mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	EvenOdd schur decomposed mpcdagmpc version of rhmc determinant.
dH is also small and plaquette looks right.
This commit is contained in:
		
							
								
								
									
										185
									
								
								lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										185
									
								
								lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,185 @@
 | 
			
		||||
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
 | 
			
		||||
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid{
 | 
			
		||||
  namespace QCD{
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // One flavour rational
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // S_f = chi^dag *  N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
 | 
			
		||||
    //
 | 
			
		||||
    // Here, M is some operator 
 | 
			
		||||
    // N and D makeup the rat. poly 
 | 
			
		||||
    //
 | 
			
		||||
  
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    class OneFlavourEvenOddRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
 | 
			
		||||
    public:
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
      typedef OneFlavourRationalParams Params;
 | 
			
		||||
      Params param;
 | 
			
		||||
 | 
			
		||||
      MultiShiftFunction PowerHalf   ;
 | 
			
		||||
      MultiShiftFunction PowerNegHalf;
 | 
			
		||||
      MultiShiftFunction PowerQuarter;
 | 
			
		||||
      MultiShiftFunction PowerNegQuarter;
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
     
 | 
			
		||||
      FermionOperator<Impl> & FermOp;// the basic operator
 | 
			
		||||
 | 
			
		||||
      // NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
 | 
			
		||||
      // and hasenbusch works better
 | 
			
		||||
 | 
			
		||||
      FermionField PhiEven; // the pseudo fermion field for this trajectory
 | 
			
		||||
      FermionField PhiOdd; // the pseudo fermion field for this trajectory
 | 
			
		||||
                        
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl>  &Op, 
 | 
			
		||||
						   Params & p ) : FermOp(Op), 
 | 
			
		||||
	PhiEven(Op.FermionRedBlackGrid()), 
 | 
			
		||||
	PhiOdd (Op.FermionRedBlackGrid()), 
 | 
			
		||||
	param(p) 
 | 
			
		||||
      {
 | 
			
		||||
	AlgRemez remez(param.lo,param.hi,param.precision);
 | 
			
		||||
 | 
			
		||||
	// MdagM^(+- 1/2)
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
 | 
			
		||||
	remez.generateApprox(param.degree,1,2);
 | 
			
		||||
	PowerHalf.Init(remez,param.tolerance,false);
 | 
			
		||||
	PowerNegHalf.Init(remez,param.tolerance,true);
 | 
			
		||||
 | 
			
		||||
	// MdagM^(+- 1/4)
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
 | 
			
		||||
	remez.generateApprox(param.degree,1,4);
 | 
			
		||||
   	PowerQuarter.Init(remez,param.tolerance,false);
 | 
			
		||||
	PowerNegQuarter.Init(remez,param.tolerance,true);
 | 
			
		||||
      };
 | 
			
		||||
      
 | 
			
		||||
      virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
 | 
			
		||||
 | 
			
		||||
	// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
 | 
			
		||||
	//        = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
 | 
			
		||||
	// Phi = MpcdagMpc^{1/4} eta 
 | 
			
		||||
	//
 | 
			
		||||
	// P(eta) = e^{- eta^dag eta}
 | 
			
		||||
	//
 | 
			
		||||
	// e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
	// 
 | 
			
		||||
	// So eta should be of width sig = 1/sqrt(2).
 | 
			
		||||
 | 
			
		||||
	RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
	FermionField eta    (FermOp.FermionGrid());
 | 
			
		||||
	FermionField etaOdd (FermOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField etaEven(FermOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	gaussian(pRNG,eta);	eta=eta*scale;
 | 
			
		||||
 | 
			
		||||
	pickCheckerboard(Even,etaEven,eta);
 | 
			
		||||
	pickCheckerboard(Odd,etaOdd,eta);
 | 
			
		||||
 | 
			
		||||
	FermOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	// mutishift CG
 | 
			
		||||
	SchurDifferentiableOperator<Impl> Mpc(FermOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
 | 
			
		||||
	msCG(Mpc,etaOdd,PhiOdd);
 | 
			
		||||
 | 
			
		||||
	//////////////////////////////////////////////////////
 | 
			
		||||
	// FIXME : Clover term not yet..
 | 
			
		||||
	//////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
	assert(FermOp.ConstEE() == 1);
 | 
			
		||||
	PhiEven = zero;
 | 
			
		||||
	
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // S = phi^dag (Mdag M)^-1/2 phi
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual RealD S(const GaugeField &U) {
 | 
			
		||||
 | 
			
		||||
	FermOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	FermionField Y(FermOp.FermionRedBlackGrid());
 | 
			
		||||
	
 | 
			
		||||
	SchurDifferentiableOperator<Impl> Mpc(FermOp);
 | 
			
		||||
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
 | 
			
		||||
 | 
			
		||||
	msCG(Mpc,PhiOdd,Y);
 | 
			
		||||
 | 
			
		||||
	RealD action = norm2(Y);
 | 
			
		||||
	std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
 | 
			
		||||
 | 
			
		||||
	return action;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // Need
 | 
			
		||||
      // dS_f/dU = chi^dag   d[N/D]  chi
 | 
			
		||||
      //
 | 
			
		||||
      // N/D is expressed as partial fraction expansion:
 | 
			
		||||
      //
 | 
			
		||||
      //           a0 + \sum_k ak/(M^dagM + bk)
 | 
			
		||||
      //
 | 
			
		||||
      // d[N/D] is then
 | 
			
		||||
      //
 | 
			
		||||
      //          \sum_k -ak [M^dagM+bk]^{-1}  [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
 | 
			
		||||
      //
 | 
			
		||||
      // Need
 | 
			
		||||
      //       Mf Phi_k = [MdagM+bk]^{-1} Phi
 | 
			
		||||
      //       Mf Phi   = \sum_k ak [MdagM+bk]^{-1} Phi
 | 
			
		||||
      //
 | 
			
		||||
      // With these building blocks
 | 
			
		||||
      //
 | 
			
		||||
      //       dS/dU =  \sum_k -ak Mf Phi_k^dag      [ dM^dag M + M^dag dM ] Mf Phi_k
 | 
			
		||||
      //        S    = innerprodReal(Phi,Mf Phi);
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
 | 
			
		||||
 | 
			
		||||
	const int Npole = PowerNegHalf.poles.size();
 | 
			
		||||
 | 
			
		||||
	std::vector<FermionField> MPhi_k (Npole,FermOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	FermionField X(FermOp.FermionRedBlackGrid());
 | 
			
		||||
	FermionField Y(FermOp.FermionRedBlackGrid());
 | 
			
		||||
 | 
			
		||||
	GaugeField   tmp(FermOp.GaugeGrid());
 | 
			
		||||
 | 
			
		||||
	FermOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	SchurDifferentiableOperator<Impl> Mpc(FermOp);
 | 
			
		||||
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
 | 
			
		||||
 | 
			
		||||
	msCG(Mpc,PhiOdd,MPhi_k);
 | 
			
		||||
 | 
			
		||||
	dSdU = zero;
 | 
			
		||||
	for(int k=0;k<Npole;k++){
 | 
			
		||||
 | 
			
		||||
	  RealD ak = PowerNegHalf.residues[k];
 | 
			
		||||
 | 
			
		||||
	  X  = MPhi_k[k];
 | 
			
		||||
 | 
			
		||||
	  Mpc.Mpc(X,Y);
 | 
			
		||||
	  Mpc.MpcDeriv   (tmp , Y, X );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  Mpc.MpcDagDeriv(tmp , X, Y );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dSdU = Ta(dSdU);
 | 
			
		||||
 | 
			
		||||
      };
 | 
			
		||||
    };
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
		Reference in New Issue
	
	Block a user