////
// 4D formulations
////////////////////////////////////////////
#include <qcd/action/fermion/WilsonFermion.h>
//#include <qcd/action/fermion/CloverFermion.h>
////////////////////////////////////////////
// 5D formulations...
////////////////////////////////////////////
#include <qcd/action/fermion/WilsonFermion5D.h> // used by all 5d overlap types
//////////
// Cayley
//////////
#include <qcd/action/fermion/CayleyFermion5D.h>
#include <qcd/action/fermion/DomainWallFermion.h>
#include <qcd/action/fermion/DomainWallFermion.h>
#include <qcd/action/fermion/MobiusFermion.h>
#include <qcd/action/fermion/ScaledShamirFermion.h>
#include <qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h>
#include <qcd/action/fermion/MobiusZolotarevFermion.h>
#include <qcd/action/fermion/ShamirZolotarevFermion.h>
#include <qcd/action/fermion/OverlapWilsonCayleyZolotarevFermion.h>
//////////////////////
// Continued fraction
//////////////////////
#include <qcd/action/fermion/ContinuedFractionFermion5D.h>
#include <qcd/action/fermion/OverlapWilsonContfracTanhFermion.h>
#include <qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h>
//////////////////////
// Partial fraction
//////////////////////
#include <qcd/action/fermion/PartialFractionFermion5D.h>
// Chroma interface defining FermionAction
/*
template<typename T, typename P, typename Q> class FermAct4D : public FermionAction<T,P,Q>
virtual LinearOperator<T>* linOp(Handle< FermState<T,P,Q> > state) const = 0;
virtual LinearOperator<T>* lMdagM(Handle< FermState<T,P,Q> > state) const = 0;
virtual LinOpSystemSolver<T>* invLinOp(Handle< FermState<T,P,Q> > state,
virtual MdagMSystemSolver<T>* invMdagM(Handle< FermState<T,P,Q> > state,
virtual LinOpMultiSystemSolver<T>* mInvLinOp(Handle< FermState<T,P,Q> > state,
virtual MdagMMultiSystemSolver<T>* mInvMdagM(Handle< FermState<T,P,Q> > state,
virtual MdagMMultiSystemSolverAccumulate<T>* mInvMdagMAcc(Handle< FermState<T,P,Q> > state,
virtual SystemSolver<T>* qprop(Handle< FermState<T,P,Q> > state,
class DiffFermAct4D : public FermAct4D<T,P,Q>
virtual DiffLinearOperator<T,Q,P>* linOp(Handle< FermState<T,P,Q> > state) const = 0;
virtual DiffLinearOperator<T,Q,P>* lMdagM(Handle< FermState<T,P,Q> > state) const = 0;
*/
// Chroma interface defining GaugeAction
/*
template<typename P, typename Q> class GaugeAction
virtual const CreateGaugeState<P,Q>& getCreateState() const = 0;
virtual GaugeState<P,Q>* createState(const Q& q) const
virtual const GaugeBC<P,Q>& getGaugeBC() const
virtual const Set& getSet(void) const = 0;
virtual void deriv(P& result, const Handle< GaugeState<P,Q> >& state) const
virtual Double S(const Handle< GaugeState<P,Q> >& state) const = 0;
class LinearGaugeAction : public GaugeAction< multi1d<LatticeColorMatrix>, multi1d<LatticeColorMatrix> >
typedef multi1d<LatticeColorMatrix> P;
*/
#endif

View File

View File

@ -0,0 +1,346 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
CayleyFermion5D::CayleyFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5) :
WilsonFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_M5),
mass(_mass)
{
}
// override multiply
RealD CayleyFermion5D::M (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion Din(psi._grid);
// Assemble Din
for(int s=0;s<Ls;s++){
if ( s==0 ) {
// Din = bs psi[s] + cs[s] psi[s+1}
axpby_ssp_pminus(Din,bs[s],psi,cs[s],psi,s,s+1);
// Din+= -mass*cs[s] psi[s+1}
axpby_ssp_pplus (Din,1.0,Din,-mass*cs[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(Din,bs[s],psi,-mass*cs[s],psi,s,0);
axpby_ssp_pplus (Din,1.0,Din,cs[s],psi,s,s-1);
} else {
axpby_ssp_pminus(Din,bs[s],psi,cs[s],psi,s,s+1);
axpby_ssp_pplus(Din,1.0,Din,cs[s],psi,s,s-1);
}
}
DW(Din,chi,DaggerNo);
// ((b D_W + D_w hop terms +1) on s-diag
axpby(chi,1.0,1.0,chi,psi);
for(int s=0;s<Ls;s++){
if ( s==0 ){
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,mass,psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(chi,1.0,chi,mass,psi,s,0);
axpby_ssp_pplus (chi,1.0,chi,-1.0,psi,s,s-1);
} else {
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,-1.0,psi,s,s-1);
}
}
return norm2(chi);
}
RealD CayleyFermion5D::Mdag (const LatticeFermion &psi, LatticeFermion &chi)
{
// Under adjoint
//D1+ D1- P- -> D1+^dag P+ D2-^dag
//D2- P+ D2+ P-D1-^dag D2+dag
LatticeFermion Din(psi._grid);
// Apply Dw
DW(psi,Din,DaggerYes);
for(int s=0;s<Ls;s++){
// Collect the terms in DW
// Chi = bs Din[s] + cs[s] Din[s+1}
// Chi+= -mass*cs[s] psi[s+1}
if ( s==0 ) {
axpby_ssp_pplus (chi,bs[s],Din,cs[s+1],Din,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,-mass*cs[Ls-1],Din,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus (chi,bs[s],Din,-mass*cs[0],Din,s,0);
axpby_ssp_pminus(chi,1.0,chi,cs[s-1],Din,s,s-1);
} else {
axpby_ssp_pplus (chi,bs[s],Din,cs[s+1],Din,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,cs[s-1],Din,s,s-1);
}
// Collect the terms indept of DW
if ( s==0 ){
axpby_ssp_pplus (chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,mass,psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus (chi,1.0,chi,mass,psi,s,0);
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s-1);
} else {
axpby_ssp_pplus(chi,1.0,chi,-1.0,psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,-1.0,psi,s,s-1);
}
}
// ((b D_W + D_w hop terms +1) on s-diag
axpby (chi,1.0,1.0,chi,psi);
return norm2(chi);
}
// half checkerboard operations
void CayleyFermion5D::Meooe (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion tmp(psi._grid);
// Assemble the 5d matrix
for(int s=0;s<Ls;s++){
if ( s==0 ) {
// tmp = bs psi[s] + cs[s] psi[s+1}
// tmp+= -mass*cs[s] psi[s+1}
axpby_ssp_pminus(tmp,beo[s],psi,-ceo[s],psi ,s, s+1);
axpby_ssp_pplus(tmp,1.0,tmp,mass*ceo[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(tmp,beo[s],psi,mass*ceo[s],psi,s,0);
axpby_ssp_pplus(tmp,1.0,tmp,-ceo[s],psi,s,s-1);
} else {
axpby_ssp_pminus(tmp,beo[s],psi,-ceo[s],psi,s,s+1);
axpby_ssp_pplus (tmp,1.0,tmp,-ceo[s],psi,s,s-1);
}
}
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(tmp,chi,DaggerNo);
} else {
DhopOE(tmp,chi,DaggerNo);
}
}
void CayleyFermion5D::MeooeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion tmp(psi._grid);
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(psi,tmp,DaggerYes);
} else {
DhopOE(psi,tmp,DaggerYes);
}
// Assemble the 5d matrix
for(int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pplus(chi,beo[s],tmp, -ceo[s+1] ,tmp,s,s+1);
axpby_ssp_pminus(chi, 1.0,chi,mass*ceo[Ls-1],tmp,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus(chi,beo[s],tmp,mass*ceo[0],tmp,s,0);
axpby_ssp_pminus(chi,1.0,chi,-ceo[s-1],tmp,s,s-1);
} else {
axpby_ssp_pplus(chi,beo[s],tmp,-ceo[s+1],tmp,s,s+1);
axpby_ssp_pminus(chi,1.0 ,chi,-ceo[s-1],tmp,s,s-1);
}
}
}
void CayleyFermion5D::Mooee (const LatticeFermion &psi, LatticeFermion &chi)
{
for (int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pminus(chi,bee[s],psi ,-cee[s],psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,mass*cee[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(chi,bee[s],psi,mass*cee[s],psi,s,0);
axpby_ssp_pplus (chi,1.0,chi,-cee[s],psi,s,s-1);
} else {
axpby_ssp_pminus(chi,bee[s],psi,-cee[s],psi,s,s+1);
axpby_ssp_pplus (chi,1.0,chi,-cee[s],psi,s,s-1);
}
}
}
void CayleyFermion5D::MooeeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
for (int s=0;s<Ls;s++){
// Assemble the 5d matrix
if ( s==0 ) {
axpby_ssp_pplus(chi,bee[s],psi,-cee[s+1] ,psi,s,s+1);
axpby_ssp_pminus(chi,1.0,chi,mass*cee[Ls-1],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pplus(chi,bee[s],psi,mass*cee[0],psi,s,0);
axpby_ssp_pminus(chi,1.0,chi,-cee[s-1],psi,s,s-1);
} else {
axpby_ssp_pplus(chi,bee[s],psi,-cee[s+1],psi,s,s+1);
axpby_ssp_pminus(chi,1.0 ,chi,-cee[s-1],psi,s,s-1);
}
}
}
void CayleyFermion5D::MooeeInv (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply (L^{\prime})^{-1}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
axpby_ssp_pplus(chi,1.0,psi,-lee[s-1],chi,s,s-1);// recursion Psi[s] -lee P_+ chi[s-1]
}
// L_m^{-1}
for (int s=0;s<Ls-1;s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi,1.0,chi,-leem[s],chi,Ls-1,s);
}
// U_m^{-1} D^{-1}
for (int s=0;s<Ls-1;s++){
// Chi[s] + 1/d chi[s]
axpby_ssp_pplus(chi,1.0/dee[s],chi,-ueem[s]/dee[Ls-1],chi,s,Ls-1);
}
axpby_ssp(chi,1.0/dee[Ls-1],chi,0.0,chi,Ls-1,Ls-1); // Modest avoidable
// Apply U^{-1}
for (int s=Ls-2;s>=0;s--){
axpby_ssp_pminus (chi,1.0,chi,-uee[s],chi,s,s+1); // chi[Ls]
}
}
void CayleyFermion5D::MooeeInvDag (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply (U^{\prime})^{-dagger}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
axpby_ssp_pminus(chi,1.0,psi,-uee[s-1],chi,s,s-1);
}
// U_m^{-\dagger}
for (int s=0;s<Ls-1;s++){
axpby_ssp_pplus(chi,1.0,chi,-ueem[s],chi,Ls-1,s);
}
// L_m^{-\dagger} D^{-dagger}
for (int s=0;s<Ls-1;s++){
axpby_ssp_pminus(chi,1.0/dee[s],chi,-leem[s]/dee[Ls-1],chi,s,Ls-1);
}
axpby_ssp(chi,1.0/dee[Ls-1],chi,0.0,chi,Ls-1,Ls-1); // Modest avoidable
// Apply L^{-dagger}
for (int s=Ls-2;s>=0;s--){
axpby_ssp_pplus (chi,1.0,chi,-lee[s],chi,s,s+1); // chi[Ls]
}
}
// Tanh
void CayleyFermion5D::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c)
{
SetCoefficientsZolotarev(1.0,zdata,b,c);
}
//Zolo
void CayleyFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c)
{
///////////////////////////////////////////////////////////
// The Cayley coeffs (unprec)
///////////////////////////////////////////////////////////
omega.resize(Ls);
bs.resize(Ls);
cs.resize(Ls);
as.resize(Ls);
//
// Ts = ( [bs+cs]Dw )^-1 ( (bs+cs) Dw )
// -(g5 ------- -1 ) ( g5 --------- + 1 )
// ( {2+(bs-cs)Dw} ) ( 2+(bs-cs) Dw )
//
// bs = 1/2( (1/omega_s + 1)*b + (1/omega - 1)*c ) = 1/2( 1/omega(b+c) + (b-c) )
// cs = 1/2( (1/omega_s - 1)*b + (1/omega + 1)*c ) = 1/2( 1/omega(b+c) - (b-c) )
//
// bs+cs = 0.5*( 1/omega(b+c) + (b-c) + 1/omega(b+c) - (b-c) ) = 1/omega(b+c)
// bs-cs = 0.5*( 1/omega(b+c) + (b-c) - 1/omega(b+c) + (b-c) ) = b-c
//
// So
//
// Ts = ( [b+c]Dw/omega_s )^-1 ( (b+c) Dw /omega_s )
// -(g5 ------- -1 ) ( g5 --------- + 1 )
// ( {2+(b-c)Dw} ) ( 2+(b-c) Dw )
//
// Ts = ( [b+c]Dw )^-1 ( (b+c) Dw )
// -(g5 ------- -omega_s) ( g5 --------- + omega_s )
// ( {2+(b-c)Dw} ) ( 2+(b-c) Dw )
//
double bpc = b+c;
double bmc = b-c;
for(int i=0; i < Ls; i++){
as[i] = 1.0;
omega[i] = ((double)zdata->gamma[i])*zolo_hi; //NB reciprocal relative to Chroma NEF code
bs[i] = 0.5*(bpc/omega[i] + bmc);
cs[i] = 0.5*(bpc/omega[i] - bmc);
}
////////////////////////////////////////////////////////
// Constants for the preconditioned matrix Cayley form
////////////////////////////////////////////////////////
bee.resize(Ls);
cee.resize(Ls);
beo.resize(Ls);
ceo.resize(Ls);
for(int i=0;i<Ls;i++){
bee[i]=as[i]*(bs[i]*(4.0-M5) +1.0);
cee[i]=as[i]*(1.0-cs[i]*(4.0-M5));
beo[i]=as[i]*bs[i];
ceo[i]=-as[i]*cs[i];
}
aee.resize(Ls);
aeo.resize(Ls);
for(int i=0;i<Ls;i++){
aee[i]=cee[i];
aeo[i]=ceo[i];
}
//////////////////////////////////////////
// LDU decomposition of eeoo
//////////////////////////////////////////
dee.resize(Ls);
lee.resize(Ls);
leem.resize(Ls);
uee.resize(Ls);
ueem.resize(Ls);
for(int i=0;i<Ls;i++){
dee[i] = bee[i];
if ( i < Ls-1 ) {
lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column
leem[i]=mass*cee[Ls-1]/bee[0];
for(int j=0;j<i;j++) leem[i]*= aee[j]/bee[j+1];
uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row
ueem[i]=mass;
for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j];
ueem[i]*= aee[0]/bee[0];
} else {
lee[i] =0.0;
leem[i]=0.0;
uee[i] =0.0;
ueem[i]=0.0;
}
}
{
double delta_d=mass*cee[Ls-1];
for(int j=0;j<Ls-1;j++) delta_d *= cee[j]/bee[j];
dee[Ls-1] += delta_d;
}
}
}}

View File

@ -0,0 +1,62 @@
#ifndef GRID_QCD_CAYLEY_FERMION_H
#define GRID_QCD_CAYLEY_FERMION_H
namespace Grid {
namespace QCD {
class CayleyFermion5D : public WilsonFermion5D
{
public:
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operations
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Instantiatable(void)=0;
// protected:
RealD mass;
// Cayley form Moebius (tanh and zolotarev)
std::vector<RealD> omega;
std::vector<RealD> bs; // S dependent coeffs
std::vector<RealD> cs;
std::vector<RealD> as;
// For preconditioning Cayley form
std::vector<RealD> bee;
std::vector<RealD> cee;
std::vector<RealD> aee;
std::vector<RealD> beo;
std::vector<RealD> ceo;
std::vector<RealD> aeo;
// LDU factorisation of the eeoo matrix
std::vector<RealD> lee;
std::vector<RealD> leem;
std::vector<RealD> uee;
std::vector<RealD> ueem;
std::vector<RealD> dee;
// Constructors
CayleyFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5);
protected:
void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
};
}
}
#endif

View File

@ -0,0 +1,171 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
void ContinuedFractionFermion5D::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale)
{
SetCoefficientsZolotarev(1.0/scale,zdata);
}
void ContinuedFractionFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
{
R=(1+this->mass)/(1-this->mass);
Beta.resize(Ls);
cc.resize(Ls);
cc_d.resize(Ls);
sqrt_cc.resize(Ls);
for(int i=0; i < Ls ; i++){
Beta[i] = zdata -> beta[i];
cc[i] = 1.0/Beta[i];
cc_d[i]=sqrt(cc[i]);
}
cc_d[Ls-1]=1.0;
for(int i=0; i < Ls-1 ; i++){
sqrt_cc[i]= sqrt(cc[i]*cc[i+1]);
}
sqrt_cc[Ls-2]=sqrt(cc[Ls-2]);
ZoloHiInv =1.0/zolo_hi;
double dw_diag = (4.0-M5)*ZoloHiInv;
See.resize(Ls);
Aee.resize(Ls);
int sign=1;
for(int s=0;s<Ls;s++){
Aee[s] = sign * Beta[s] * dw_diag;
sign = - sign;
}
Aee[Ls-1] += R;
See[0] = Aee[0];
for(int s=1;s<Ls;s++){
See[s] = Aee[s] - 1.0/See[s-1];
}
for(int s=0;s<Ls;s++){
std::cout <<"s = "<<s<<" Beta "<<Beta[s]<<" Aee "<<Aee[s] <<" See "<<See[s] <<std::endl;
}
}
RealD ContinuedFractionFermion5D::M (const LatticeFermion &psi, LatticeFermion &chi)
{
LatticeFermion D(psi._grid);
DW(psi,D,DaggerNo);
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
ag5xpby_ssp(chi,cc[0]*Beta[0]*sign*ZoloHiInv,D,sqrt_cc[0],psi,s,s+1); // Multiplies Dw by G5 so Hw
} else if ( s==(Ls-1) ){
RealD R=(1.0+mass)/(1.0-mass);
ag5xpby_ssp(chi,Beta[s]*ZoloHiInv,D,sqrt_cc[s-1],psi,s,s-1);
ag5xpby_ssp(chi,R,psi,1.0,chi,s,s);
} else {
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*ZoloHiInv,D,sqrt_cc[s],psi,s,s+1);
axpby_ssp(chi,1.0,chi,sqrt_cc[s-1],psi,s,s-1);
}
sign=-sign;
}
return norm2(chi);
}
RealD ContinuedFractionFermion5D::Mdag (const LatticeFermion &psi, LatticeFermion &chi)
{
// This matrix is already hermitian. (g5 Dw) = Dw dag g5 = (g5 Dw)dag
// The rest of matrix is symmetric.
// Can ignore "dag"
return M(psi,chi);
}
void ContinuedFractionFermion5D::Meooe (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
} else {
DhopOE(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
}
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==(Ls-1) ){
ag5xpby_ssp(chi,Beta[s]*ZoloHiInv,chi,0.0,chi,s,s);
} else {
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*ZoloHiInv,chi,0.0,chi,s,s);
}
sign=-sign;
}
}
void ContinuedFractionFermion5D::MeooeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
Meooe(psi,chi);
}
void ContinuedFractionFermion5D::Mooee (const LatticeFermion &psi, LatticeFermion &chi)
{
double dw_diag = (4.0-M5)*ZoloHiInv;
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
ag5xpby_ssp(chi,cc[0]*Beta[0]*sign*dw_diag,psi,sqrt_cc[0],psi,s,s+1); // Multiplies Dw by G5 so Hw
} else if ( s==(Ls-1) ){
// Drop the CC here.
double R=(1+mass)/(1-mass);
ag5xpby_ssp(chi,Beta[s]*dw_diag,psi,sqrt_cc[s-1],psi,s,s-1);
ag5xpby_ssp(chi,R,psi,1.0,chi,s,s);
} else {
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*dw_diag,psi,sqrt_cc[s],psi,s,s+1);
axpby_ssp(chi,1.0,chi,sqrt_cc[s-1],psi,s,s-1);
}
sign=-sign;
}
}
void ContinuedFractionFermion5D::MooeeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
Mooee(psi,chi);
}
void ContinuedFractionFermion5D::MooeeInv (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply Linv
axpby_ssp(chi,1.0/cc_d[0],psi,0.0,psi,0,0);
for(int s=1;s<Ls;s++){
axpbg5y_ssp(chi,1.0/cc_d[s],psi,-1.0/See[s-1],chi,s,s-1);
}
// Apply Dinv
for(int s=0;s<Ls;s++){
ag5xpby_ssp(chi,1.0/See[s],chi,0.0,chi,s,s); //only appearance of See[0]
}
// Apply Uinv = (Linv)^T
axpby_ssp(chi,1.0/cc_d[Ls-1],chi,0.0,chi,Ls-1,Ls-1);
for(int s=Ls-2;s>=0;s--){
axpbg5y_ssp(chi,1.0/cc_d[s],chi,-1.0*cc_d[s+1]/See[s]/cc_d[s],chi,s,s+1);
}
}
void ContinuedFractionFermion5D::MooeeInvDag (const LatticeFermion &psi, LatticeFermion &chi)
{
MooeeInv(psi,chi);
}
// Constructors
ContinuedFractionFermion5D::ContinuedFractionFermion5D(
LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5) :
WilsonFermion5D(_Umu,
FiveDimGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimRedBlackGrid,M5),
mass(_mass)
{
assert((Ls&0x1)==1); // Odd Ls required
}
}
}

View File

@ -0,0 +1,59 @@
#ifndef GRID_QCD_CONTINUED_FRACTION_H
#define GRID_QCD_CONTINUED_FRACTION_H
namespace Grid {
namespace QCD {
class ContinuedFractionFermion5D : public WilsonFermion5D
{
public:
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operaions
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
// virtual void Instantiatable(void)=0;
virtual void Instantiatable(void) =0;
// Constructors
ContinuedFractionFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5);
protected:
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);;
Approx::zolotarev_data *zdata;
// Cont frac
RealD mass;
RealD R;
RealD ZoloHiInv;
std::vector<double> Beta;
std::vector<double> cc;;
std::vector<double> cc_d;;
std::vector<double> sqrt_cc;
std::vector<double> See;
std::vector<double> Aee;
};
}
}
#endif

View File

@ -0,0 +1,46 @@
#ifndef GRID_QCD_DOMAIN_WALL_FERMION_H
#define GRID_QCD_DOMAIN_WALL_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class DomainWallFermion : public CayleyFermion5D
{
public:
virtual void Instantiatable(void) {};
// Constructors
DomainWallFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5) :
CayleyFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
RealD eps = 1.0;
Approx::zolotarev_data *zdata = Approx::grid_higham(eps,this->Ls);// eps is ignored for higham
assert(zdata->n==this->Ls);
std::cout << "DomainWallFermion with Ls="<<Ls<<std::endl;
// Call base setter
this->CayleyFermion5D::SetCoefficientsTanh(zdata,1.0,0.0);
}
};
}
}
#endif

View File

@ -0,0 +1,48 @@
#ifndef GRID_QCD_FERMION_OPERATOR_H
#define GRID_QCD_FERMION_OPERATOR_H
namespace Grid {
namespace QCD {
//////////////////////////////////////////////////////////////////////////////
// Four component fermions
// Should type template the vector and gauge types
// Think about multiple representations
//////////////////////////////////////////////////////////////////////////////
template<class FermionField,class GaugeField>
class FermionOperator : public CheckerBoardedSparseMatrixBase<FermionField>
{
public:
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
virtual GridBase *FermionGrid(void) =0;
virtual GridBase *FermionRedBlackGrid(void) =0;
virtual GridBase *GaugeGrid(void) =0;
virtual GridBase *GaugeRedBlackGrid(void) =0;
// override multiply
virtual RealD M (const FermionField &in, FermionField &out)=0;
virtual RealD Mdag (const FermionField &in, FermionField &out)=0;
// half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out)=0;
virtual void MeooeDag (const FermionField &in, FermionField &out)=0;
virtual void Mooee (const FermionField &in, FermionField &out)=0;
virtual void MooeeDag (const FermionField &in, FermionField &out)=0;
virtual void MooeeInv (const FermionField &in, FermionField &out)=0;
virtual void MooeeInvDag (const FermionField &in, FermionField &out)=0;
// non-hermitian hopping term; half cb or both
virtual void Dhop (const FermionField &in, FermionField &out,int dag)=0;
virtual void DhopOE(const FermionField &in, FermionField &out,int dag)=0;
virtual void DhopEO(const FermionField &in, FermionField &out,int dag)=0;
};
}
}
#endif

View File

@ -0,0 +1,47 @@
#ifndef GRID_QCD_MOBIUS_FERMION_H
#define GRID_QCD_MOBIUS_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class MobiusFermion : public CayleyFermion5D
{
public:
virtual void Instantiatable(void) {};
// Constructors
MobiusFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD b, RealD c) :
CayleyFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
RealD eps = 1.0;
std::cout << "MobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<Ls<<" Tanh approx"<<std::endl;
Approx::zolotarev_data *zdata = Approx::grid_higham(eps,this->Ls);// eps is ignored for higham
assert(zdata->n==this->Ls);
// Call base setter
this->CayleyFermion5D::SetCoefficientsTanh(zdata,b,c);
}
};
}
}
#endif

View File

@ -0,0 +1,49 @@
#ifndef GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
#define GRID_QCD_MOBIUS_ZOLOTAREV_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class MobiusZolotarevFermion : public CayleyFermion5D
{
public:
virtual void Instantiatable(void) {};
// Constructors
MobiusZolotarevFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD b, RealD c,
RealD lo, RealD hi) :
CayleyFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
RealD eps = lo/hi;
Approx::zolotarev_data *zdata = Approx::grid_zolotarev(eps,this->Ls,0);// eps is ignored for higham
assert(zdata->n==this->Ls);
std::cout << "MobiusZolotarevFermion (b="<<b<<",c="<<c<<") with Ls= "<<Ls<<" Zolotarev range ["<<lo<<","<<hi<<"]"<<std::endl;
// Call base setter
this->CayleyFermion5D::SetCoefficientsZolotarev(hi,zdata,b,c);
}
};
}
}
#endif

View File

@ -0,0 +1,34 @@
#ifndef OVERLAP_WILSON_CAYLEY_TANH_FERMION_H
#define OVERLAP_WILSON_CAYLEY_TANH_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class OverlapWilsonCayleyTanhFermion : public MobiusFermion
{
public:
// Constructors
OverlapWilsonCayleyTanhFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD scale) :
// b+c=scale, b-c = 0 <=> b =c = scale/2
MobiusFermion(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,0.5*scale,0.5*scale)
{
}
};
}
}
#endif

View File

@ -0,0 +1,37 @@
#ifndef OVERLAP_WILSON_CAYLEY_ZOLOTAREV_FERMION_H
#define OVERLAP_WILSON_CAYLEY_ZOLOTAREV_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class OverlapWilsonCayleyZolotarevFermion : public MobiusZolotarevFermion
{
public:
// Constructors
OverlapWilsonCayleyZolotarevFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD lo, RealD hi) :
// b+c=1.0, b-c = 0 <=> b =c = 1/2
MobiusZolotarevFermion(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,0.5,0.5,lo,hi)
{}
};
}
}
#endif

View File

@ -0,0 +1,39 @@
#ifndef OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
#define OVERLAP_WILSON_CONTFRAC_TANH_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class OverlapWilsonContFracTanhFermion : public ContinuedFractionFermion5D
{
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonContFracTanhFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD scale) :
// b+c=scale, b-c = 0 <=> b =c = scale/2
ContinuedFractionFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;// Even rational order
zdata = Approx::grid_higham(1.0,nrational);// eps is ignored for higham
SetCoefficientsTanh(zdata,scale);
}
};
}
}
#endif

View File

@ -0,0 +1,44 @@
#ifndef OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
#define OVERLAP_WILSON_CONTFRAC_ZOLOTAREV_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class OverlapWilsonContFracZolotarevFermion : public ContinuedFractionFermion5D
{
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonContFracZolotarevFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD lo,RealD hi):
// b+c=scale, b-c = 0 <=> b =c = scale/2
ContinuedFractionFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;// Even rational order
RealD eps = lo/hi;
Approx::zolotarev_data *zdata = Approx::grid_zolotarev(eps,nrational,0);
SetCoefficientsZolotarev(hi,zdata);
}
};
}
}
#endif

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,49 @@
#ifndef GRID_QCD_PARTIAL_FRACTION_H
#define GRID_QCD_PARTIAL_FRACTION_H
namespace Grid {
namespace QCD {
class PartialFractionFermion5D : public WilsonFermion5D
{
public:
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operaions
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
private:
virtual void PartialFractionCoefficients(void);
Approx::zolotarev_data *zdata;
// Part frac
double R;
std::vector<double> p;
std::vector<double> q;
// Constructors
PartialFractionFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5);
};
}
}
#endif

View File

@ -0,0 +1,37 @@
#ifndef GRID_QCD_SCALED_SHAMIR_FERMION_H
#define GRID_QCD_SCALED_SHAMIR_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class ScaledShamirFermion : public MobiusFermion
{
public:
// Constructors
ScaledShamirFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD scale) :
// b+c=scale, b-c = 1 <=> 2b = scale+1; 2c = scale-1
MobiusFermion(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,0.5*(scale+1.0),0.5*(scale-1.0))
{
}
};
}
}
#endif

View File

@ -0,0 +1,39 @@
#ifndef GRID_QCD_SHAMIR_ZOLOTAREV_FERMION_H
#define GRID_QCD_SHAMIR_ZOLOTAREV_FERMION_H
#include <Grid.h>
namespace Grid {
namespace QCD {
class ShamirZolotarevFermion : public MobiusZolotarevFermion
{
public:
// Constructors
ShamirZolotarevFermion(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,
RealD lo, RealD hi) :
// b+c = 1; b-c = 1 => b=1, c=0
MobiusZolotarevFermion(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,1.0,0.0,lo,hi)
{}
};
}
}
#endif

View File

@ -0,0 +1,61 @@
#ifndef GRID_QCD_WILSON_COMPRESSOR_H
#define GRID_QCD_WILSON_COMPRESSOR_H
namespace Grid {
namespace QCD {
class WilsonCompressor {
public:
int mu;
int dag;
WilsonCompressor(int _dag){
mu=0;
dag=_dag;
assert((dag==0)||(dag==1));
}
void Point(int p) {
mu=p;
};
vHalfSpinColourVector operator () (const vSpinColourVector &in)
{
vHalfSpinColourVector ret;
int mudag=mu;
if (dag) {
mudag=(mu+Nd)%(2*Nd);
}
switch(mudag) {
case Xp:
spProjXp(ret,in);
break;
case Yp:
spProjYp(ret,in);
break;
case Zp:
spProjZp(ret,in);
break;
case Tp:
spProjTp(ret,in);
break;
case Xm:
spProjXm(ret,in);
break;
case Ym:
spProjYm(ret,in);
break;
case Zm:
spProjZm(ret,in);
break;
case Tm:
spProjTm(ret,in);
break;
default:
assert(0);
break;
}
return ret;
}
};
}} // namespace close
#endif

View File

@ -0,0 +1,163 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
const std::vector<int> WilsonFermion::directions ({0,1,2,3, 0, 1, 2, 3});
const std::vector<int> WilsonFermion::displacements({1,1,1,1,-1,-1,-1,-1});
int WilsonFermion::HandOptDslash;
WilsonFermion::WilsonFermion(LatticeGaugeField &_Umu,
GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid,
RealD _mass) :
_grid(&Fgrid),
_cbgrid(&Hgrid),
Stencil (&Fgrid,npoint,Even,directions,displacements),
StencilEven(&Hgrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (&Hgrid,npoint,Odd ,directions,displacements), // source is Odd
mass(_mass),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd (&Hgrid)
{
// Allocate the required comms buffer
comm_buf.resize(Stencil._unified_buffer_size); // this is always big enough to contain EO
DoubleStore(Umu,_Umu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
void WilsonFermion::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid());
conformable(Umu._grid,GaugeGrid());
LatticeColourMatrix U(GaugeGrid());
for(int mu=0;mu<Nd;mu++){
U = peekIndex<LorentzIndex>(Umu,mu);
pokeIndex<LorentzIndex>(Uds,U,mu);
U = adj(Cshift(U,mu,-1));
pokeIndex<LorentzIndex>(Uds,U,mu+4);
}
}
RealD WilsonFermion::M(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerNo);
return axpy_norm(out,4+mass,in,out);
}
RealD WilsonFermion::Mdag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerYes);
return axpy_norm(out,4+mass,in,out);
}
void WilsonFermion::Meooe(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerNo);
} else {
DhopOE(in,out,DaggerNo);
}
}
void WilsonFermion::MeooeDag(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerYes);
} else {
DhopOE(in,out,DaggerYes);
}
}
void WilsonFermion::Mooee(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (4.0+mass)*in;
return ;
}
void WilsonFermion::MooeeDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
Mooee(in,out);
}
void WilsonFermion::MooeeInv(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (1.0/(4.0+mass))*in;
return ;
}
void WilsonFermion::MooeeInvDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
MooeeInv(in,out);
}
void WilsonFermion::DhopInternal(CartesianStencil & st,LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
WilsonCompressor compressor(dag);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
if ( dag == DaggerYes ) {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHand::DhopSiteDag(st,U,comm_buf,sss,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOpt::DhopSiteDag(st,U,comm_buf,sss,sss,in,out);
}
}
} else {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHand::DhopSite(st,U,comm_buf,sss,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOpt::DhopSite(st,U,comm_buf,sss,sss,in,out);
}
}
}
}
void WilsonFermion::DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag);
}
void WilsonFermion::DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag);
}
void WilsonFermion::Dhop(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_grid); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Umu,in,out,dag);
}
}}

View File

@ -0,0 +1,87 @@
#ifndef GRID_QCD_WILSON_FERMION_H
#define GRID_QCD_WILSON_FERMION_H
namespace Grid {
namespace QCD {
class WilsonFermion : public FermionOperator<LatticeFermion,LatticeGaugeField>
{
public:
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _grid ;}
GridBase *GaugeRedBlackGrid(void) { return _cbgrid ;}
GridBase *FermionGrid(void) { return _grid;}
GridBase *FermionRedBlackGrid(void) { return _cbgrid;}
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
// half checkerboard operaions
void Meooe (const LatticeFermion &in, LatticeFermion &out);
void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out); // remain virtual so we
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out); // can derive Clover
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out); // from Wilson bas
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
// non-hermitian hopping term; half cb or both
void Dhop (const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
///////////////////////////////////////////////////////////////
// Extra methods added by derived
///////////////////////////////////////////////////////////////
void DhopInternal(CartesianStencil & st,
LatticeDoubledGaugeField &U,
const LatticeFermion &in,
LatticeFermion &out,
int dag);
// Constructor
WilsonFermion(LatticeGaugeField &_Umu,GridCartesian &Fgrid,GridRedBlackCartesian &Hgrid,RealD _mass);
// DoubleStore
void DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
static int HandOptDslash; // these are a temporary hack
static int MortonOrder;
protected:
RealD mass;
GridBase * _grid;
GridBase * _cbgrid;
static const int npoint=8;
static const std::vector<int> directions ;
static const std::vector<int> displacements;
//Defines the stencils for even and odd
CartesianStencil Stencil;
CartesianStencil StencilEven;
CartesianStencil StencilOdd;
// Copy of the gauge field , with even and odd subsets
LatticeDoubledGaugeField Umu;
LatticeDoubledGaugeField UmuEven;
LatticeDoubledGaugeField UmuOdd;
// Comms buffer
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > comm_buf;
};
}
}
#endif

View File

@ -0,0 +1,186 @@
#include <Grid.h>
namespace Grid {
namespace QCD {
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> WilsonFermion5D::directions ({1,2,3,4, 1, 2, 3, 4});
const std::vector<int> WilsonFermion5D::displacements({1,1,1,1,-1,-1,-1,-1});
int WilsonFermion5D::HandOptDslash;
// 5d lattice for DWF.
WilsonFermion5D::WilsonFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _M5) :
_FiveDimGrid(&FiveDimGrid),
_FiveDimRedBlackGrid(&FiveDimRedBlackGrid),
_FourDimGrid(&FourDimGrid),
_FourDimRedBlackGrid(&FourDimRedBlackGrid),
Stencil (_FiveDimGrid,npoint,Even,directions,displacements),
StencilEven(_FiveDimRedBlackGrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (_FiveDimRedBlackGrid,npoint,Odd ,directions,displacements), // source is Odd
M5(_M5),
Umu(_FourDimGrid),
UmuEven(_FourDimRedBlackGrid),
UmuOdd (_FourDimRedBlackGrid),
Lebesgue(_FourDimGrid),
LebesgueEvenOdd(_FourDimRedBlackGrid)
{
// some assertions
assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4);
assert(FiveDimRedBlackGrid._ndimension==5);
assert(FourDimRedBlackGrid._ndimension==4);
assert(FiveDimRedBlackGrid._checker_dim==1);
// Dimension zero of the five-d is the Ls direction
Ls=FiveDimGrid._fdimensions[0];
assert(FiveDimRedBlackGrid._fdimensions[0]==Ls);
assert(FiveDimRedBlackGrid._processors[0] ==1);
assert(FiveDimRedBlackGrid._simd_layout[0]==1);
assert(FiveDimGrid._processors[0] ==1);
assert(FiveDimGrid._simd_layout[0] ==1);
// Other dimensions must match the decomposition of the four-D fields
for(int d=0;d<4;d++){
assert(FourDimRedBlackGrid._fdimensions[d] ==FourDimGrid._fdimensions[d]);
assert(FiveDimRedBlackGrid._fdimensions[d+1]==FourDimGrid._fdimensions[d]);
assert(FourDimRedBlackGrid._processors[d] ==FourDimGrid._processors[d]);
assert(FiveDimRedBlackGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]);
assert(FiveDimRedBlackGrid._simd_layout[d+1]==FourDimGrid._simd_layout[d]);
assert(FiveDimGrid._fdimensions[d+1] ==FourDimGrid._fdimensions[d]);
assert(FiveDimGrid._processors[d+1] ==FourDimGrid._processors[d]);
assert(FiveDimGrid._simd_layout[d+1] ==FourDimGrid._simd_layout[d]);
}
// Allocate the required comms buffer
comm_buf.resize(Stencil._unified_buffer_size); // this is always big enough to contain EO
DoubleStore(Umu,_Umu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
void WilsonFermion5D::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid());
conformable(Umu._grid,GaugeGrid());
LatticeColourMatrix U(GaugeGrid());
for(int mu=0;mu<Nd;mu++){
U = peekIndex<LorentzIndex>(Umu,mu);
pokeIndex<LorentzIndex>(Uds,U,mu);
U = adj(Cshift(U,mu,-1));
pokeIndex<LorentzIndex>(Uds,U,mu+4);
}
}
void WilsonFermion5D::DhopInternal(CartesianStencil & st, LebesgueOrder &lo,
LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
WilsonCompressor compressor(dag);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
// Not loop ordering and data layout.
// Designed to create
// - per thread reuse in L1 cache for U
// - 8 linear access unit stride streams per thread for Fermion for hw prefetchable.
if ( dag == DaggerYes ) {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
//int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOptHand::DhopSiteDag(st,U,comm_buf,sF,sU,in,out);
}
}
} else {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
// int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOpt::DhopSiteDag(st,U,comm_buf,sF,sU,in,out);
}
}
}
} else {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
// int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOptHand::DhopSite(st,U,comm_buf,sF,sU,in,out);
}
}
} else {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
// int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOpt::DhopSite(st,U,comm_buf,sF,sU,in,out);
}
}
}
}
}
void WilsonFermion5D::DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,in,out,dag);
}
void WilsonFermion5D::DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,in,out,dag);
}
void WilsonFermion5D::Dhop(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,FermionGrid()); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Lebesgue,Umu,in,out,dag);
}
void WilsonFermion5D::DW(const LatticeFermion &in, LatticeFermion &out,int dag)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,dag); // -0.5 is included
axpy(out,4.0-M5,in,out);
}
}
}

View File

@ -0,0 +1,121 @@
#ifndef GRID_QCD_DWF_H
#define GRID_QCD_DWF_H
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////////////
// This is the 4d red black case appropriate to support
//
// parity = (x+y+z+t)|2;
// generalised five dim fermions like mobius, zolotarev etc..
//
// i.e. even even contains fifth dim hopping term.
//
// [DIFFERS from original CPS red black implementation parity = (x+y+z+t+s)|2 ]
////////////////////////////
//ContFrac:
// Ls always odd. Rational poly deg is either Ls or Ls-1
//PartFrac
// Ls always odd. Rational poly deg is either Ls or Ls-1
//
//Cayley: Ls always even, Rational poly deg is Ls
//
// Just set nrational as Ls. Forget about Ls-1 cases.
//
// Require odd Ls for cont and part frac
////////////////////////////
////////////////////////////////////////////////////////////////////////////////
class WilsonFermion5D : public FermionOperator<LatticeFermion,LatticeGaugeField>
{
public:
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _FourDimGrid ;}
GridBase *GaugeRedBlackGrid(void) { return _FourDimRedBlackGrid ;}
GridBase *FermionGrid(void) { return _FiveDimGrid;}
GridBase *FermionRedBlackGrid(void) { return _FiveDimRedBlackGrid;}
// full checkerboard operations; leave unimplemented as abstract for now
//virtual RealD M (const LatticeFermion &in, LatticeFermion &out)=0;
//virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out)=0;
// half checkerboard operations; leave unimplemented as abstract for now
// virtual void Meooe (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void Mooee (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out)=0;
// virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out)=0;
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW
void DW (const LatticeFermion &in, LatticeFermion &out,int dag);
void Dhop (const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
///////////////////////////////////////////////////////////////
// New methods added
///////////////////////////////////////////////////////////////
void DhopInternal(CartesianStencil & st,
LebesgueOrder &lo,
LatticeDoubledGaugeField &U,
const LatticeFermion &in,
LatticeFermion &out,
int dag);
// Constructors
WilsonFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _M5);
// DoubleStore
void DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
static int HandOptDslash; // these are a temporary hack
protected:
// Add these to the support from Wilson
GridBase *_FourDimGrid;
GridBase *_FourDimRedBlackGrid;
GridBase *_FiveDimGrid;
GridBase *_FiveDimRedBlackGrid;
static const int npoint=8;
static const std::vector<int> directions ;
static const std::vector<int> displacements;
double M5;
int Ls;
//Defines the stencils for even and odd
CartesianStencil Stencil;
CartesianStencil StencilEven;
CartesianStencil StencilOdd;
// Copy of the gauge field , with even and odd subsets
LatticeDoubledGaugeField Umu;
LatticeDoubledGaugeField UmuEven;
LatticeDoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > comm_buf;
};
}
}
#endif

View File

@ -5,7 +5,7 @@ namespace QCD {
void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out)
int sF,int sU,const LatticeFermion &in, LatticeFermion &out)
{
vHalfSpinColourVector tmp;
vHalfSpinColourVector chi;
@ -16,6 +16,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
//#define VERBOSE( A) if ( ss<10 ) { std::cout << "site " <<ss << " " #A " neigh " << offset << " perm "<< perm <<std::endl;}
// Xp
int ss = sF;
offset = st._offsets [Xp][ss];
local = st._is_local[Xp][ss];
perm = st._permute[Xp][ss];
@ -29,7 +30,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Xp),&chi());
mult(&Uchi(),&U._odata[sU](Xp),&chi());
spReconXp(result,Uchi);
// std::cout << "XP_RECON"<<std::endl;
@ -51,7 +52,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Yp),&chi());
mult(&Uchi(),&U._odata[sU](Yp),&chi());
accumReconYp(result,Uchi);
// Zp
@ -67,7 +68,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Zp),&chi());
mult(&Uchi(),&U._odata[sU](Zp),&chi());
accumReconZp(result,Uchi);
// Tp
@ -83,7 +84,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Tp),&chi());
mult(&Uchi(),&U._odata[sU](Tp),&chi());
accumReconTp(result,Uchi);
// Xm
@ -101,7 +102,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Xm),&chi());
mult(&Uchi(),&U._odata[sU](Xm),&chi());
accumReconXm(result,Uchi);
// std::cout << "XM_RECON_ACCUM"<<std::endl;
// std::cout << result()(0)(0) <<" "<<result()(0)(1) <<" "<<result()(0)(2) <<std::endl;
@ -124,7 +125,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Ym),&chi());
mult(&Uchi(),&U._odata[sU](Ym),&chi());
accumReconYm(result,Uchi);
// Zm
@ -140,7 +141,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Zm),&chi());
mult(&Uchi(),&U._odata[sU](Zm),&chi());
accumReconZm(result,Uchi);
// Tm
@ -156,15 +157,15 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Tm),&chi());
mult(&Uchi(),&U._odata[sU](Tm),&chi());
accumReconTm(result,Uchi);
vstream(out._odata[ss],result);
vstream(out._odata[ss],result*(-0.5));
}
void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out)
int sF,int sU,const LatticeFermion &in, LatticeFermion &out)
{
vHalfSpinColourVector tmp;
vHalfSpinColourVector chi;
@ -173,6 +174,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
int offset,local,perm, ptype;
// Xp
int ss=sF;
offset = st._offsets [Xm][ss];
local = st._is_local[Xm][ss];
perm = st._permute[Xm][ss];
@ -186,7 +188,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Xm),&chi());
mult(&Uchi(),&U._odata[sU](Xm),&chi());
spReconXp(result,Uchi);
// Yp
@ -202,7 +204,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Ym),&chi());
mult(&Uchi(),&U._odata[sU](Ym),&chi());
accumReconYp(result,Uchi);
// Zp
@ -218,7 +220,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Zm),&chi());
mult(&Uchi(),&U._odata[sU](Zm),&chi());
accumReconZp(result,Uchi);
// Tp
@ -234,7 +236,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Tm),&chi());
mult(&Uchi(),&U._odata[sU](Tm),&chi());
accumReconTp(result,Uchi);
// Xm
@ -252,7 +254,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Xp),&chi());
mult(&Uchi(),&U._odata[sU](Xp),&chi());
accumReconXm(result,Uchi);
// Ym
@ -269,7 +271,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Yp),&chi());
mult(&Uchi(),&U._odata[sU](Yp),&chi());
accumReconYm(result,Uchi);
// Zm
@ -285,7 +287,7 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Zp),&chi());
mult(&Uchi(),&U._odata[sU](Zp),&chi());
accumReconZm(result,Uchi);
// Tm
@ -301,9 +303,9 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[ss](Tp),&chi());
mult(&Uchi(),&U._odata[sU](Tp),&chi());
accumReconTm(result,Uchi);
vstream(out._odata[ss],result);
vstream(out._odata[ss],result*(-0.5));
}
}}

View File

@ -0,0 +1,42 @@
#ifndef GRID_QCD_DHOP_H
#define GRID_QCD_DHOP_H
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helper classes that implement Wilson stencil for a single site.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Generic version works for any Nc and with extra flavour indices
class DiracOpt {
public:
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
static void DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
static void DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
};
// Hand unrolled for Nc=3, one flavour
class DiracOptHand {
public:
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
static void DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
static void DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
};
}
}
#endif

View File

@ -27,7 +27,7 @@
Chi_12 = ref()(1)(2);
#define MULT_2SPIN(A)\
auto & ref(U._odata[ss](A)); \
auto & ref(U._odata[sU](A)); \
U_00 = ref()(0,0);\
U_10 = ref()(1,0);\
U_20 = ref()(2,0);\
@ -282,7 +282,7 @@ namespace QCD {
void DiracOptHand::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out)
int sF,int sU,const LatticeFermion &in, LatticeFermion &out)
{
REGISTER vComplex result_00; // 12 regs on knc
REGISTER vComplex result_01;
@ -338,6 +338,7 @@ void DiracOptHand::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
int offset,local,perm, ptype;
int ss=sF;
// Xp
offset = st._offsets [Xp][ss];
@ -514,24 +515,24 @@ void DiracOptHand::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
{
vSpinColourVector & ref (out._odata[ss]);
vstream(ref()(0)(0),result_00);
vstream(ref()(0)(1),result_01);
vstream(ref()(0)(2),result_02);
vstream(ref()(1)(0),result_10);
vstream(ref()(1)(1),result_11);
vstream(ref()(1)(2),result_12);
vstream(ref()(2)(0),result_20);
vstream(ref()(2)(1),result_21);
vstream(ref()(2)(2),result_22);
vstream(ref()(3)(0),result_30);
vstream(ref()(3)(1),result_31);
vstream(ref()(3)(2),result_32);
vstream(ref()(0)(0),result_00*(-0.5));
vstream(ref()(0)(1),result_01*(-0.5));
vstream(ref()(0)(2),result_02*(-0.5));
vstream(ref()(1)(0),result_10*(-0.5));
vstream(ref()(1)(1),result_11*(-0.5));
vstream(ref()(1)(2),result_12*(-0.5));
vstream(ref()(2)(0),result_20*(-0.5));
vstream(ref()(2)(1),result_21*(-0.5));
vstream(ref()(2)(2),result_22*(-0.5));
vstream(ref()(3)(0),result_30*(-0.5));
vstream(ref()(3)(1),result_31*(-0.5));
vstream(ref()(3)(2),result_32*(-0.5));
}
}
void DiracOptHand::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,const LatticeFermion &in, LatticeFermion &out)
int ss,int sU,const LatticeFermion &in, LatticeFermion &out)
{
REGISTER vComplex result_00; // 12 regs on knc
REGISTER vComplex result_01;
@ -752,18 +753,18 @@ void DiracOptHand::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
{
vSpinColourVector & ref (out._odata[ss]);
vstream(ref()(0)(0),result_00);
vstream(ref()(0)(1),result_01);
vstream(ref()(0)(2),result_02);
vstream(ref()(1)(0),result_10);
vstream(ref()(1)(1),result_11);
vstream(ref()(1)(2),result_12);
vstream(ref()(2)(0),result_20);
vstream(ref()(2)(1),result_21);
vstream(ref()(2)(2),result_22);
vstream(ref()(3)(0),result_30);
vstream(ref()(3)(1),result_31);
vstream(ref()(3)(2),result_32);
vstream(ref()(0)(0),result_00*(-0.5));
vstream(ref()(0)(1),result_01*(-0.5));
vstream(ref()(0)(2),result_02*(-0.5));
vstream(ref()(1)(0),result_10*(-0.5));
vstream(ref()(1)(1),result_11*(-0.5));
vstream(ref()(1)(2),result_12*(-0.5));
vstream(ref()(2)(0),result_20*(-0.5));
vstream(ref()(2)(1),result_21*(-0.5));
vstream(ref()(2)(2),result_22*(-0.5));
vstream(ref()(3)(0),result_30*(-0.5));
vstream(ref()(3)(1),result_31*(-0.5));
vstream(ref()(3)(2),result_32*(-0.5));
}
}
}}

Some files were not shown because too many files have changed in this diff Show More