1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

ARM neon intrinsics support

This commit is contained in:
Nils Meyer 2017-06-13 13:26:59 +02:00
parent 4a8c4ccfba
commit 3d04dc33c6
4 changed files with 396 additions and 113 deletions

View File

@ -244,6 +244,9 @@ case ${ax_cv_cxx_compiler_vendor} in
[generic SIMD vector width (in bytes)])
SIMD_GEN_WIDTH_MSG=" (width= $ac_gen_simd_width)"
SIMD_FLAGS='';;
NEONv8)
AC_DEFINE([NEONV8],[1],[ARMv8 NEON])
SIMD_FLAGS='';;
QPX|BGQ)
AC_DEFINE([QPX],[1],[QPX intrinsics for BG/Q])
SIMD_FLAGS='';;

View File

@ -26,7 +26,7 @@ Author: Antonin Portelli <antonin.portelli@me.com>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#define GEN_SIMD_WIDTH 16
static_assert(GEN_SIMD_WIDTH % 16u == 0, "SIMD vector size is not an integer multiple of 16 bytes");
//#define VECTOR_LOOPS

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -6,6 +6,7 @@
Copyright (C) 2015
Author: Nils Meyer <nils.meyer@ur.de>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
@ -27,18 +28,23 @@ Author: neo <cossu@post.kek.jp>
*************************************************************************************/
/* END LEGAL */
//----------------------------------------------------------------------
/*! @file Grid_sse4.h
@brief Optimization libraries for NEON (ARM) instructions set ARMv8
/*
ARMv8 NEON intrinsics layer by
Nils Meyer <nils.meyer@ur.de>,
University of Regensburg, Germany
SFB/TRR55
Experimental - Using intrinsics - DEVELOPING!
*/
// Time-stamp: <2015-07-10 17:45:09 neo>
//----------------------------------------------------------------------
//#ifndef ARM_NEON
//#define ARM_NEON
#include "Grid_generic_types.h"
#include <arm_neon.h>
// ARMv8 supports double precision
namespace Grid {
namespace Optimization {
template<class vtype>
@ -46,14 +52,18 @@ namespace Optimization {
float32x4_t f;
vtype v;
};
union u128f {
float32x4_t v;
float f[4];
};
union u128d {
float64x2_t v;
double f[4];
double f[2];
};
// half precision
union u128h {
float16x8_t v;
uint16_t f[8];
};
struct Vsplat{
@ -64,20 +74,20 @@ namespace Optimization {
}
// Real float
inline float32x4_t operator()(float a){
return vld1q_dup_f32(&a);
return vdupq_n_f32(a);
}
//Complex double
inline float32x4_t operator()(double a, double b){
float tmp[4]={(float)a,(float)b,(float)a,(float)b};
return vld1q_f32(tmp);
inline float64x2_t operator()(double a, double b){
double tmp[2]={a,b};
return vld1q_f64(tmp);
}
//Real double
inline float32x4_t operator()(double a){
return vld1q_dup_f32(&a);
//Real double // N:tbc
inline float64x2_t operator()(double a){
return vdupq_n_f64(a);
}
//Integer
//Integer // N:tbc
inline uint32x4_t operator()(Integer a){
return vld1q_dup_u32(&a);
return vdupq_n_u32(a);
}
};
@ -87,8 +97,8 @@ namespace Optimization {
vst1q_f32(F, a);
}
//Double
inline void operator()(float32x4_t a, double* D){
vst1q_f32((float*)D, a);
inline void operator()(float64x2_t a, double* D){
vst1q_f64(D, a);
}
//Integer
inline void operator()(uint32x4_t a, Integer* I){
@ -97,49 +107,49 @@ namespace Optimization {
};
struct Vstream{
//Float
struct Vstream{ // N:equivalents to _mm_stream_p* in NEON?
//Float // N:generic
inline void operator()(float * a, float32x4_t b){
memcpy(a,&b,4*sizeof(float));
}
//Double
inline void operator()(double * a, float32x4_t b){
//Double // N:generic
inline void operator()(double * a, float64x2_t b){
memcpy(a,&b,2*sizeof(double));
}
};
// Nils: Vset untested; not used currently in Grid at all;
// git commit 4a8c4ccfba1d05159348d21a9698028ea847e77b
struct Vset{
// Complex float
// Complex float // N:ok
inline float32x4_t operator()(Grid::ComplexF *a){
float32x4_t foo;
return foo;
float tmp[4]={a[1].imag(),a[1].real(),a[0].imag(),a[0].real()};
return vld1q_f32(tmp);
}
// Complex double
inline float32x4_t operator()(Grid::ComplexD *a){
float32x4_t foo;
return foo;
// Complex double // N:ok
inline float64x2_t operator()(Grid::ComplexD *a){
double tmp[2]={a[0].imag(),a[0].real()};
return vld1q_f64(tmp);
}
// Real float
// Real float // N:ok
inline float32x4_t operator()(float *a){
float32x4_t foo;
return foo;
float tmp[4]={a[3],a[2],a[1],a[0]};
return vld1q_f32(tmp);
}
// Real double
inline float32x4_t operator()(double *a){
float32x4_t foo;
return foo;
// Real double // N:ok
inline float64x2_t operator()(double *a){
double tmp[2]={a[1],a[0]};
return vld1q_f64(tmp);
}
// Integer
// Integer // N:ok
inline uint32x4_t operator()(Integer *a){
uint32x4_t foo;
return foo;
return vld1q_dup_u32(a);
}
};
// N:leaving as is
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
@ -184,26 +194,98 @@ namespace Optimization {
}
};
struct MultRealPart{
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
float32x4_t re = vtrn1q_f32(a, a);
return vmulq_f32(re, b);
}
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
float64x2_t re = vzip1q_f64(a, a);
return vmulq_f64(re, b);
}
};
struct MaddRealPart{
inline float32x4_t operator()(float32x4_t a, float32x4_t b, float32x4_t c){
float32x4_t re = vtrn1q_f32(a, a);
return vfmaq_f32(c, re, b);
}
inline float64x2_t operator()(float64x2_t a, float64x2_t b, float64x2_t c){
float64x2_t re = vzip1q_f64(a, a);
return vfmaq_f64(c, re, b);
}
};
struct Div{
// Real float
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
return vdivq_f32(a, b);
}
// Real double
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
return vdivq_f64(a, b);
}
};
struct MultComplex{
// Complex float
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
float32x4_t foo;
return foo;
float32x4_t r0, r1, r2, r3, r4;
// a = ar ai Ar Ai
// b = br bi Br Bi
// collect real/imag part, negate bi and Bi
r0 = vtrn1q_f32(b, b); // br br Br Br
r1 = vnegq_f32(b); // -br -bi -Br -Bi
r2 = vtrn2q_f32(b, r1); // bi -bi Bi -Bi
// the fun part
r3 = vmulq_f32(r2, a); // bi*ar -bi*ai ...
r4 = vrev64q_f32(r3); // -bi*ai bi*ar ...
// fma(a,b,c) = a+b*c
return vfmaq_f32(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi ...
// no fma, use mul and add
//float32x4_t r5;
//r5 = vmulq_f32(r0, a);
//return vaddq_f32(r4, r5);
}
// Complex double
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
float32x4_t foo;
return foo;
float64x2_t r0, r1, r2, r3, r4;
// b = br bi
// collect real/imag part, negate bi
r0 = vtrn1q_f64(b, b); // br br
r1 = vnegq_f64(b); // -br -bi
r2 = vtrn2q_f64(b, r1); // bi -bi
// the fun part
r3 = vmulq_f64(r2, a); // bi*ar -bi*ai
r4 = vextq_f64(r3,r3,1); // -bi*ai bi*ar
// fma(a,b,c) = a+b*c
return vfmaq_f64(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi
// no fma, use mul and add
//float64x2_t r5;
//r5 = vmulq_f64(r0, a);
//return vaddq_f64(r4, r5);
}
};
struct Mult{
// Real float
inline float32x4_t mac(float32x4_t a, float32x4_t b, float32x4_t c){
return vaddq_f32(vmulq_f32(b,c),a);
//return vaddq_f32(vmulq_f32(b,c),a);
return vfmaq_f32(a, b, c);
}
inline float64x2_t mac(float64x2_t a, float64x2_t b, float64x2_t c){
return vaddq_f64(vmulq_f64(b,c),a);
//return vaddq_f64(vmulq_f64(b,c),a);
return vfmaq_f64(a, b, c);
}
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
return vmulq_f32(a,b);
@ -221,74 +303,259 @@ namespace Optimization {
struct Conj{
// Complex single
inline float32x4_t operator()(float32x4_t in){
return in;
// ar ai br bi -> ar -ai br -bi
float32x4_t r0, r1;
r0 = vnegq_f32(in); // -ar -ai -br -bi
r1 = vrev64q_f32(r0); // -ai -ar -bi -br
return vtrn1q_f32(in, r1); // ar -ai br -bi
}
// Complex double
//inline float32x4_t operator()(float32x4_t in){
// return 0;
//}
inline float64x2_t operator()(float64x2_t in){
float64x2_t r0, r1;
r0 = vextq_f64(in, in, 1); // ai ar
r1 = vnegq_f64(r0); // -ai -ar
return vextq_f64(r0, r1, 1); // ar -ai
}
// do not define for integer input
};
struct TimesMinusI{
//Complex single
inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
return in;
// ar ai br bi -> ai -ar ai -br
float32x4_t r0, r1;
r0 = vnegq_f32(in); // -ar -ai -br -bi
r1 = vrev64q_f32(in); // ai ar bi br
return vtrn1q_f32(r1, r0); // ar -ai br -bi
}
//Complex double
//inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
// return in;
//}
inline float64x2_t operator()(float64x2_t in, float64x2_t ret){
// a ib -> b -ia
float64x2_t tmp;
tmp = vnegq_f64(in);
return vextq_f64(in, tmp, 1);
}
};
struct TimesI{
//Complex single
inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
//need shuffle
return in;
// ar ai br bi -> -ai ar -bi br
float32x4_t r0, r1;
r0 = vnegq_f32(in); // -ar -ai -br -bi
r1 = vrev64q_f32(r0); // -ai -ar -bi -br
return vtrn1q_f32(r1, in); // -ai ar -bi br
}
//Complex double
//inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
// return 0;
//}
inline float64x2_t operator()(float64x2_t in, float64x2_t ret){
// a ib -> -b ia
float64x2_t tmp;
tmp = vnegq_f64(in);
return vextq_f64(tmp, in, 1);
}
};
struct Permute{
static inline float32x4_t Permute0(float32x4_t in){ // N:ok
// AB CD -> CD AB
return vextq_f32(in, in, 2);
};
static inline float32x4_t Permute1(float32x4_t in){ // N:ok
// AB CD -> BA DC
return vrev64q_f32(in);
};
static inline float32x4_t Permute2(float32x4_t in){ // N:not used by Boyle
return in;
};
static inline float32x4_t Permute3(float32x4_t in){ // N:not used by Boyle
return in;
};
static inline float64x2_t Permute0(float64x2_t in){ // N:ok
// AB -> BA
return vextq_f64(in, in, 1);
};
static inline float64x2_t Permute1(float64x2_t in){ // N:not used by Boyle
return in;
};
static inline float64x2_t Permute2(float64x2_t in){ // N:not used by Boyle
return in;
};
static inline float64x2_t Permute3(float64x2_t in){ // N:not used by Boyle
return in;
};
};
struct Rotate{
static inline float32x4_t rotate(float32x4_t in,int n){ // N:ok
switch(n){
case 0: // AB CD -> AB CD
return tRotate<0>(in);
break;
case 1: // AB CD -> BC DA
return tRotate<1>(in);
break;
case 2: // AB CD -> CD AB
return tRotate<2>(in);
break;
case 3: // AB CD -> DA BC
return tRotate<3>(in);
break;
default: assert(0);
}
}
static inline float64x2_t rotate(float64x2_t in,int n){ // N:ok
switch(n){
case 0: // AB -> AB
return tRotate<0>(in);
break;
case 1: // AB -> BA
return tRotate<1>(in);
break;
default: assert(0);
}
}
// working, but no restriction on n
// template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n); };
// template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n); };
// restriction on n
template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n%4); };
template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n%2); };
};
struct PrecisionChange {
static inline float16x8_t StoH (const float32x4_t &a,const float32x4_t &b) {
float16x4_t h = vcvt_f16_f32(a);
return vcvt_high_f16_f32(h, b);
}
static inline void HtoS (float16x8_t h,float32x4_t &sa,float32x4_t &sb) {
sb = vcvt_high_f32_f16(h);
// there is no direct conversion from lower float32x4_t to float64x2_t
// vextq_f16 not supported by clang 3.8 / 4.0 / arm clang
//float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
// workaround for clang
uint32x4_t h1u = reinterpret_cast<uint32x4_t>(h);
float16x8_t h1 = reinterpret_cast<float16x8_t>(vextq_u32(h1u, h1u, 2));
sa = vcvt_high_f32_f16(h1);
}
static inline float32x4_t DtoS (float64x2_t a,float64x2_t b) {
float32x2_t s = vcvt_f32_f64(a);
return vcvt_high_f32_f64(s, b);
}
static inline void StoD (float32x4_t s,float64x2_t &a,float64x2_t &b) {
b = vcvt_high_f64_f32(s);
// there is no direct conversion from lower float32x4_t to float64x2_t
float32x4_t s1 = vextq_f32(s, s, 2);
a = vcvt_high_f64_f32(s1);
}
static inline float16x8_t DtoH (float64x2_t a,float64x2_t b,float64x2_t c,float64x2_t d) {
float32x4_t s1 = DtoS(a, b);
float32x4_t s2 = DtoS(c, d);
return StoH(s1, s2);
}
static inline void HtoD (float16x8_t h,float64x2_t &a,float64x2_t &b,float64x2_t &c,float64x2_t &d) {
float32x4_t s1, s2;
HtoS(h, s1, s2);
StoD(s1, a, b);
StoD(s2, c, d);
}
};
//////////////////////////////////////////////
// Exchange support
struct Exchange{
static inline void Exchange0(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
// in1: ABCD -> out1: ABEF
// in2: EFGH -> out2: CDGH
// z: CDAB
float32x4_t z = vextq_f32(in1, in1, 2);
// out1: ABEF
out1 = vextq_f32(z, in2, 2);
// z: GHEF
z = vextq_f32(in2, in2, 2);
// out2: CDGH
out2 = vextq_f32(in1, z, 2);
};
static inline void Exchange1(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
// in1: ABCD -> out1: AECG
// in2: EFGH -> out2: BFDH
out1 = vtrn1q_f32(in1, in2);
out2 = vtrn2q_f32(in1, in2);
};
static inline void Exchange2(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
assert(0);
return;
};
static inline void Exchange3(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
assert(0);
return;
};
// double precision
static inline void Exchange0(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
// in1: AB -> out1: AC
// in2: CD -> out2: BD
out1 = vzip1q_f64(in1, in2);
out2 = vzip2q_f64(in1, in2);
};
static inline void Exchange1(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
assert(0);
return;
};
static inline void Exchange2(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
assert(0);
return;
};
static inline void Exchange3(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
assert(0);
return;
};
};
//////////////////////////////////////////////
// Some Template specialization
template < typename vtype >
void permute(vtype &a, vtype b, int perm) {
};
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, float32x4_t>::operator()(float32x4_t in){
return 0;
float32x4_t v1; // two complex
v1 = Optimization::Permute::Permute0(in);
v1 = vaddq_f32(v1,in);
u128f conv; conv.v=v1;
return Grid::ComplexF(conv.f[0],conv.f[1]);
}
//Real float Reduce
template<>
inline Grid::RealF Reduce<Grid::RealF, float32x4_t>::operator()(float32x4_t in){
float32x2_t high = vget_high_f32(in);
float32x2_t low = vget_low_f32(in);
float32x2_t tmp = vadd_f32(low, high);
float32x2_t sum = vpadd_f32(tmp, tmp);
return vget_lane_f32(sum,0);
return vaddvq_f32(in);
}
//Complex double Reduce
template<>
template<> // N:by Boyle
inline Grid::ComplexD Reduce<Grid::ComplexD, float64x2_t>::operator()(float64x2_t in){
return 0;
u128d conv; conv.v = in;
return Grid::ComplexD(conv.f[0],conv.f[1]);
}
//Real double Reduce
template<>
inline Grid::RealD Reduce<Grid::RealD, float64x2_t>::operator()(float64x2_t in){
float64x2_t sum = vpaddq_f64(in, in);
return vgetq_lane_f64(sum,0);
return vaddvq_f64(in);
}
//Integer Reduce
@ -302,8 +569,9 @@ namespace Optimization {
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
namespace Grid {
// typedef Optimization::vech SIMD_Htype; // Reduced precision type
typedef float16x8_t SIMD_Htype; // Half precision type
typedef float32x4_t SIMD_Ftype; // Single precision type
typedef float64x2_t SIMD_Dtype; // Double precision type
typedef uint32x4_t SIMD_Itype; // Integer type
@ -312,13 +580,6 @@ namespace Grid {
inline void prefetch_HINT_T0(const char *ptr){};
// Gpermute function
template < typename VectorSIMD >
inline void Gpermute(VectorSIMD &y,const VectorSIMD &b, int perm ) {
Optimization::permute(y.v,b.v,perm);
}
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
@ -332,10 +593,15 @@ namespace Grid {
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}
//#endif // ARM_NEON

View File

@ -604,13 +604,27 @@ inline Grid_simd<S, V> real_mult(Grid_simd<S, V> a, Grid_simd<S, V> b) {
ret.v = binary<V>(a.v, b.v, MultRealPartSIMD());
return ret;
};
// TEST for Test_simd
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> real_mult(std::complex<S> a, std::complex<S> b) {
Grid_simd<S, V> ret;
//ret.v = binary<V>(a.v, b.v, MultRealPartSIMD());
return ret;
};
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> real_madd(Grid_simd<S, V> a, Grid_simd<S, V> b, Grid_simd<S,V> c) {
Grid_simd<S, V> ret;
ret.v = trinary<V>(a.v, b.v, c.v, MaddRealPartSIMD());
return ret;
};
// TEST for Test_simd
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> real_madd(std::complex<S> a, std::complex<S> b) {
Grid_simd<S, V> ret;
//ret.v = binary<V>(a.v, b.v, MultRealPartSIMD());
return ret;
};
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>