1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-10 19:36:56 +01:00

Reunitarise. Complete the HMC and integrator changes.

This commit is contained in:
Peter Boyle
2015-08-31 16:32:04 +01:00
parent 755dca9533
commit 357c6ab46d
7 changed files with 86 additions and 96 deletions

View File

@ -73,7 +73,6 @@ namespace Grid{
// void register_observers();
// void notify_observers();
void update_P(GaugeField&U, int level,double ep){
t_P[level]+=ep;
update_P(P,U,level,ep);
@ -82,6 +81,7 @@ namespace Grid{
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"["<<level<<"] P " << " dt "<< ep <<" : t_P "<< t_P[level] <<std::endl;
}
void update_P(GaugeField &Mom,GaugeField&U, int level,double ep){
for(int a=0; a<as[level].actions.size(); ++a){
GaugeField force(U._grid);
@ -108,18 +108,12 @@ namespace Grid{
auto Umu=PeekIndex<LorentzIndex>(U, mu);
auto Pmu=PeekIndex<LorentzIndex>(Mom, mu);
Umu = expMat(Pmu, ep, Params.Nexp)*Umu;
ProjectOnGroup(Umu);
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
/*
friend void Algorithm::step (GaugeField& U,
int level,
std::vector<int>& clock,
Integrator<GaugeField,Algorithm>* Integ);
*/
virtual void step (GaugeField& U,int level, std::vector<int>& clock)=0;
virtual void step (GaugeField& U,int level, int first,int last)=0;
public:
@ -178,23 +172,28 @@ namespace Grid{
void integrate(GaugeField& U){
std::vector<int> clock;
// reset the clocks
t_U=0;
for(int level=0; level<as.size(); ++level){
t_P[level]=0;
}
clock.resize(as.size(),0);
// All the clock stuff is removed if we pass first, last to the step down the way
for(int step=0; step< Params.MDsteps; ++step){ // MD step
int first_step = (step==0);
int last_step = (step==Params.MDsteps-1);
this->step(U,0,clock);
this->step(U,0,first_step,last_step);
}
// Check the clocks all match
// Check the clocks all match on all levels
for(int level=0; level<as.size(); ++level){
assert(fabs(t_U - t_P[level])<1.0e-6); // must be the same
std::cout<<GridLogMessage<<" times["<<level<<"]= "<<t_P[level]<< " " << t_U <<std::endl;
}
// and that we indeed got to the end of the trajectory
assert(fabs(t_U-Params.trajL) < 1.0e-6);
}
};

View File

@ -68,12 +68,12 @@ namespace Grid{
typedef LeapFrog<GaugeField> Algorithm;
LeapFrog(GridBase* grid,
IntegratorParameters Par,
ActionSet<GaugeField> & Aset): Integrator<GaugeField>(grid,Par,Aset) {};
LeapFrog(GridBase* grid,
IntegratorParameters Par,
ActionSet<GaugeField> & Aset): Integrator<GaugeField>(grid,Par,Aset) {};
void step (GaugeField& U, int level, std::vector<int>& clock){
void step (GaugeField& U, int level,int _first, int _last){
int fl = this->as.size() -1;
// level : current level
@ -81,34 +81,27 @@ namespace Grid{
// eps : current step size
// Get current level step size
int fin = 2*this->Params.MDsteps;
for(int l=0; l<=level; ++l) fin*= this->as[l].multiplier;
fin = fin-1;
RealD eps = this->Params.stepsize;
RealD eps = this->Params.stepsize;
for(int l=0; l<=level; ++l) eps/= this->as[l].multiplier;
int multiplier = this->as[level].multiplier;
for(int e=0; e<multiplier; ++e){
int first_step,last_step;
first_step = (clock[level]==0);
int first_step = _first && (e==0);
int last_step = _last && (e==multiplier-1);
if(first_step){ // initial half step
this->update_P(U, level,eps/2.0); ++clock[level];
this->update_P(U, level,eps/2.0);
}
if(level == fl){ // lowest level
this->update_U(U, eps);
}else{ // recursive function call
this->step(U, level+1,clock);
this->step(U, level+1,first_step,last_step);
}
last_step = (clock[level]==fin);
int mm = last_step ? 1 : 2;
this->update_P(U, level,mm*eps/2.0);
clock[level]+=mm;
}
}
@ -124,7 +117,7 @@ namespace Grid{
IntegratorParameters Par,
ActionSet<GaugeField> & Aset): Integrator<GaugeField>(grid,Par,Aset) {};
void step (GaugeField& U, int level, std::vector<int>& clock){
void step (GaugeField& U, int level, int _first,int _last){
// level : current level
// fl : final level
@ -132,43 +125,38 @@ namespace Grid{
int fl = this->as.size() -1;
RealD eps = this->Params.stepsize;
for(int l=0; l<=level; ++l) eps/= 2.0*this->as[l].multiplier;
// which is final half step
int fin = this->as[0].multiplier;
for(int l=1; l<=level; ++l) fin*= 2.0*this->as[l].multiplier;
fin = 3*this->Params.MDsteps*fin -1;
RealD eps = this->Params.stepsize*2.0;
for(int l=0; l<=level; ++l) eps/= 2.0*this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for(int e=0; e<multiplier; ++e){ // steps per step
int first_step,last_step;
first_step = (clock[level]==0);
int first_step = _first && (e==0);
int last_step = _last && (e==multiplier-1);
if(first_step){ // initial half step
this->update_P(U,level,lambda*eps); ++clock[level];
this->update_P(U,level,lambda*eps);
}
if(level == fl){ // lowest level
this->update_U(U,0.5*eps);
}else{ // recursive function call
this->step(U,level+1,clock);
this->step(U,level+1,first_step,0);
}
this->update_P(U,level,(1.0-2.0*lambda)*eps); ++clock[level];
this->update_P(U,level,(1.0-2.0*lambda)*eps);
if(level == fl){ // lowest level
this->update_U(U,0.5*eps);
}else{ // recursive function call
this->step(U,level+1,clock);
this->step(U,level+1,0,last_step);
}
last_step = (clock[level]==fin);
int mm = (last_step) ? 1 : 2;
this->update_P(U,level,lambda*eps*mm); clock[level]+=mm;
this->update_P(U,level,lambda*eps*mm);
}
}
@ -207,50 +195,43 @@ namespace Grid{
this->update_P(Ufg,level,ep);
}
void step (GaugeField& U, int level, std::vector<int>& clock){
void step (GaugeField& U, int level, int _first,int _last){
RealD eps = this->Params.stepsize;
RealD eps = this->Params.stepsize*2.0;
for(int l=0; l<=level; ++l) eps/= 2.0*this->as[l].multiplier;
RealD Theta = theta*eps*eps*eps;
RealD Chi = chi*eps*eps*eps;
int fl = this->as.size() -1;
// which is final half step
int fin = this->as[0].multiplier;
for(int l=1; l<=level; ++l) fin*= 2.0*this->as[l].multiplier;
fin = 3*this->Params.MDsteps*fin -1;
int multiplier = this->as[level].multiplier;
for(int e=0; e<multiplier; ++e){ // steps per step
int first_step,last_step;
first_step = (clock[level]==0);
int first_step = _first && (e==0);
int last_step = _last && (e==multiplier-1);
if(first_step){ // initial half step
this->update_P(U,level,lambda*eps); ++clock[level];
this->update_P(U,level,lambda*eps);
}
if(level == fl){ // lowest level
this->update_U(U,0.5*eps);
}else{ // recursive function call
this->step(U,level+1,clock);
this->step(U,level+1,first_step,0);
}
this->FG_update_P(U,level,2*Chi/((1.0-2.0*lambda)*eps),(1.0-2.0*lambda)*eps); ++clock[level];
this->FG_update_P(U,level,2*Chi/((1.0-2.0*lambda)*eps),(1.0-2.0*lambda)*eps);
if(level == fl){ // lowest level
this->update_U(U,0.5*eps);
}else{ // recursive function call
this->step(U,level+1,clock);
this->step(U,level+1,0,last_step);
}
last_step = (clock[level]==fin);
int mm = (last_step) ? 1 : 2;
this->update_P(U,level,lambda*eps*mm); clock[level]+=mm;
this->update_P(U,level,lambda*eps*mm);
}
}