1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-20 00:36:55 +01:00

Updates in tests to make all of Grid compile

This commit is contained in:
Peter Boyle
2018-12-14 16:55:54 +00:00
parent afc462bd58
commit 422764757d
26 changed files with 388 additions and 399 deletions

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,197 +24,198 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMPARISON_H
#define GRID_COMPARISON_H
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////
// This implementation is a bit poor.
//
// Only support relational logical operations (<, > etc)
// on scalar objects. Therefore can strip any tensor structures.
//
// Should guard this with isGridTensor<> enable if?
/////////////////////////////////////////
//
// Generic list of functors
//
template<class lobj,class robj> class veq {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class vne {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class vlt {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class vle {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class vgt {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class vge {
public:
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
};
/////////////////////////////////////////
// This implementation is a bit poor.
//
// Only support relational logical operations (<, > etc)
// on scalar objects. Therefore can strip any tensor structures.
//
// Should guard this with isGridTensor<> enable if?
/////////////////////////////////////////
//
// Generic list of functors
//
template<class lobj,class robj> class veq {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class vne {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class vlt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class vle {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class vgt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class vge {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
};
// Generic list of functors
template<class lobj,class robj> class seq {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class sne {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class slt {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class sle {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class sgt {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class sge {
public:
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
};
// Generic list of functors
template<class lobj,class robj> class seq {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class sne {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class slt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class sle {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class sgt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class sge {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Integer and real get extra relational functions.
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
ExtractBuffer<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<scalar> vrhs(vsimd::Nsimd());
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(vlhs[s],vrhs[s]);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Integer and real get extra relational functions.
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
ExtractBuffer<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<scalar> vrhs(vsimd::Nsimd());
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(vlhs[s],vrhs[s]);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
{
typedef typename vsimd::scalar_type scalar;
ExtractBuffer<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(vlhs[s],rhs);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
{
typedef typename vsimd::scalar_type scalar;
ExtractBuffer<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(vlhs[s],rhs);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
accelerator_inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
ExtractBuffer<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(lhs,vrhs[s]);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
ExtractBuffer<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(lhs,vrhs[s]);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
#define DECLARE_RELATIONAL_EQ(op,functor) \
template<class vsimd,IfSimd<vsimd> = 0> \
accelerator_inline vInteger operator op (const vsimd & lhs, const vsimd & rhs) \
{ \
typedef typename vsimd::scalar_type scalar; \
return Comparison(functor<scalar,scalar>(),lhs,rhs); \
} \
template<class vsimd,IfSimd<vsimd> = 0> \
accelerator_inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
{ \
typedef typename vsimd::scalar_type scalar; \
return Comparison(functor<scalar,scalar>(),lhs,rhs); \
} \
template<class vsimd,IfSimd<vsimd> = 0> \
accelerator_inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
{ \
typedef typename vsimd::scalar_type scalar; \
return Comparison(functor<scalar,scalar>(),lhs,rhs); \
} \
template<class vsimd> \
accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs) \
{ \
return lhs._internal op rhs._internal; \
} \
template<class vsimd> \
accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
{ \
return lhs._internal op rhs; \
} \
template<class vsimd> \
accelerator_inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
{ \
return lhs op rhs._internal; \
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
{ \
return lhs._internal op rhs; \
} \
template<class vsimd>\
inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
{ \
return lhs op rhs._internal; \
} \
#define DECLARE_RELATIONAL(op,functor) DECLARE_RELATIONAL_EQ(op,functor)
#define DECLARE_RELATIONAL(op,functor) \
DECLARE_RELATIONAL_EQ(op,functor) \
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
{ \
return lhs._internal op rhs._internal; \
}
DECLARE_RELATIONAL(<,slt);
DECLARE_RELATIONAL(<=,sle);
@ -228,4 +229,4 @@ DECLARE_RELATIONAL(!=,sne);
NAMESPACE_END(Grid);
#endif

View File

@ -477,7 +477,7 @@ static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Ortho
typedef typename vobj::vector_type vector_type;
int Nblock = rhs.Grid()->GlobalDimensions()[Orthog];
Vector<ComplexD> ip(Nblock);
std::vector<ComplexD> ip(Nblock);
sn.resize(Nblock);
sliceInnerProductVector(ip,rhs,rhs,Orthog);
@ -586,6 +586,10 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
auto X_v=X.View();
auto Y_v=Y.View();
auto R_v=R.View();
thread_region
{
Vector<vobj> s_x(Nblock);
@ -595,16 +599,16 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X[o+i*ostride];
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y[o+i*ostride];
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R[o+i*ostride]=dot;
R_v[o+i*ostride]=dot;
}
}});
}
@ -635,6 +639,8 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
auto R_v = R.View();
auto X_v = X.View();
thread_region
{
std::vector<vobj> s_x(Nblock);
@ -645,7 +651,7 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X[o+i*ostride];
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
@ -654,7 +660,7 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R[o+i*ostride]=dot;
R_v[o+i*ostride]=dot;
}
}});
}
@ -692,6 +698,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
typedef typename vobj::vector_typeD vector_typeD;
auto lhs_v=lhs.View();
auto rhs_v=rhs.View();
thread_region
{
std::vector<vobj> Left(Nblock);
@ -704,8 +712,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs[o+i*ostride];
Right[i] = rhs[o+i*ostride];
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){