mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-24 12:45:56 +01:00
Delete file, replaced by SchurFactoredFermionOperator
This commit is contained in:
parent
bf034ce239
commit
347ccdc468
@ -1,315 +0,0 @@
|
|||||||
/*************************************************************************************
|
|
||||||
|
|
||||||
Grid physics library, www.github.com/paboyle/Grid
|
|
||||||
|
|
||||||
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
|
|
||||||
|
|
||||||
Copyright (C) 2015
|
|
||||||
|
|
||||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
||||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
|
||||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation; either version 2 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License along
|
|
||||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
||||||
|
|
||||||
See the full license in the file "LICENSE" in the top level distribution directory
|
|
||||||
*************************************************************************************/
|
|
||||||
/* END LEGAL */
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
|
||||||
|
|
||||||
///////////////////////////////////////
|
|
||||||
// Two flavour ratio
|
|
||||||
///////////////////////////////////////
|
|
||||||
template<class Impl>
|
|
||||||
class DomainDecomposedBoundary {
|
|
||||||
public:
|
|
||||||
INHERIT_IMPL_TYPES(Impl);
|
|
||||||
|
|
||||||
typedef typename GaugeField::vector_type vector_type; //SIMD-vectorized complex type
|
|
||||||
typedef typename GaugeField::scalar_type scalar_type; //scalar complex type
|
|
||||||
|
|
||||||
typedef iVector<iScalar<iScalar<vector_type> >, Nd > LorentzScalarType; //complex phase for each site/direction
|
|
||||||
typedef iScalar<iScalar<iScalar<vector_type> > > ScalarType; //complex phase for each site
|
|
||||||
typedef Lattice<LorentzScalarType> LatticeLorentzScalarType;
|
|
||||||
typedef Lattice<ScalarType> LatticeScalarType;
|
|
||||||
|
|
||||||
DDHMCFilter Filter;
|
|
||||||
const int Omega=0;
|
|
||||||
const int OmegaBar=1;
|
|
||||||
|
|
||||||
void ProjectBoundaryBothDomains (FermionField &f,int sgn)
|
|
||||||
{
|
|
||||||
assert((sgn==1)||(sgn==-1));
|
|
||||||
|
|
||||||
Gamma::Algebra Gmu [] = {
|
|
||||||
Gamma::Algebra::GammaX,
|
|
||||||
Gamma::Algebra::GammaY,
|
|
||||||
Gamma::Algebra::GammaZ,
|
|
||||||
Gamma::Algebra::GammaT
|
|
||||||
};
|
|
||||||
|
|
||||||
GridBase *grid = f.Grid();
|
|
||||||
LatticeInteger coor(grid);
|
|
||||||
LatticeInteger face(grid);
|
|
||||||
LatticeInteger nface(grid); nface=Zero();
|
|
||||||
|
|
||||||
ComplexField zz(grid); zz=Zero();
|
|
||||||
|
|
||||||
FermionField projected(grid); projected=Zero();
|
|
||||||
FermionField sp_proj (grid);
|
|
||||||
|
|
||||||
int dims = grid->Nd();
|
|
||||||
int isDWF= (dims==Nd+1);
|
|
||||||
assert((dims==Nd)||(dims==Nd+1));
|
|
||||||
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
// need to worry about DWF 5th dim first
|
|
||||||
// Could extend to domain decompose in FIFTH dimension.
|
|
||||||
// With chiral projectors here
|
|
||||||
LatticeCoordinate(coor,mu+isDWF);
|
|
||||||
|
|
||||||
face = (mod(coor,Block[mu]) == 0 );
|
|
||||||
nface = nface + face;
|
|
||||||
|
|
||||||
// Lower face receives (1-gamma)/2 in normal forward hopping term
|
|
||||||
sp_proj = 0.5*(f-sgn*Gamma(Gmu[mu])*f)
|
|
||||||
projected= where(face==cb,f,projected);
|
|
||||||
|
|
||||||
face = (mod(coor,Block[mu]) == Block[mu]-1 );
|
|
||||||
nface = nface + face;
|
|
||||||
|
|
||||||
// Upper face receives (1+gamma)/2 in normal backward hopping term
|
|
||||||
sp_proj = 0.5*(f+sgn*Gamma(Gmu[mu])*f)
|
|
||||||
projected= where(face==cb,f,projected);
|
|
||||||
|
|
||||||
}
|
|
||||||
// Keep the spin projected faces where nface==1 and initial Zero() where nface==0.
|
|
||||||
projected = where(nface>1,f,projected);
|
|
||||||
}
|
|
||||||
void ProjectDomain(FermionField &f,int cb)
|
|
||||||
{
|
|
||||||
GridBase *grid = f.Grid();
|
|
||||||
ComplexField zz(grid); zz=Zero();
|
|
||||||
LatticeInteger coor(grid);
|
|
||||||
LatticeInteger domaincb(grid); domaincb=Zero();
|
|
||||||
for(int d=0;d<grid->Nd();d++){
|
|
||||||
LatticeCoordinate(coor,mu);
|
|
||||||
domaincb = domaincb + div(coor,Block[d]);
|
|
||||||
}
|
|
||||||
f = where(mod(domaincb,2)==cb,f,zz);
|
|
||||||
};
|
|
||||||
|
|
||||||
void ProjectOmegaBar (FermionField &f) {ProjectDomain(f,OmegaBar);}
|
|
||||||
void ProjectOmega (FermionField &f) {ProjectDomain(f,Omega);}
|
|
||||||
|
|
||||||
// See my notes(!).
|
|
||||||
// Notation: Following Luscher, we introduce projectors $\hPdb$ with both spinor and space structure
|
|
||||||
// projecting all spinor elements in $\Omega$ connected by $\Ddb$ to $\bar{\Omega}$,
|
|
||||||
void ProjectBoundaryBar(FermionField &f)
|
|
||||||
{
|
|
||||||
ProjectBoundaryBothDomains(f);
|
|
||||||
ProjectOmega(f);
|
|
||||||
}
|
|
||||||
// and $\hPd$ projecting all spinor elements in $\bar{\Omega}$ connected by $\Dd$ to $\Omega$.
|
|
||||||
void ProjectBoundary (FermionField &f)
|
|
||||||
{
|
|
||||||
ProjectBoundaryBothDomains(f);
|
|
||||||
ProjectOmegaBar(f);
|
|
||||||
};
|
|
||||||
|
|
||||||
void dBoundary (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
|
|
||||||
{
|
|
||||||
FermionField tmp(in);
|
|
||||||
ProjectOmegaBar(tmp);
|
|
||||||
Op.M(tmp,out);
|
|
||||||
ProjectOmega(out);
|
|
||||||
};
|
|
||||||
void dBoundaryBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
|
|
||||||
{
|
|
||||||
FermionField tmp(in);
|
|
||||||
ProjectOmega(tmp);
|
|
||||||
Op.M(tmp,out);
|
|
||||||
ProjectOmegaBar(out);
|
|
||||||
};
|
|
||||||
void dOmega (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
|
|
||||||
{
|
|
||||||
FermionField tmp(in);
|
|
||||||
ProjectOmega(tmp);
|
|
||||||
Op.M(tmp,out);
|
|
||||||
ProjectOmega(out);
|
|
||||||
};
|
|
||||||
void dOmegaBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
|
|
||||||
{
|
|
||||||
FermionField tmp(in);
|
|
||||||
ProjectOmegaBar(tmp);
|
|
||||||
Op.M(tmp,out);
|
|
||||||
ProjectOmegaBar(out);
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class Impl>
|
|
||||||
class DomainDecomposedBoundaryPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
|
||||||
public:
|
|
||||||
INHERIT_IMPL_TYPES(Impl);
|
|
||||||
|
|
||||||
private:
|
|
||||||
FermionOperator<Impl> & NumOp;// the basic operator
|
|
||||||
FermionOperator<Impl> & DenOp;// the basic operator
|
|
||||||
FermionOperator<Impl> & NumOpDirichlet;// the basic operator
|
|
||||||
FermionOperator<Impl> & DenOpDirichlet;// the basic operator
|
|
||||||
|
|
||||||
OperatorFunction<FermionField> &DerivativeSolver;
|
|
||||||
OperatorFunction<FermionField> &ActionSolver;
|
|
||||||
|
|
||||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
|
||||||
|
|
||||||
|
|
||||||
public:
|
|
||||||
DomainBoundaryPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
|
||||||
FermionOperator<Impl> &_DenOp,
|
|
||||||
FermionOperator<Impl> &_NumOpDirichlet,
|
|
||||||
FermionOperator<Impl> &_DenOpDirichlet,
|
|
||||||
OperatorFunction<FermionField> & DS,
|
|
||||||
OperatorFunction<FermionField> & AS,
|
|
||||||
Coordinate &_Block
|
|
||||||
) : NumOp(_NumOp),
|
|
||||||
DenOp(_DenOp),
|
|
||||||
DerivativeSolver(DS),
|
|
||||||
ActionSolver(AS),
|
|
||||||
Phi(_NumOp.FermionGrid()),
|
|
||||||
Block(_Block)
|
|
||||||
// LinkFilter(Block)
|
|
||||||
{};
|
|
||||||
|
|
||||||
virtual std::string action_name(){return "DomainBoundaryPseudoFermionRatioAction";}
|
|
||||||
|
|
||||||
virtual std::string LogParameters(){
|
|
||||||
std::stringstream sstream;
|
|
||||||
sstream << GridLogMessage << "["<<action_name()<<"] Block "<<_Block << std::endl;
|
|
||||||
return sstream.str();
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG)
|
|
||||||
{
|
|
||||||
// P(phi) = e^{- phi^dag V (MdagM)^-1 Vdag phi}
|
|
||||||
//
|
|
||||||
// NumOp == V
|
|
||||||
// DenOp == M
|
|
||||||
//
|
|
||||||
// Take phi = Vdag^{-1} Mdag eta ; eta = Mdag^{-1} Vdag Phi
|
|
||||||
//
|
|
||||||
// P(eta) = e^{- eta^dag eta}
|
|
||||||
//
|
|
||||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
|
||||||
//
|
|
||||||
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
|
||||||
//
|
|
||||||
RealD scale = std::sqrt(0.5);
|
|
||||||
|
|
||||||
FermionField eta(NumOp.FermionGrid());
|
|
||||||
FermionField tmp(NumOp.FermionGrid());
|
|
||||||
|
|
||||||
gaussian(pRNG,eta);
|
|
||||||
|
|
||||||
ProjectBoundary(eta);
|
|
||||||
|
|
||||||
NumOp.ImportGauge(U);
|
|
||||||
DenOp.ImportGauge(U);
|
|
||||||
|
|
||||||
// Note: this hard codes normal equations type solvers; alternate implementation needed for
|
|
||||||
// non-herm style solvers.
|
|
||||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
|
|
||||||
|
|
||||||
DenOp.Mdag(eta,Phi); // Mdag eta
|
|
||||||
tmp = Zero();
|
|
||||||
ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta
|
|
||||||
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
|
|
||||||
|
|
||||||
Phi=Phi*scale;
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
// S = phi^dag V (Mdag M)^-1 Vdag phi
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
virtual RealD S(const GaugeField &U) {
|
|
||||||
|
|
||||||
NumOp.ImportGauge(U);
|
|
||||||
DenOp.ImportGauge(U);
|
|
||||||
|
|
||||||
FermionField X(NumOp.FermionGrid());
|
|
||||||
FermionField Y(NumOp.FermionGrid());
|
|
||||||
|
|
||||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
|
||||||
|
|
||||||
NumOp.Mdag(Phi,Y); // Y= Vdag phi
|
|
||||||
X=Zero();
|
|
||||||
ActionSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
|
|
||||||
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
|
|
||||||
|
|
||||||
RealD action = norm2(Y);
|
|
||||||
|
|
||||||
return action;
|
|
||||||
};
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
|
|
||||||
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
|
|
||||||
// + phi^dag V (Mdag M)^-1 dV^dag phi
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
|
||||||
|
|
||||||
NumOp.ImportGauge(U);
|
|
||||||
DenOp.ImportGauge(U);
|
|
||||||
|
|
||||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
|
||||||
|
|
||||||
FermionField X(NumOp.FermionGrid());
|
|
||||||
FermionField Y(NumOp.FermionGrid());
|
|
||||||
|
|
||||||
GaugeField force(NumOp.GaugeGrid());
|
|
||||||
|
|
||||||
|
|
||||||
//Y=Vdag phi
|
|
||||||
//X = (Mdag M)^-1 V^dag phi
|
|
||||||
//Y = (Mdag)^-1 V^dag phi
|
|
||||||
NumOp.Mdag(Phi,Y); // Y= Vdag phi
|
|
||||||
X=Zero();
|
|
||||||
DerivativeSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
|
|
||||||
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
|
|
||||||
|
|
||||||
// phi^dag V (Mdag M)^-1 dV^dag phi
|
|
||||||
NumOp.MDeriv(force , X, Phi, DaggerYes ); dSdU=force;
|
|
||||||
|
|
||||||
// phi^dag dV (Mdag M)^-1 V^dag phi
|
|
||||||
NumOp.MDeriv(force , Phi, X ,DaggerNo ); dSdU=dSdU+force;
|
|
||||||
|
|
||||||
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
|
|
||||||
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
|
|
||||||
DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force;
|
|
||||||
DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force;
|
|
||||||
|
|
||||||
dSdU *= -1.0;
|
|
||||||
//dSdU = - Ta(dSdU);
|
|
||||||
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
|
||||||
|
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user