diff --git a/tests/solver/Test_wilson_mg.cc b/tests/solver/Test_wilson_mg.cc deleted file mode 100644 index bbbfe1e0..00000000 --- a/tests/solver/Test_wilson_mg.cc +++ /dev/null @@ -1,614 +0,0 @@ -/************************************************************************************* - - Grid physics library, www.github.com/paboyle/Grid - - Source file: ./tests/solver/Test_wilson_mg.cc - - Copyright (C) 2017 - - Author: Daniel Richtmann - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License along - with this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - - See the full license in the file "LICENSE" in the top level distribution directory - *************************************************************************************/ -/* END LEGAL */ - -#include -#include - -using namespace std; -using namespace Grid; -using namespace Grid::QCD; - -template class TestVectorAnalyzer { -public: - void operator()(LinearOperatorBase &Linop, std::vector const &vectors, int nn = nbasis) { - - auto positiveOnes = 0; - - std::vector tmp(4, vectors[0]._grid); - Gamma g5(Gamma::Algebra::Gamma5); - - std::cout << GridLogMessage << "Test vector analysis:" << std::endl; - - for(auto i = 0; i < nn; ++i) { - - Linop.Op(vectors[i], tmp[3]); - - tmp[0] = g5 * tmp[3]; - - auto lambda = innerProduct(vectors[i], tmp[0]) / innerProduct(vectors[i], vectors[i]); - - tmp[1] = tmp[0] - lambda * vectors[i]; - - auto mu = ::sqrt(norm2(tmp[1]) / norm2(vectors[i])); - - auto nrm = ::sqrt(norm2(vectors[i])); - - if(real(lambda) > 0) - positiveOnes++; - - std::cout << GridLogMessage << std::scientific << std::setprecision(2) << std::setw(2) << std::showpos << "vector " << i << ": " - << "singular value: " << lambda << ", singular vector precision: " << mu << ", norm: " << nrm << std::endl; - } - std::cout << GridLogMessage << std::scientific << std::setprecision(2) << std::setw(2) << std::showpos << positiveOnes << " out of " - << nn << " vectors were positive" << std::endl; - } -}; - -// clang-format off -struct MultigridParams : Serializable { -public: - GRID_SERIALIZABLE_CLASS_MEMBERS(MultigridParams, - int, nLevels, - std::vector>, blockSizes); - MultigridParams(){}; -}; -MultigridParams mgParams; -// clang-format on - -struct LevelInfo { -public: - std::vector> Seeds; - std::vector Grids; - std::vector PRNGs; - - LevelInfo(GridCartesian *FineGrid, MultigridParams const &Params) { - auto nCoarseLevels = Params.blockSizes.size(); - - assert(nCoarseLevels == Params.nLevels - 1); - - // set up values for finest grid - Grids.push_back(FineGrid); - Seeds.push_back({1, 2, 3, 4}); - PRNGs.push_back(GridParallelRNG(Grids.back())); - PRNGs.back().SeedFixedIntegers(Seeds.back()); - - // set up values for coarser grids - for(int level = 1; level < Params.nLevels; ++level) { - auto Nd = Grids[level - 1]->_ndimension; - auto tmp = Grids[level - 1]->_fdimensions; - assert(tmp.size() == Nd); - - Seeds.push_back(std::vector(Nd)); - - for(int d = 0; d < Nd; ++d) { - tmp[d] /= Params.blockSizes[level - 1][d]; - Seeds[level][d] = (level)*Nd + d + 1; - } - - Grids.push_back(SpaceTimeGrid::makeFourDimGrid(tmp, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi())); - PRNGs.push_back(GridParallelRNG(Grids[level])); - - PRNGs[level].SeedFixedIntegers(Seeds[level]); - } - - std::cout << GridLogMessage << "Constructed " << Params.nLevels << " levels" << std::endl; - - // The construction above corresponds to the finest level having level == 0 - // (simply because it's not as ugly to implement), but we need it the - // other way round (i.e., the coarsest level to have level == 0) for the MG - // Preconditioner -> reverse the vectors - - std::reverse(Seeds.begin(), Seeds.end()); - std::reverse(Grids.begin(), Grids.end()); - std::reverse(PRNGs.begin(), PRNGs.end()); - - for(int level = 0; level < Params.nLevels; ++level) { - std::cout << GridLogMessage << "level = " << level << ":" << std::endl; - Grids[level]->show_decomposition(); - } - } -}; - -template void testLinearOperator(LinearOperatorBase &LinOp, GridBase *Grid, std::string const &name = "") { - - std::vector seeds({1, 2, 3, 4}); - GridParallelRNG RNG(Grid); - RNG.SeedFixedIntegers(seeds); - - { - std::cout << GridLogMessage << "Testing that Mdiag + Σ_μ Mdir_μ == M for operator " << name << ":" << std::endl; - - // clang-format off - Field src(Grid); random(RNG, src); - Field ref(Grid); ref = zero; - Field result(Grid); result = zero; - Field diag(Grid); diag = zero; - Field sumDir(Grid); sumDir = zero; - Field tmp(Grid); - Field err(Grid); - // clang-format on - - std::cout << setprecision(9); - - std::cout << GridLogMessage << " norm2(src)\t\t\t\t= " << norm2(src) << std::endl; - - LinOp.OpDiag(src, diag); - std::cout << GridLogMessage << " norm2(Mdiag * src)\t\t\t= " << norm2(diag) << std::endl; - - for(int dir = 0; dir < 4; dir++) { - for(auto disp : {+1, -1}) { - LinOp.OpDir(src, tmp, dir, disp); - std::cout << GridLogMessage << " norm2(Mdir_{" << dir << "," << disp << "} * src)\t\t= " << norm2(tmp) << std::endl; - sumDir = sumDir + tmp; - } - } - std::cout << GridLogMessage << " norm2(Σ_μ Mdir_μ * src)\t\t= " << norm2(sumDir) << std::endl; - - result = diag + sumDir; - std::cout << GridLogMessage << " norm2((Mdiag + Σ_μ Mdir_μ) * src)\t= " << norm2(result) << std::endl; - - LinOp.Op(src, ref); - std::cout << GridLogMessage << " norm2(M * src)\t\t\t= " << norm2(ref) << std::endl; - - err = ref - result; - std::cout << GridLogMessage << " Absolute deviation\t\t\t= " << norm2(err) << std::endl; - std::cout << GridLogMessage << " Relative deviation\t\t\t= " << norm2(err) / norm2(ref) << std::endl; - } - - { - std::cout << GridLogMessage << "Testing hermiticity stochastically for operator " << name << ":" << std::endl; - - // clang-format off - Field phi(Grid); random(RNG, phi); - Field chi(Grid); random(RNG, chi); - Field MPhi(Grid); - Field MdagChi(Grid); - // clang-format on - - LinOp.Op(phi, MPhi); - LinOp.AdjOp(chi, MdagChi); - - ComplexD chiMPhi = innerProduct(chi, MPhi); - ComplexD phiMdagChi = innerProduct(phi, MdagChi); - - ComplexD phiMPhi = innerProduct(phi, MPhi); - ComplexD chiMdagChi = innerProduct(chi, MdagChi); - - std::cout << GridLogMessage << " chiMPhi = " << chiMPhi << " phiMdagChi = " << phiMdagChi - << " difference = " << chiMPhi - conjugate(phiMdagChi) << std::endl; - - std::cout << GridLogMessage << " phiMPhi = " << phiMPhi << " chiMdagChi = " << chiMdagChi << " <- should be real if hermitian" - << std::endl; - } - - { - std::cout << GridLogMessage << "Testing linearity for operator " << name << ":" << std::endl; - - // clang-format off - Field phi(Grid); random(RNG, phi); - Field chi(Grid); random(RNG, chi); - Field phiPlusChi(Grid); - Field MPhi(Grid); - Field MChi(Grid); - Field MPhiPlusChi(Grid); - Field linearityError(Grid); - // clang-format on - - LinOp.Op(phi, MPhi); - LinOp.Op(chi, MChi); - - phiPlusChi = phi + chi; - - LinOp.Op(phiPlusChi, MPhiPlusChi); - - linearityError = MPhiPlusChi - MPhi; - linearityError = linearityError - MChi; - - std::cout << GridLogMessage << " norm2(linearityError) = " << norm2(linearityError) << std::endl; - } -} - -template -class MultiGridPreconditioner : public LinearFunction> { -public: - ///////////////////////////////////////////// - // Type Definitions - ///////////////////////////////////////////// - - typedef Aggregation Aggregates; - typedef CoarsenedMatrix CoarseMatrix; - typedef typename Aggregates::CoarseVector CoarseVector; - typedef typename Aggregates::siteVector CoarseSiteVector; - typedef Matrix FineMatrix; - typedef typename Aggregates::FineField FineVector; - typedef MultiGridPreconditioner NextPreconditionerLevel; - - ///////////////////////////////////////////// - // Member Data - ///////////////////////////////////////////// - - LevelInfo & _LevelInfo; - FineMatrix & _FineMatrix; - FineMatrix & _SmootherMatrix; - Aggregates _Aggregates; - CoarseMatrix _CoarseMatrix; - std::unique_ptr _NextPreconditionerLevel; - - ///////////////////////////////////////////// - // Member Functions - ///////////////////////////////////////////// - - MultiGridPreconditioner(LevelInfo &LvlInfo, FineMatrix &FineMat, FineMatrix &SmootherMat) - : _LevelInfo(LvlInfo) - , _FineMatrix(FineMat) - , _SmootherMatrix(SmootherMat) - , _Aggregates(_LevelInfo.Grids[level - 1], _LevelInfo.Grids[level], 0) - , _CoarseMatrix(*_LevelInfo.Grids[level - 1]) { - _NextPreconditionerLevel = std::unique_ptr( - new NextPreconditionerLevel(_LevelInfo, _CoarseMatrix, _CoarseMatrix)); - } - - void setup() { - - Gamma g5(Gamma::Algebra::Gamma5); - MdagMLinearOperator fineMdagMOp(_FineMatrix); - - _Aggregates.CreateSubspace(_LevelInfo.PRNGs[level], fineMdagMOp /*, nb */); // NOTE: Don't specify nb to see the orthogonalization check - - // TestVectorAnalyzer fineTVA; - // fineTVA(fineMdagMOp, _Aggregates.subspace); - - static_assert((nBasis & 0x1) == 0, "MG Preconditioner only supports an even number of basis vectors"); - int nb = nBasis / 2; - - for( - int n = 0; n < nb; - n++) { // TODO: to get this to work for more than two levels, I would need to either implement coarse spins or have a template specialization of this class also for the finest level - _Aggregates.subspace[n + nb] = g5 * _Aggregates.subspace[n]; - } - - _CoarseMatrix.CoarsenOperator(_LevelInfo.Grids[level], fineMdagMOp, _Aggregates); - - _NextPreconditionerLevel->setup(); - } - - virtual void operator()(Lattice const &in, Lattice &out) { - - // TODO: implement a W-cycle and a toggle to switch between the cycling strategies - vCycle(in, out); - // kCycle(in, out); - } - - void vCycle(Lattice const &in, Lattice &out) { - - RealD inputNorm = norm2(in); - - CoarseVector coarseSrc(_LevelInfo.Grids[level - 1]); - CoarseVector coarseSol(_LevelInfo.Grids[level - 1]); - coarseSol = zero; - - FineVector fineTmp(in._grid); - - TrivialPrecon fineTrivialPreconditioner; - FlexibleGeneralisedMinimalResidual fineFGMRES(1.0e-14, 1, fineTrivialPreconditioner, 1, false); - - MdagMLinearOperator fineMdagMOp(_FineMatrix); - MdagMLinearOperator fineSmootherMdagMOp(_SmootherMatrix); - - _Aggregates.ProjectToSubspace(coarseSrc, in); - (*_NextPreconditionerLevel)(coarseSrc, coarseSol); - _Aggregates.PromoteFromSubspace(coarseSol, out); - - fineMdagMOp.Op(out, fineTmp); - fineTmp = in - fineTmp; - auto r = norm2(fineTmp); - auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm); - - fineFGMRES(fineSmootherMdagMOp, in, out); - - fineMdagMOp.Op(out, fineTmp); - fineTmp = in - fineTmp; - r = norm2(fineTmp); - auto residualAfterPostSmoother = std::sqrt(r / inputNorm); - - std::cout << GridLogMG << " Level " << level << ": Input norm = " << std::sqrt(inputNorm) - << " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother - << std::endl; - } - - void kCycle(Lattice const &in, Lattice &out) { - - RealD inputNorm = norm2(in); - - CoarseVector coarseSrc(_LevelInfo.Grids[level - 1]); - CoarseVector coarseSol(_LevelInfo.Grids[level - 1]); - coarseSol = zero; - - FineVector fineTmp(in._grid); - - TrivialPrecon fineTrivialPreconditioner; - FlexibleGeneralisedMinimalResidual fineFGMRES(1.0e-14, 1, fineTrivialPreconditioner, 1, false); - FlexibleGeneralisedMinimalResidual coarseFGMRES(1.0e-14, 1, *_NextPreconditionerLevel, 1, false); - - MdagMLinearOperator fineMdagMOp(_FineMatrix); - MdagMLinearOperator fineSmootherMdagMOp(_SmootherMatrix); - MdagMLinearOperator coarseMdagMOp(_CoarseMatrix); - - _Aggregates.ProjectToSubspace(coarseSrc, in); - coarseFGMRES(coarseMdagMOp, coarseSrc, coarseSol); - _Aggregates.PromoteFromSubspace(coarseSol, out); - - fineMdagMOp.Op(out, fineTmp); - fineTmp = in - fineTmp; - auto r = norm2(fineTmp); - auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm); - - fineFGMRES(fineSmootherMdagMOp, in, out); - - fineMdagMOp.Op(out, fineTmp); - fineTmp = in - fineTmp; - r = norm2(fineTmp); - auto residualAfterPostSmoother = std::sqrt(r / inputNorm); - - std::cout << GridLogMG << " Level " << level << ": Input norm = " << std::sqrt(inputNorm) - << " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother - << std::endl; - } - - void runChecks() { - - auto tolerance = 1e-13; // TODO: this obviously depends on the precision we use, current value is for double - auto coarseLevel = level - 1; - - std::vector fineTmps(2, _LevelInfo.Grids[level]); - std::vector coarseTmps(4, _LevelInfo.Grids[level - 1]); - - MdagMLinearOperator fineMdagMOp(_FineMatrix); - MdagMLinearOperator coarseMdagMOp(_CoarseMatrix); - - std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - std::cout << GridLogMG << " Level " << level << ": MG correctness check: 0 == (1 - P R) v" << std::endl; - std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - - for(auto i = 0; i < _Aggregates.subspace.size(); ++i) { - _Aggregates.ProjectToSubspace(coarseTmps[0], _Aggregates.subspace[i]); // R v_i - _Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P R v_i - - fineTmps[1] = _Aggregates.subspace[i] - fineTmps[0]; // v_i - P R v_i - auto deviation = std::sqrt(norm2(fineTmps[1]) / norm2(_Aggregates.subspace[i])); - - std::cout << GridLogMG << " Level " << level << ": Vector " << i << ": norm2(v_i) = " << norm2(_Aggregates.subspace[i]) - << " | norm2(R v_i) = " << norm2(coarseTmps[0]) << " | norm2(P R v_i) = " << norm2(fineTmps[0]) - << " | relative deviation = " << deviation; - - if(deviation > tolerance) { - std::cout << " > " << tolerance << " -> check failed" << std::endl; - // abort(); - } else { - std::cout << " < " << tolerance << " -> check passed" << std::endl; - } - } - - std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - std::cout << GridLogMG << " Level " << level << ": MG correctness check: 0 == (1 - R P) v_c" << std::endl; - std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - - random(_LevelInfo.PRNGs[coarseLevel], coarseTmps[0]); - - _Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c - _Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[0]); // R P v_c - - coarseTmps[2] = coarseTmps[0] - coarseTmps[1]; // v_c - R P v_c - auto deviation = std::sqrt(norm2(coarseTmps[2]) / norm2(coarseTmps[0])); - - std::cout << GridLogMG << " Level " << level << ": norm2(v_c) = " << norm2(coarseTmps[0]) - << " | norm2(R P v_c) = " << norm2(coarseTmps[1]) << " | norm2(P v_c) = " << norm2(fineTmps[0]) - << " | relative deviation = " << deviation; - - if(deviation > tolerance) { - std::cout << " > " << tolerance << " -> check failed" << std::endl; - // abort(); - } else { - std::cout << " < " << tolerance << " -> check passed" << std::endl; - } - - std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - std::cout << GridLogMG << " Level " << level << ": MG correctness check: 0 == (R D P - D_c) v_c" << std::endl; - std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - - random(_LevelInfo.PRNGs[coarseLevel], coarseTmps[0]); - - _Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c - fineMdagMOp.Op(fineTmps[0], fineTmps[1]); // D P v_c - _Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[1]); // R D P v_c - - coarseMdagMOp.Op(coarseTmps[0], coarseTmps[2]); // D_c v_c - - coarseTmps[3] = coarseTmps[1] - coarseTmps[2]; // R D P v_c - D_c v_c - deviation = std::sqrt(norm2(coarseTmps[3]) / norm2(coarseTmps[1])); - - std::cout << GridLogMG << " Level " << level << ": norm2(R D P v_c) = " << norm2(coarseTmps[1]) - << " | norm2(D_c v_c) = " << norm2(coarseTmps[2]) << " | relative deviation = " << deviation; - - if(deviation > tolerance) { - std::cout << " > " << tolerance << " -> check failed" << std::endl; - // abort(); - } else { - std::cout << " < " << tolerance << " -> check passed" << std::endl; - } - - std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - std::cout << GridLogMG << " Level " << level << ": MG correctness check: 0 == |(Im(v_c^dag D_c^dag D_c v_c)|" << std::endl; - std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - - random(_LevelInfo.PRNGs[coarseLevel], coarseTmps[0]); - - coarseMdagMOp.Op(coarseTmps[0], coarseTmps[1]); // D_c v_c - coarseMdagMOp.AdjOp(coarseTmps[1], coarseTmps[2]); // D_c^dag D_c v_c - - auto dot = innerProduct(coarseTmps[0], coarseTmps[2]); //v_c^dag D_c^dag D_c v_c - deviation = abs(imag(dot)) / abs(real(dot)); - - std::cout << GridLogMG << " Level " << level << ": Re(v_c^dag D_c^dag D_c v_c) = " << real(dot) - << " | Im(v_c^dag D_c^dag D_c v_c) = " << imag(dot) << " | relative deviation = " << deviation; - - if(deviation > tolerance) { - std::cout << " > " << tolerance << " -> check failed" << std::endl; - // abort(); - } else { - std::cout << " < " << tolerance << " -> check passed" - << std::endl; // TODO: this check will work only when I got Mdag in CoarsenedMatrix to work - } - - _NextPreconditionerLevel->runChecks(); - } -}; - -// Specialize the coarsest level, this corresponds to counting downwards with level: coarsest = 0, finest = N -template -class MultiGridPreconditioner : public LinearFunction> { -public: - ///////////////////////////////////////////// - // Type Definitions - ///////////////////////////////////////////// - - typedef Matrix FineMatrix; - typedef Lattice FineVector; - - ///////////////////////////////////////////// - // Member Data - ///////////////////////////////////////////// - - LevelInfo & _LevelInfo; - FineMatrix &_FineMatrix; - FineMatrix &_SmootherMatrix; - - ///////////////////////////////////////////// - // Member Functions - ///////////////////////////////////////////// - - MultiGridPreconditioner(LevelInfo &LvlInfo, FineMatrix &FineMat, FineMatrix &SmootherMat) - : _LevelInfo(LvlInfo), _FineMatrix(FineMat), _SmootherMatrix(SmootherMat) {} - - void setup() {} - - virtual void operator()(Lattice const &in, Lattice &out) { - - TrivialPrecon fineTrivialPreconditioner; - FlexibleGeneralisedMinimalResidual fineFGMRES(1.0e-14, 1, fineTrivialPreconditioner, 1, false); - - MdagMLinearOperator fineMdagMOp(_FineMatrix); - - fineFGMRES(fineMdagMOp, in, out); - } - - void runChecks() {} -}; - -template -using FourLevelMGPreconditioner = MultiGridPreconditioner; - -template -using ThreeLevelMGPreconditioner = MultiGridPreconditioner; - -template -using TwoLevelMGPreconditioner = MultiGridPreconditioner; - -template -using NLevelMGPreconditioner = MultiGridPreconditioner; - -int main(int argc, char **argv) { - - Grid_init(&argc, &argv); - - GridCartesian *FGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); - GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid); - - std::vector fSeeds({1, 2, 3, 4}); - GridParallelRNG fPRNG(FGrid); - fPRNG.SeedFixedIntegers(fSeeds); - - Gamma g5(Gamma::Algebra::Gamma5); - - // clang-format off - LatticeFermion src(FGrid); gaussian(fPRNG, src); - LatticeFermion result(FGrid); result = zero; - LatticeGaugeField Umu(FGrid); SU3::HotConfiguration(fPRNG, Umu); - // clang-format on - - RealD mass = 0.5; - const int nbasis = 20; - - WilsonFermionR Dw(Umu, *FGrid, *FrbGrid, mass); - - // mgParams.blockSizes = {{2, 2, 2, 2}, {2, 2, 1, 1}, {1, 1, 2, 1}}; - // mgParams.blockSizes = {{2, 2, 2, 2}, {2, 2, 1, 1}}; - mgParams.blockSizes = {{2, 2, 2, 2}}; - mgParams.nLevels = mgParams.blockSizes.size() + 1; - - std::cout << mgParams << std::endl; - - LevelInfo levelInfo(FGrid, mgParams); - - MdagMLinearOperator FineMdagMOp(Dw); - - TrivialPrecon TrivialPrecon; - TwoLevelMGPreconditioner TwoLevelMGPrecon(levelInfo, Dw, Dw); - // ThreeLevelMGPreconditioner ThreeLevelMGPrecon(levelInfo, Dw, Dw); - // FourLevelMGPreconditioner FourLevelMGPrecon(levelInfo, Dw, Dw); - // NLevelMGPreconditioner FourLevelMGPrecon(levelInfo, Dw, Dw); - - TwoLevelMGPrecon.setup(); - TwoLevelMGPrecon.runChecks(); - - // ThreeLevelMGPrecon.setup(); - // ThreeLevelMGPrecon.runChecks(); - - // FourLevelMGPrecon.setup(); - // FourLevelMGPrecon.runChecks(); - - // NLevelMGPrecon.setup(); - // NLevelMGPrecon.runChecks(); - - std::vector>> solvers; - - solvers.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, TrivialPrecon, 1000, false)); - solvers.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, TwoLevelMGPrecon, 1000, false)); - // solvers.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, ThreeLevelMGPrecon, 1000, false)); - // solvers.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, FourLevelMGPrecon, 1000, false)); - // solvers.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, NLevelMGPrecon, 1000, false)); - - for(auto const &solver : solvers) { - std::cout << "Starting with a new solver" << std::endl; - result = zero; - (*solver)(FineMdagMOp, src, result); - std::cout << std::endl; - } - - Grid_finalize(); -} diff --git a/tests/solver/Test_wilsonclover_mg.cc b/tests/solver/Test_wilsonclover_mg.cc index db250464..70dc31e0 100644 --- a/tests/solver/Test_wilsonclover_mg.cc +++ b/tests/solver/Test_wilsonclover_mg.cc @@ -69,55 +69,68 @@ public: } }; -class myclass : Serializable { +// clang-format off +struct MultigridParams : Serializable { public: - // clang-format off - GRID_SERIALIZABLE_CLASS_MEMBERS(myclass, - int, domaindecompose, - int, domainsize, - int, coarsegrids, - int, order, - int, Ls, - double, mq, - double, lo, - double, hi, - int, steps); - // clang-format on - myclass(){}; + GRID_SERIALIZABLE_CLASS_MEMBERS(MultigridParams, + int, nLevels, + std::vector>, blockSizes); + MultigridParams(){}; }; -myclass params; +MultigridParams mgParams; +// clang-format on -template struct CoarseGrids { +struct LevelInfo { public: - std::vector> LattSizes; std::vector> Seeds; std::vector Grids; std::vector PRNGs; - CoarseGrids(std::vector> const &blockSizes, int coarsegrids) { + LevelInfo(GridCartesian *FineGrid, MultigridParams const &Params) { - assert(blockSizes.size() == coarsegrids); + auto nCoarseLevels = Params.blockSizes.size(); - std::cout << GridLogMessage << "Constructing " << coarsegrids << " CoarseGrids" << std::endl; + assert(nCoarseLevels == Params.nLevels - 1); - for(int cl = 0; cl < coarsegrids; ++cl) { // may be a bit ugly and slow but not perf critical - // need to differentiate between first and other coarse levels in size calculation - LattSizes.push_back({cl == 0 ? GridDefaultLatt() : LattSizes[cl - 1]}); - Seeds.push_back(std::vector(LattSizes[cl].size())); + // set up values for finest grid + Grids.push_back(FineGrid); + Seeds.push_back({1, 2, 3, 4}); + PRNGs.push_back(GridParallelRNG(Grids.back())); + PRNGs.back().SeedFixedIntegers(Seeds.back()); - for(int d = 0; d < LattSizes[cl].size(); ++d) { - LattSizes[cl][d] = LattSizes[cl][d] / blockSizes[cl][d]; - Seeds[cl][d] = (cl + 1) * LattSizes[cl].size() + d + 1; - // calculation unimportant, just to get. e.g., {5, 6, 7, 8} for first coarse level and so on + // set up values for coarser grids + for(int level = 1; level < Params.nLevels; ++level) { + auto Nd = Grids[level - 1]->_ndimension; + auto tmp = Grids[level - 1]->_fdimensions; + assert(tmp.size() == Nd); + + Seeds.push_back(std::vector(Nd)); + + for(int d = 0; d < Nd; ++d) { + tmp[d] /= Params.blockSizes[level - 1][d]; + Seeds[level][d] = (level)*Nd + d + 1; } - Grids.push_back(SpaceTimeGrid::makeFourDimGrid(LattSizes[cl], GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi())); - PRNGs.push_back(GridParallelRNG(Grids[cl])); + Grids.push_back(SpaceTimeGrid::makeFourDimGrid(tmp, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi())); + PRNGs.push_back(GridParallelRNG(Grids[level])); - PRNGs[cl].SeedFixedIntegers(Seeds[cl]); + PRNGs[level].SeedFixedIntegers(Seeds[level]); + } - std::cout << GridLogMessage << "cl = " << cl << ": LattSize = " << LattSizes[cl] << std::endl; - std::cout << GridLogMessage << "cl = " << cl << ": Seeds = " << Seeds[cl] << std::endl; + std::cout << GridLogMessage << "Constructed " << Params.nLevels << " levels" << std::endl; + + // The construction above corresponds to the finest level having level == 0 + // (simply because it's not as ugly to implement), but we need it the + // other way round (i.e., the coarsest level to have level == 0) for the MG + // Preconditioner -> reverse the vectors + + std::reverse(Seeds.begin(), Seeds.end()); + std::reverse(Grids.begin(), Grids.end()); + std::reverse(PRNGs.begin(), PRNGs.end()); + + for(int level = 0; level < Params.nLevels; ++level) { + std::cout << GridLogMessage << "level = " << level << ":" << std::endl; + Grids[level]->show_decomposition(); } } }; @@ -221,116 +234,177 @@ template void testLinearOperator(LinearOperatorBase &LinOp, } } -// template < class Fobj, class CComplex, int coarseSpins, int nbasis, class Matrix > -// class MultiGridPreconditioner : public LinearFunction< Lattice< Fobj > > { -template class MultiGridPreconditioner : public LinearFunction> { +template +class MultiGridPreconditioner : public LinearFunction> { public: - typedef Aggregation Aggregates; - typedef CoarsenedMatrix CoarseOperator; + ///////////////////////////////////////////// + // Type Definitions + ///////////////////////////////////////////// - typedef typename Aggregation::siteVector siteVector; - typedef typename Aggregation::CoarseScalar CoarseScalar; - typedef typename Aggregation::CoarseVector CoarseVector; - typedef typename Aggregation::CoarseMatrix CoarseMatrix; - typedef typename Aggregation::FineField FineField; - typedef LinearOperatorBase FineOperator; + typedef Aggregation Aggregates; + typedef CoarsenedMatrix CoarseMatrix; + typedef typename Aggregates::CoarseVector CoarseVector; + typedef typename Aggregates::siteVector CoarseSiteVector; + typedef Matrix FineMatrix; + typedef typename Aggregates::FineField FineVector; + typedef MultiGridPreconditioner NextPreconditionerLevel; - Aggregates & _Aggregates; - CoarseOperator &_CoarseOperator; - Matrix & _FineMatrix; - FineOperator & _FineOperator; - Matrix & _SmootherMatrix; - FineOperator & _SmootherOperator; + ///////////////////////////////////////////// + // Member Data + ///////////////////////////////////////////// - // Constructor - MultiGridPreconditioner(Aggregates & Agg, - CoarseOperator &Coarse, - FineOperator & Fine, - Matrix & FineMatrix, - FineOperator & Smooth, - Matrix & SmootherMatrix) - : _Aggregates(Agg) - , _CoarseOperator(Coarse) - , _FineOperator(Fine) - , _FineMatrix(FineMatrix) - , _SmootherOperator(Smooth) - , _SmootherMatrix(SmootherMatrix) {} + LevelInfo & _LevelInfo; + FineMatrix & _FineMatrix; + FineMatrix & _SmootherMatrix; + Aggregates _Aggregates; + CoarseMatrix _CoarseMatrix; + std::unique_ptr _NextPreconditionerLevel; - void operator()(const FineField &in, FineField &out) { + ///////////////////////////////////////////// + // Member Functions + ///////////////////////////////////////////// - CoarseVector coarseSrc(_CoarseOperator.Grid()); - CoarseVector coarseTmp(_CoarseOperator.Grid()); - CoarseVector coarseSol(_CoarseOperator.Grid()); - coarseSol = zero; - - GeneralisedMinimalResidual coarseGMRES(5.0e-2, 100, 25, false); - GeneralisedMinimalResidual fineGMRES(5.0e-2, 100, 25, false); - - HermitianLinearOperator coarseHermOp(_CoarseOperator); - MdagMLinearOperator coarseMdagMOp(_CoarseOperator); - MdagMLinearOperator fineMdagMOp(_SmootherMatrix); - - FineField fineTmp1(in._grid); - FineField fineTmp2(in._grid); - - RealD Ni = norm2(in); - - // no pre smoothing for now - auto preSmootherNorm = 0; - auto preSmootherResidual = 0; - RealD r; - - // Project to coarse grid, solve, project back to fine grid - _Aggregates.ProjectToSubspace(coarseSrc, in); - coarseGMRES(coarseMdagMOp, coarseSrc, coarseSol); - _Aggregates.PromoteFromSubspace(coarseSol, out); - - // Recompute error - _FineOperator.Op(out, fineTmp1); - fineTmp1 = in - fineTmp1; - r = norm2(fineTmp1); - auto coarseResidual = std::sqrt(r / Ni); - - // Apply smoother, use GMRES for the moment - fineGMRES(fineMdagMOp, in, out); - - // Recompute error - _FineOperator.Op(out, fineTmp1); - fineTmp1 = in - fineTmp1; - r = norm2(fineTmp1); - auto postSmootherResidual = std::sqrt(r / Ni); - - std::cout << GridLogIterative << "Input norm = " << Ni << " Pre-Smoother norm " << preSmootherNorm - << " Pre-Smoother residual = " << preSmootherResidual << " Coarse residual = " << coarseResidual - << " Post-Smoother residual = " << postSmootherResidual << std::endl; + MultiGridPreconditioner(LevelInfo &LvlInfo, FineMatrix &FineMat, FineMatrix &SmootherMat) + : _LevelInfo(LvlInfo) + , _FineMatrix(FineMat) + , _SmootherMatrix(SmootherMat) + , _Aggregates(_LevelInfo.Grids[level - 1], _LevelInfo.Grids[level], 0) + , _CoarseMatrix(*_LevelInfo.Grids[level - 1]) { + _NextPreconditionerLevel + = std::unique_ptr(new NextPreconditionerLevel(_LevelInfo, _CoarseMatrix, _CoarseMatrix)); } - void runChecks(CoarseGrids &cGrids, int whichCoarseGrid) { + void setup() { - ///////////////////////////////////////////// - // Some stuff we need for the checks below // - ///////////////////////////////////////////// - auto tolerance = 1e-13; // TODO: this obviously depends on the precision we use, current value is for double + Gamma g5(Gamma::Algebra::Gamma5); + MdagMLinearOperator fineMdagMOp(_FineMatrix); - std::vector cTmps(4, _CoarseOperator.Grid()); - std::vector fTmps(2, _Aggregates.subspace[0]._grid); // atm only for one coarser grid + _Aggregates.CreateSubspace(_LevelInfo.PRNGs[level], fineMdagMOp /*, nb */); // NOTE: Don't specify nb to see the orthogonalization check - // need to construct an operator, since _CoarseOperator is not a LinearOperator but only a matrix (the name is a bit misleading) - MdagMLinearOperator MdagMOp(_CoarseOperator); + // TestVectorAnalyzer fineTVA; + // fineTVA(fineMdagMOp, _Aggregates.subspace); - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "MG correctness check: 0 == (1 - P R) v" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; + static_assert((nBasis & 0x1) == 0, "MG Preconditioner only supports an even number of basis vectors"); + int nb = nBasis / 2; + + for( + int n = 0; n < nb; + n++) { // TODO: to get this to work for more than two levels, I would need to either implement coarse spins or have a template specialization of this class also for the finest level + _Aggregates.subspace[n + nb] = g5 * _Aggregates.subspace[n]; + } + + _CoarseMatrix.CoarsenOperator(_LevelInfo.Grids[level], fineMdagMOp, _Aggregates); + + _NextPreconditionerLevel->setup(); + } + + virtual void operator()(Lattice const &in, Lattice &out) { + + // TODO: implement a W-cycle and a toggle to switch between the cycling strategies + vCycle(in, out); + // kCycle(in, out); + } + + void vCycle(Lattice const &in, Lattice &out) { + + RealD inputNorm = norm2(in); + + CoarseVector coarseSrc(_LevelInfo.Grids[level - 1]); + CoarseVector coarseSol(_LevelInfo.Grids[level - 1]); + coarseSol = zero; + + FineVector fineTmp(in._grid); + + TrivialPrecon fineTrivialPreconditioner; + FlexibleGeneralisedMinimalResidual fineFGMRES(1.0e-14, 1, fineTrivialPreconditioner, 1, false); + + MdagMLinearOperator fineMdagMOp(_FineMatrix); + MdagMLinearOperator fineSmootherMdagMOp(_SmootherMatrix); + + _Aggregates.ProjectToSubspace(coarseSrc, in); + (*_NextPreconditionerLevel)(coarseSrc, coarseSol); + _Aggregates.PromoteFromSubspace(coarseSol, out); + + fineMdagMOp.Op(out, fineTmp); + fineTmp = in - fineTmp; + auto r = norm2(fineTmp); + auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm); + + fineFGMRES(fineSmootherMdagMOp, in, out); + + fineMdagMOp.Op(out, fineTmp); + fineTmp = in - fineTmp; + r = norm2(fineTmp); + auto residualAfterPostSmoother = std::sqrt(r / inputNorm); + + std::cout << GridLogMG << " Level " << level << ": V-cycle: Input norm = " << std::sqrt(inputNorm) + << " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother + << std::endl; + } + + void kCycle(Lattice const &in, Lattice &out) { + + RealD inputNorm = norm2(in); + + CoarseVector coarseSrc(_LevelInfo.Grids[level - 1]); + CoarseVector coarseSol(_LevelInfo.Grids[level - 1]); + coarseSol = zero; + + FineVector fineTmp(in._grid); + + TrivialPrecon fineTrivialPreconditioner; + FlexibleGeneralisedMinimalResidual fineFGMRES(1.0e-14, 1, fineTrivialPreconditioner, 1, false); + FlexibleGeneralisedMinimalResidual coarseFGMRES(1.0e-14, 1, *_NextPreconditionerLevel, 1, false); + + MdagMLinearOperator fineMdagMOp(_FineMatrix); + MdagMLinearOperator fineSmootherMdagMOp(_SmootherMatrix); + MdagMLinearOperator coarseMdagMOp(_CoarseMatrix); + + _Aggregates.ProjectToSubspace(coarseSrc, in); + coarseFGMRES(coarseMdagMOp, coarseSrc, coarseSol); + _Aggregates.PromoteFromSubspace(coarseSol, out); + + fineMdagMOp.Op(out, fineTmp); + fineTmp = in - fineTmp; + auto r = norm2(fineTmp); + auto residualAfterCoarseGridCorrection = std::sqrt(r / inputNorm); + + fineFGMRES(fineSmootherMdagMOp, in, out); + + fineMdagMOp.Op(out, fineTmp); + fineTmp = in - fineTmp; + r = norm2(fineTmp); + auto residualAfterPostSmoother = std::sqrt(r / inputNorm); + + std::cout << GridLogMG << " Level " << level << ": K-cycle: Input norm = " << std::sqrt(inputNorm) + << " Coarse residual = " << residualAfterCoarseGridCorrection << " Post-Smoother residual = " << residualAfterPostSmoother + << std::endl; + } + + void runChecks() { + + auto tolerance = 1e-13; // TODO: this obviously depends on the precision we use, current value is for double + auto coarseLevel = level - 1; + + std::vector fineTmps(2, _LevelInfo.Grids[level]); + std::vector coarseTmps(4, _LevelInfo.Grids[level - 1]); + + MdagMLinearOperator fineMdagMOp(_FineMatrix); + MdagMLinearOperator coarseMdagMOp(_CoarseMatrix); + + std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; + std::cout << GridLogMG << " Level " << level << ": MG correctness check: 0 == (1 - P R) v" << std::endl; + std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; for(auto i = 0; i < _Aggregates.subspace.size(); ++i) { - _Aggregates.ProjectToSubspace(cTmps[0], _Aggregates.subspace[i]); // R v_i - _Aggregates.PromoteFromSubspace(cTmps[0], fTmps[0]); // P R v_i + _Aggregates.ProjectToSubspace(coarseTmps[0], _Aggregates.subspace[i]); // R v_i + _Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P R v_i - fTmps[1] = _Aggregates.subspace[i] - fTmps[0]; // v_i - P R v_i - auto deviation = std::sqrt(norm2(fTmps[1]) / norm2(_Aggregates.subspace[i])); + fineTmps[1] = _Aggregates.subspace[i] - fineTmps[0]; // v_i - P R v_i + auto deviation = std::sqrt(norm2(fineTmps[1]) / norm2(_Aggregates.subspace[i])); - std::cout << GridLogMessage << "Vector " << i << ": norm2(v_i) = " << norm2(_Aggregates.subspace[i]) - << " | norm2(R v_i) = " << norm2(cTmps[0]) << " | norm2(P R v_i) = " << norm2(fTmps[0]) + std::cout << GridLogMG << " Level " << level << ": Vector " << i << ": norm2(v_i) = " << norm2(_Aggregates.subspace[i]) + << " | norm2(R v_i) = " << norm2(coarseTmps[0]) << " | norm2(P R v_i) = " << norm2(fineTmps[0]) << " | relative deviation = " << deviation; if(deviation > tolerance) { @@ -341,44 +415,20 @@ public: } } - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "MG correctness check: 0 == (1 - R P) v_c" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; + std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; + std::cout << GridLogMG << " Level " << level << ": MG correctness check: 0 == (1 - R P) v_c" << std::endl; + std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - random(cGrids.PRNGs[whichCoarseGrid], cTmps[0]); + random(_LevelInfo.PRNGs[coarseLevel], coarseTmps[0]); - _Aggregates.PromoteFromSubspace(cTmps[0], fTmps[0]); // P v_c - _Aggregates.ProjectToSubspace(cTmps[1], fTmps[0]); // R P v_c + _Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c + _Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[0]); // R P v_c - cTmps[2] = cTmps[0] - cTmps[1]; // v_c - R P v_c - auto deviation = std::sqrt(norm2(cTmps[2]) / norm2(cTmps[0])); + coarseTmps[2] = coarseTmps[0] - coarseTmps[1]; // v_c - R P v_c + auto deviation = std::sqrt(norm2(coarseTmps[2]) / norm2(coarseTmps[0])); - std::cout << GridLogMessage << "norm2(v_c) = " << norm2(cTmps[0]) << " | norm2(R P v_c) = " << norm2(cTmps[1]) - << " | norm2(P v_c) = " << norm2(fTmps[0]) << " | relative deviation = " << deviation; - - if(deviation > tolerance) { - std::cout << " > " << tolerance << " -> check failed" << std::endl; - // abort(); - } else { - std::cout << " < " << tolerance << " -> check passed" << std::endl; - } - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "MG correctness check: 0 == (R D P - D_c) v_c" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - random(cGrids.PRNGs[whichCoarseGrid], cTmps[0]); - - _Aggregates.PromoteFromSubspace(cTmps[0], fTmps[0]); // P v_c - _FineOperator.Op(fTmps[0], fTmps[1]); // D P v_c - _Aggregates.ProjectToSubspace(cTmps[1], fTmps[1]); // R D P v_c - - MdagMOp.Op(cTmps[0], cTmps[2]); // D_c v_c - - cTmps[3] = cTmps[1] - cTmps[2]; // R D P v_c - D_c v_c - deviation = std::sqrt(norm2(cTmps[3]) / norm2(cTmps[1])); - - std::cout << GridLogMessage << "norm2(R D P v_c) = " << norm2(cTmps[1]) << " | norm2(D_c v_c) = " << norm2(cTmps[2]) + std::cout << GridLogMG << " Level " << level << ": norm2(v_c) = " << norm2(coarseTmps[0]) + << " | norm2(R P v_c) = " << norm2(coarseTmps[1]) << " | norm2(P v_c) = " << norm2(fineTmps[0]) << " | relative deviation = " << deviation; if(deviation > tolerance) { @@ -388,57 +438,117 @@ public: std::cout << " < " << tolerance << " -> check passed" << std::endl; } - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "MG correctness check: 0 == |(Im(v_c^dag D_c^dag D_c v_c)|" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; + std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; + std::cout << GridLogMG << " Level " << level << ": MG correctness check: 0 == (R D P - D_c) v_c" << std::endl; + std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; - random(cGrids.PRNGs[whichCoarseGrid], cTmps[0]); + random(_LevelInfo.PRNGs[coarseLevel], coarseTmps[0]); - MdagMOp.Op(cTmps[0], cTmps[1]); // D_c v_c - MdagMOp.AdjOp(cTmps[1], cTmps[2]); // D_c^dag D_c v_c + _Aggregates.PromoteFromSubspace(coarseTmps[0], fineTmps[0]); // P v_c + fineMdagMOp.Op(fineTmps[0], fineTmps[1]); // D P v_c + _Aggregates.ProjectToSubspace(coarseTmps[1], fineTmps[1]); // R D P v_c - auto dot = innerProduct(cTmps[0], cTmps[2]); //v_c^dag D_c^dag D_c v_c + coarseMdagMOp.Op(coarseTmps[0], coarseTmps[2]); // D_c v_c + + coarseTmps[3] = coarseTmps[1] - coarseTmps[2]; // R D P v_c - D_c v_c + deviation = std::sqrt(norm2(coarseTmps[3]) / norm2(coarseTmps[1])); + + std::cout << GridLogMG << " Level " << level << ": norm2(R D P v_c) = " << norm2(coarseTmps[1]) + << " | norm2(D_c v_c) = " << norm2(coarseTmps[2]) << " | relative deviation = " << deviation; + + if(deviation > tolerance) { + std::cout << " > " << tolerance << " -> check failed" << std::endl; + // abort(); + } else { + std::cout << " < " << tolerance << " -> check passed" << std::endl; + } + + std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; + std::cout << GridLogMG << " Level " << level << ": MG correctness check: 0 == |(Im(v_c^dag D_c^dag D_c v_c)|" << std::endl; + std::cout << GridLogMG << " Level " << level << ": **************************************************" << std::endl; + + random(_LevelInfo.PRNGs[coarseLevel], coarseTmps[0]); + + coarseMdagMOp.Op(coarseTmps[0], coarseTmps[1]); // D_c v_c + coarseMdagMOp.AdjOp(coarseTmps[1], coarseTmps[2]); // D_c^dag D_c v_c + + auto dot = innerProduct(coarseTmps[0], coarseTmps[2]); //v_c^dag D_c^dag D_c v_c deviation = abs(imag(dot)) / abs(real(dot)); - std::cout << GridLogMessage << "Re(v_c^dag D_c^dag D_c v_c) = " << real(dot) << " | Im(v_c^dag D_c^dag D_c v_c) = " << imag(dot) - << " | relative deviation = " << deviation; + std::cout << GridLogMG << " Level " << level << ": Re(v_c^dag D_c^dag D_c v_c) = " << real(dot) + << " | Im(v_c^dag D_c^dag D_c v_c) = " << imag(dot) << " | relative deviation = " << deviation; if(deviation > tolerance) { std::cout << " > " << tolerance << " -> check failed" << std::endl; // abort(); } else { - std::cout << " < " << tolerance << " -> check passed" << std::endl; + std::cout << " < " << tolerance << " -> check passed" + << std::endl; // TODO: this check will work only when I got Mdag in CoarsenedMatrix to work } + + _NextPreconditionerLevel->runChecks(); } }; +// Specialize the coarsest level, this corresponds to counting downwards with level: coarsest = 0, finest = N +template +class MultiGridPreconditioner : public LinearFunction> { +public: + ///////////////////////////////////////////// + // Type Definitions + ///////////////////////////////////////////// + + typedef Matrix FineMatrix; + typedef Lattice FineVector; + + ///////////////////////////////////////////// + // Member Data + ///////////////////////////////////////////// + + LevelInfo & _LevelInfo; + FineMatrix &_FineMatrix; + FineMatrix &_SmootherMatrix; + + ///////////////////////////////////////////// + // Member Functions + ///////////////////////////////////////////// + + MultiGridPreconditioner(LevelInfo &LvlInfo, FineMatrix &FineMat, FineMatrix &SmootherMat) + : _LevelInfo(LvlInfo), _FineMatrix(FineMat), _SmootherMatrix(SmootherMat) {} + + void setup() {} + + virtual void operator()(Lattice const &in, Lattice &out) { + + TrivialPrecon fineTrivialPreconditioner; + FlexibleGeneralisedMinimalResidual fineFGMRES(1.0e-14, 1, fineTrivialPreconditioner, 1, false); + + MdagMLinearOperator fineMdagMOp(_FineMatrix); + + fineFGMRES(fineMdagMOp, in, out); + } + + void runChecks() {} +}; + +template +using FourLevelMGPreconditioner = MultiGridPreconditioner; + +template +using ThreeLevelMGPreconditioner = MultiGridPreconditioner; + +template +using TwoLevelMGPreconditioner = MultiGridPreconditioner; + +template +using NLevelMGPreconditioner = MultiGridPreconditioner; + int main(int argc, char **argv) { Grid_init(&argc, &argv); - params.domainsize = 1; - params.coarsegrids = 1; - params.domaindecompose = 0; - params.order = 30; - params.Ls = 1; - params.mq = -0.5; - params.lo = 0.5; - params.hi = 70.0; - params.steps = 1; - - typedef typename WilsonCloverFermionR::FermionField FermionField; - typename WilsonCloverFermionR::ImplParams wcImplparams; - WilsonAnisotropyCoefficients wilsonAnisCoeff; - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Params: " << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - std::cout << params << std::endl; - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Set up some fine level stuff: " << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; + typename WilsonCloverFermionR::ImplParams wcImplparams; + WilsonAnisotropyCoefficients wilsonAnisCoeff; GridCartesian *FGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid); @@ -450,319 +560,107 @@ int main(int argc, char **argv) { Gamma g5(Gamma::Algebra::Gamma5); // clang-format off - FermionField src(FGrid); gaussian(fPRNG, src); - FermionField result(FGrid); result = zero; + LatticeFermion src(FGrid); gaussian(fPRNG, src); + LatticeFermion result(FGrid); result = zero; LatticeGaugeField Umu(FGrid); SU3::HotConfiguration(fPRNG, Umu); // clang-format on - RealD mass = params.mq; + RealD mass = 0.5; + RealD csw_r = 1.0; + RealD csw_t = 1.0; - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Set up some coarser levels stuff: " << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; + const int nbasis = 20; - const int nbasis = 20; // fix the number of test vector to the same - // number on every level for now - - ////////////////////////////////////////// - // toggle to run two/three level method - ////////////////////////////////////////// - - // two-level algorithm - std::vector> blockSizes({{2, 2, 2, 2}}); - CoarseGrids coarseGrids(blockSizes, 1); - - // // three-level algorithm - // std::vector> blockSizes({{2, 2, 2, 2}, {2, 2, 1, 1}}); - // CoarseGrids coarseGrids(blockSizes, 2); - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Some typedefs" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - // typedefs for transition from fine to first coarsened grid - typedef vSpinColourVector FineSiteVector; - typedef vTComplex CoarseSiteScalar; - typedef Aggregation Subspace; - typedef CoarsenedMatrix CoarseOperator; - typedef CoarseOperator::CoarseVector CoarseVector; - typedef CoarseOperator::siteVector CoarseSiteVector; - typedef TestVectorAnalyzer FineTVA; - typedef MultiGridPreconditioner FineMGPreconditioner; - typedef TrivialPrecon FineTrivialPreconditioner; - - // typedefs for transition from a coarse to the next coarser grid (some defs remain the same) - typedef Aggregation SubSubSpace; - typedef CoarsenedMatrix CoarseCoarseOperator; - typedef CoarseCoarseOperator::CoarseVector CoarseCoarseVector; - typedef CoarseCoarseOperator::siteVector CoarseCoarseSiteVector; - typedef TestVectorAnalyzer CoarseTVA; - typedef MultiGridPreconditioner CoarseMGPreconditioner; - typedef TrivialPrecon CoarseTrivialPreconditioner; - - static_assert(std::is_same::value, "CoarseVector and CoarseCoarseVector must be of the same type"); - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Building the wilson clover operator on the fine grid" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - RealD csw_r = 1.0; - RealD csw_t = 1.0; + WilsonFermionR Dw(Umu, *FGrid, *FrbGrid, mass); WilsonCloverFermionR Dwc(Umu, *FGrid, *FrbGrid, mass, csw_r, csw_t, wilsonAnisCoeff, wcImplparams); - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Setting up linear operators" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; + // mgParams.blockSizes = {{2, 2, 2, 2}, {2, 2, 1, 1}, {1, 1, 2, 1}}; + // mgParams.blockSizes = {{2, 2, 2, 2}, {2, 2, 1, 1}}; + mgParams.blockSizes = {{2, 2, 2, 2}}; + mgParams.nLevels = mgParams.blockSizes.size() + 1; - MdagMLinearOperator FineMdagMOp(Dwc); + std::cout << mgParams << std::endl; + + LevelInfo levelInfo(FGrid, mgParams); + + static_assert(std::is_same::value, ""); + static_assert(std::is_same::value, ""); + + MdagMLinearOperator MdagMOpDw(Dw); + MdagMLinearOperator MdagMOpDwc(Dwc); std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Calling Aggregation class to build subspaces" << std::endl; + std::cout << GridLogMessage << "Testing Multigrid for Wilson" << std::endl; std::cout << GridLogMessage << "**************************************************" << std::endl; - Subspace FineAggregates(coarseGrids.Grids[0], FGrid, 0); + TrivialPrecon TrivialPrecon; + TwoLevelMGPreconditioner TwoLevelMGPreconDw(levelInfo, Dw, Dw); + // ThreeLevelMGPreconditioner ThreeLevelMGPreconDw(levelInfo, Dw, Dw); + // FourLevelMGPreconditioner FourLevelMGPreconDw(levelInfo, Dw, Dw); + // NLevelMGPreconditioner NLevelMGPreconDw(levelInfo, Dw, Dw); - assert((nbasis & 0x1) == 0); - int nb = nbasis / 2; - std::cout << GridLogMessage << " nbasis/2 = " << nb << std::endl; + TwoLevelMGPreconDw.setup(); + TwoLevelMGPreconDw.runChecks(); - FineAggregates.CreateSubspace(fPRNG, FineMdagMOp /*, nb */); // Don't specify nb to see the orthogonalization check + // ThreeLevelMGPreconDw.setup(); + // ThreeLevelMGPreconDw.runChecks(); - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Test vector analysis after initial creation of subspace" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; + // FourLevelMGPreconDw.setup(); + // FourLevelMGPreconDw.runChecks(); - FineTVA fineTVA; - fineTVA(FineMdagMOp, FineAggregates.subspace); + // NLevelMGPreconDw.setup(); + // NLevelMGPreconDw.runChecks(); - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Projecting subspace to definite chirality" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; + std::vector>> solversDw; - for(int n = 0; n < nb; n++) { - FineAggregates.subspace[n + nb] = g5 * FineAggregates.subspace[n]; - } + solversDw.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, TrivialPrecon, 1000, false)); + solversDw.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, TwoLevelMGPreconDw, 1000, false)); + // solversDw.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, ThreeLevelMGPreconDw, 1000, false)); + // solversDw.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, FourLevelMGPreconDw, 1000, false)); + // solversDw.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, NLevelMGPreconDw, 1000, false)); - auto coarseSites = 1; - for(auto const &elem : coarseGrids.LattSizes[0]) coarseSites *= elem; - - std::cout << GridLogMessage << "Norms of MG test vectors after chiral projection (coarse sites = " << coarseSites << ")" << std::endl; - for(int n = 0; n < nbasis; n++) { - std::cout << GridLogMessage << "vec[" << n << "] = " << norm2(FineAggregates.subspace[n]) << std::endl; - } - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Building coarse representation of Dirac operator" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - CoarseOperator Dc(*coarseGrids.Grids[0]); - - Dc.CoarsenOperator(FGrid, FineMdagMOp, FineAggregates); - - MdagMLinearOperator CoarseMdagMOp(Dc); - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Test vector analysis after construction of coarse Dirac operator" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - fineTVA(FineMdagMOp, FineAggregates.subspace); - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Testing the linear operators" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - // clang-format off - testLinearOperator(FineMdagMOp, FGrid, "FineMdagMOp"); std::cout << GridLogMessage << std::endl; - testLinearOperator(CoarseMdagMOp, coarseGrids.Grids[0], "CoarseMdagMOp"); std::cout << GridLogMessage << std::endl; - // clang-format on - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Building coarse vectors" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - CoarseVector coarseSource(coarseGrids.Grids[0]); - CoarseVector coarseResult(coarseGrids.Grids[0]); - gaussian(coarseGrids.PRNGs[0], coarseSource); - coarseResult = zero; - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Building some coarse space solvers" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - std::vector>> dummyCoarseSolvers; - dummyCoarseSolvers.emplace_back(new GeneralisedMinimalResidual(5.0e-2, 100, 8, false)); - dummyCoarseSolvers.emplace_back(new MinimalResidual(5.0e-2, 100, 0.8, false)); - dummyCoarseSolvers.emplace_back(new ConjugateGradient(5.0e-2, 100, false)); - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Testing some coarse space solvers" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - std::cout << GridLogMessage << "checking norm of coarse src " << norm2(coarseSource) << std::endl; - - for(auto const &solver : dummyCoarseSolvers) { - coarseResult = zero; - (*solver)(CoarseMdagMOp, coarseSource, coarseResult); - } - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Building a multigrid preconditioner" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - FineMGPreconditioner FineMGPrecon(FineAggregates, Dc, FineMdagMOp, Dwc, FineMdagMOp, Dwc); - FineTrivialPreconditioner FineSimplePrecon; - - FineMGPrecon.runChecks(coarseGrids, 0); - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Building krylov subspace solvers w/ & w/o MG Preconditioner" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - std::vector>> solvers; - solvers.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 4000000, FineSimplePrecon, 25, false)); - solvers.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 100, FineMGPrecon, 25, false)); - solvers.emplace_back(new PrecGeneralisedConjugateResidual(1.0e-12, 4000000, FineSimplePrecon, 25, 25)); - - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Testing the (un)?preconditioned solvers" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - - for(auto const &solver : solvers) { - std::cout << GridLogMessage << "checking norm of fine src " << norm2(src) << std::endl; + for(auto const &solver : solversDw) { + std::cout << "Starting with a new solver" << std::endl; result = zero; - (*solver)(FineMdagMOp, src, result); + (*solver)(MdagMOpDw, src, result); std::cout << std::endl; } -#if 0 - if(coarseGrids.LattSizes.size() == 2) { + std::cout << GridLogMessage << "**************************************************" << std::endl; + std::cout << GridLogMessage << "Testing Multigrid for Wilson Clover" << std::endl; + std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; - std::cout << GridLogMessage << "Some testing for construction of a second coarse level" << std::endl; - std::cout << GridLogMessage << "**************************************************" << std::endl; + TwoLevelMGPreconditioner TwoLevelMGPreconDwc(levelInfo, Dwc, Dwc); + // ThreeLevelMGPreconditioner ThreeLevelMGPreconDwc(levelInfo, Dwc, Dwc); + // FourLevelMGPreconditioner FourLevelMGPreconDwc(levelInfo, Dwc, Dwc); + // NLevelMGPreconditioner NLevelMGPreconDwc(levelInfo, Dwc, Dwc); - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Calling Aggregation class to build subspaces" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; + TwoLevelMGPreconDwc.setup(); + TwoLevelMGPreconDwc.runChecks(); - SubSubSpace CoarseAggregates(coarseGrids.Grids[1], coarseGrids.Grids[0], 0); - CoarseAggregates.CreateSubspace(coarseGrids.PRNGs[0], CoarseMdagMOp); + // ThreeLevelMGPreconDwc.setup(); + // ThreeLevelMGPreconDwc.runChecks(); - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Test vector analysis after initial creation of subspace" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; + // FourLevelMGPreconDwc.setup(); + // FourLevelMGPreconDwc.runChecks(); - // // this doesn't work because this function applies g5 to a vector, which - // // doesn't work for coarse vectors atm -> FIXME - // CoarseTVA coarseTVA; - // coarseTVA(CoarseMdagMOp, CoarseAggregates.subspace); + // NLevelMGPreconDwc.setup(); + // NLevelMGPreconDwc.runChecks(); - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Projecting subspace to definite chirality" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; + std::vector>> solversDwc; - // // cannot apply g5 to coarse vectors atm -> FIXME - // for(int n=0;n CoarseCoarseMdagMOp(Dcc); - - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Test vector analysis after construction of coarse Dirac operator" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; - - // // this doesn't work because this function applies g5 to a vector, which - // // doesn't work for coarse vectors atm -> FIXME - // coarseTVA(CoarseMdagMOp, CoarseAggregates.subspace); - - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Testing the linear operators" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; - - // clang-format off - testLinearOperator(CoarseMdagMOp, coarseGrids.Grids[0], "CoarseMdagMOp"); - testLinearOperator(CoarseCoarseMdagMOp, coarseGrids.Grids[1], "CoarseCoarseMdagMOp"); - // clang-format on - - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Building coarse coarse vectors" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; - - CoarseCoarseVector coarseCoarseSource(coarseGrids.Grids[1]); - CoarseCoarseVector coarseCoarseResult(coarseGrids.Grids[1]); - gaussian(coarseGrids.PRNGs[1], coarseCoarseSource); - coarseCoarseResult = zero; - - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Building some coarse space solvers" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; - - std::vector>> dummyCoarseCoarseSolvers; - dummyCoarseCoarseSolvers.emplace_back(new GeneralisedMinimalResidual(5.0e-2, 100, 8, false)); - dummyCoarseCoarseSolvers.emplace_back(new MinimalResidual(5.0e-2, 100, 0.8, false)); - dummyCoarseCoarseSolvers.emplace_back(new ConjugateGradient(5.0e-2, 100, false)); - - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Testing some coarse coarse space solvers" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; - - std::cout << GridLogMessage << "checking norm of coarse coarse src " << norm2(coarseCoarseSource) << std::endl; - - for(auto const &solver : dummyCoarseCoarseSolvers) { - coarseCoarseResult = zero; - (*solver)(CoarseCoarseMdagMOp, coarseCoarseSource, coarseCoarseResult); - } - - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Building a multigrid preconditioner" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; - - CoarseMGPreconditioner CoarseMGPrecon(CoarseAggregates, Dcc, CoarseMdagMOp, Dc, CoarseMdagMOp, Dc); - CoarseTrivialPreconditioner CoarseSimplePrecon; - - CoarseMGPrecon.runChecks(coarseGrids, 1); - - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Building krylov subspace solvers w/ & w/o MG Preconditioner" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; - - std::vector>> solvers; - solvers.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 4000000, CoarseSimplePrecon, 25, false)); - solvers.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 100, CoarseMGPrecon, 25, false)); - solvers.emplace_back(new PrecGeneralisedConjugateResidual(1.0e-12, 4000000, CoarseSimplePrecon, 25, 25)); - - // std::cout << GridLogMessage << "**************************************************" << std::endl; - // std::cout << GridLogMessage << "Testing the (un)?preconditioned solvers" << std::endl; - // std::cout << GridLogMessage << "**************************************************" << std::endl; - - for(auto const &solver : solvers) { - std::cout << GridLogMessage << "checking norm of fine src " << norm2(coarseSource) << std::endl; - coarseResult = zero; - (*solver)(CoarseMdagMOp, coarseSource, coarseResult); - std::cout << std::endl; - } + solversDwc.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, TrivialPrecon, 1000, false)); + solversDwc.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, TwoLevelMGPreconDwc, 1000, false)); + // solversDwc.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, ThreeLevelMGPreconDwc, 1000, false)); + // solversDwc.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, FourLevelMGPreconDwc, 1000, false)); + // solversDwc.emplace_back(new FlexibleGeneralisedMinimalResidual(1.0e-12, 50000, NLevelMGPreconDwc, 1000, false)); + for(auto const &solver : solversDwc) { + std::cout << "Starting with a new solver" << std::endl; + result = zero; + (*solver)(MdagMOpDwc, src, result); + std::cout << std::endl; } -#endif Grid_finalize(); }