1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-11 14:40:46 +01:00

Namespace

This commit is contained in:
paboyle 2018-01-14 22:47:24 +00:00
parent fd6031b005
commit 3e139b52d3

View File

@ -1,4 +1,4 @@
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
@ -23,259 +23,257 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H #ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H #define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_RATIO_H
namespace Grid{ NAMESPACE_BEGIN(Grid);
namespace QCD{
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
/////////////////////////////////////// // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
// One flavour rational //
/////////////////////////////////////// // Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
template<class Impl>
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
public:
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
// //
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4} // P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2} // = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
template<class Impl> // Phi = (VdagV)^-1/4 Mdag^{1/4} eta
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> { //
public: // P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
INHERIT_IMPL_TYPES(Impl); RealD scale = std::sqrt(0.5);
typedef OneFlavourRationalParams Params; FermionField eta(NumOp.FermionGrid());
Params param; FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
MultiShiftFunction PowerHalf ; gaussian(pRNG,eta); eta=eta*scale;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private: pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
public: NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
//
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
gaussian(pRNG,eta); eta=eta*scale;
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// MdagM^1/4 eta // MdagM^1/4 eta
SchurDifferentiableOperator<Impl> MdagM(DenOp); SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter); ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
msCG_M(MdagM,etaOdd,tmp); msCG_M(MdagM,etaOdd,tmp);
// VdagV^-1/4 MdagM^1/4 eta // VdagV^-1/4 MdagM^1/4 eta
SchurDifferentiableOperator<Impl> VdagV(NumOp); SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter); ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
msCG_V(VdagV,tmp,PhiOdd); msCG_V(VdagV,tmp,PhiOdd);
assert(NumOp.ConstEE() == 1); assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1); assert(DenOp.ConstEE() == 1);
PhiEven = zero; PhiEven = zero;
}; };
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) { virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U); NumOp.ImportGauge(U);
DenOp.ImportGauge(U); DenOp.ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid()); FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid()); FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/4 Phi // VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> VdagV(NumOp); SchurDifferentiableOperator<Impl> VdagV(NumOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter); ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
msCG_V(VdagV,PhiOdd,X); msCG_V(VdagV,PhiOdd,X);
// MdagM^-1/4 VdagV^1/4 Phi // MdagM^-1/4 VdagV^1/4 Phi
SchurDifferentiableOperator<Impl> MdagM(DenOp); SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter); ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
msCG_M(MdagM,X,Y); msCG_M(MdagM,X,Y);
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi // Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
RealD action = norm2(Y); RealD action = norm2(Y);
return action; return action;
}; };
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
// //
// Here, M is some 5D operator and V is the Pauli-Villars field // Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term // N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
// //
// Need // Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi // dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi // + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi // + chi^dag P/Q N/D d[P/Q] chi
// //
// P/Q is expressed as partial fraction expansion: // P/Q is expressed as partial fraction expansion:
// //
// a0 + \sum_k ak/(V^dagV + bk) // a0 + \sum_k ak/(V^dagV + bk)
// //
// d[P/Q] is then // d[P/Q] is then
// //
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1} // \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
// //
// and similar for N/D. // and similar for N/D.
// //
// Need // Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi // MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi // MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
// //
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi // MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi // MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
// //
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi // MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
// //
virtual void deriv(const GaugeField &U,GaugeField & dSdU) { virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int n_f = PowerNegHalf.poles.size(); const int n_f = PowerNegHalf.poles.size();
const int n_pv = PowerQuarter.poles.size(); const int n_pv = PowerQuarter.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid()); std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid()); std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid()); std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid()); FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid()); FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid()); FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid()); FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid()); GaugeField tmp(NumOp.GaugeGrid());
NumOp.ImportGauge(U); NumOp.ImportGauge(U);
DenOp.ImportGauge(U); DenOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> VdagV(NumOp); SchurDifferentiableOperator<Impl> VdagV(NumOp);
SchurDifferentiableOperator<Impl> MdagM(DenOp); SchurDifferentiableOperator<Impl> MdagM(DenOp);
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter); ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf); ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi); msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi); msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi); msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
RealD ak; RealD ak;
dSdU = zero; dSdU = zero;
// With these building blocks // With these building blocks
// //
// dS/dU = // dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1) // \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2) // + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3) // -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1) //(1)
for(int k=0;k<n_f;k++){ for(int k=0;k<n_f;k++){
ak = PowerNegHalf.residues[k]; ak = PowerNegHalf.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y); MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp; MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp; MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
} }
//(2) //(2)
//(3) //(3)
for(int k=0;k<n_pv;k++){ for(int k=0;k<n_pv;k++){
ak = PowerQuarter.residues[k]; ak = PowerQuarter.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y); VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp; VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp; VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp; VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp; VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
} }
//dSdU = Ta(dSdU); //dSdU = Ta(dSdU);
}; };
}; };
}
}
NAMESPACE_END(Grid);
#endif #endif