1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00

trouble with compilation

This commit is contained in:
david clarke 2023-06-08 17:37:25 -06:00
parent e506d6d369
commit 4b994a1bc7
2 changed files with 200 additions and 117 deletions

View File

@ -0,0 +1,190 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/smearing/StoutSmearing.h
Copyright (C) 2019
Author: D. A. Clarke <clarke.davida@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/*
@file HISQSmearing.h
@brief Declares classes related to HISQ smearing
*/
// things like @brief are seen by things like doxygen and javadocs
#pragma once
#include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
NAMESPACE_BEGIN(Grid);
// This is to optimize the SIMD (will also need to be in the class, at least for now)
template<class vobj> void gpermute(vobj & inout,int perm) {
vobj tmp=inout;
if (perm & 0x1) {permute(inout,tmp,0); tmp=inout;}
if (perm & 0x2) {permute(inout,tmp,1); tmp=inout;}
if (perm & 0x4) {permute(inout,tmp,2); tmp=inout;}
if (perm & 0x8) {permute(inout,tmp,3); tmp=inout;}
}
/*! @brief 3-link smearing of link variable. */
//template <class Gimpl>
//class Smear_HISQ_3link : public Smear<Gimpl> {
class Smear_HISQ_3link {
// TODO: I'm not using Gimpl so I don't know how to inherit
private:
// std::vector<int> _linkTreatment;
GridBase* const _grid;
public:
// INHERIT_GIMPL_TYPES(Gimpl)
// Eventually this will take, e.g., coefficients as argument
Smear_HISQ_3link(GridBase* grid) : _grid(grid) {
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
}
~Smear_HISQ_3link() {}
void smear(LatticeGaugeField& u_smr, const LatticeGaugeField& U) const {
// Create a padded cell of extra padding depth=1
int depth = 1;
PaddedCell Ghost(depth,this->_grid);
LatticeGaugeField Ughost = Ghost.Exchange(u_smr);
// Array for <tr U_mu_nu>(x)
GridBase *GhostGrid = Ughost.Grid();
LatticeComplex gplaq(GhostGrid);
// This is where the 3-link constructs will be stored
LatticeGaugeField Ughost_3link(Ughost.Grid());
// Create 3-link stencil (class will build its own stencils)
// writing your own stencil, you're hard-coding the periodic BCs, so you don't need
// the policy-based stuff, at least for now
std::vector<Coordinate> shifts;
for(int mu=0;mu<Nd;mu++){
for(int nu=mu+1;nu<Nd;nu++){
// forward shifts
Coordinate shift_0(Nd,0);
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
// push_back creates an element at the end of shifts and
// assigns the data in the argument to it.
shifts.push_back(shift_mu);
shifts.push_back(shift_nu);
shifts.push_back(shift_0);
// reverse shifts
shift_nu[nu]=-1;
Coordinate shift_munu(Nd,0); shift_munu[mu]=1; shift_munu[nu]=-1;
shifts.push_back(shift_munu);
shifts.push_back(shift_nu); // in principle you don't need both of these grid points,
shifts.push_back(shift_nu); // but it helps the reader keep track of offsets
}
}
GeneralLocalStencil gStencil(GhostGrid,shifts);
Ughost_3link=Zero();
// Create the accessors, here U_v and U_3link_v
autoView(U_v , Ughost , CpuRead);
autoView(U_3link_v, Ughost_3link, CpuWrite);
// This is a loop over local sites.
for(int ss=0;ss<U_v.size();ss++){
// This is the stencil index. It increases as we make our way through the spacetime sites,
// plaquette orientations, and as we travel around a plaquette.
int s=0;
for(int mu=0;mu<Nd;mu++){
for(int nu=mu+1;nu<Nd;nu++){
// shift_mu; shift_mu[mu]=1
// shift_nu; shift_nu[nu]=1
// shift_0
// shift_munu; shift_munu[mu]= 1; shift_munu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
auto SE0 = gStencil.GetEntry(s+0,ss);
auto SE1 = gStencil.GetEntry(s+1,ss);
auto SE2 = gStencil.GetEntry(s+2,ss);
auto SE3 = gStencil.GetEntry(s+3,ss);
auto SE4 = gStencil.GetEntry(s+4,ss);
auto SE5 = gStencil.GetEntry(s+5,ss);
// Each offset corresponds to a site around the plaquette.
int o0 = SE0->_offset;
int o1 = SE1->_offset;
int o2 = SE2->_offset;
int o3 = SE3->_offset;
int o4 = SE4->_offset;
int o5 = SE5->_offset;
auto U0 = U_v[o0](nu);
auto U1 = adj(U_v[o1](mu));
auto U2 = adj(U_v[o2](nu));
gpermute(U0,SE0->_permute);
gpermute(U1,SE1->_permute);
gpermute(U2,SE2->_permute);
auto U3 = adj(U_v[o3](nu));
auto U4 = adj(U_v[o4](mu));
auto U5 = U_v[o5](nu);
gpermute(U3,SE3->_permute);
gpermute(U4,SE4->_permute);
gpermute(U5,SE5->_permute);
// Forward contribution from this orientation
auto W = U0*U1*U2;
U_3link_v[ss](mu) = U_3link_v[ss](mu) + W;
// Backward contribution from this orientation
W = U3*U4*U5;
U_3link_v[ss](mu) = U_3link_v[ss](mu) + W;
s=s+6;
}
}
}
// Here is my understanding of this part: The padded cell has its own periodic BCs, so
// if I take a step to the right at the right-most side of the cell, I end up on the
// left-most side. This means that the plaquettes in the padding are wrong. Luckily
// all we care about are the plaquettes in the cell, which we obtain from Extract.
u_smr = Ghost.Extract(Ughost_3link);
};
// void derivative(const GaugeField& Gauge) const {
// };
};
NAMESPACE_END(Grid);

View File

@ -10,16 +10,9 @@
#include <Grid/Grid.h> #include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h> #include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h> #include <Grid/stencil/GeneralLocalStencil.h>
#include <Grid/qcd/smearing/HISQSmearing.h>
using namespace Grid; using namespace Grid;
// This is to optimize the SIMD (will also need to be in the class, at least for now)
template<class vobj> void gpermute(vobj & inout,int perm) {
vobj tmp=inout;
if (perm & 0x1) {permute(inout,tmp,0); tmp=inout;}
if (perm & 0x2) {permute(inout,tmp,1); tmp=inout;}
if (perm & 0x4) {permute(inout,tmp,2); tmp=inout;}
if (perm & 0x8) {permute(inout,tmp,3); tmp=inout;}
}
// Make the logger work like Python print() // Make the logger work like Python print()
template<typename ... Args> template<typename ... Args>
@ -46,7 +39,11 @@ struct fatParams: Serializable {
} }
}; };
//
// one method: input --> fat
// another : input --> long (naik)
// another : input --> unitarize
//
int main (int argc, char **argv) int main (int argc, char **argv)
{ {
@ -66,119 +63,15 @@ int main (int argc, char **argv)
fatParams param(Reader); fatParams param(Reader);
LatticeGaugeField Umu(&GRID); LatticeGaugeField Umu(&GRID);
LatticeGaugeField U_smr(&GRID);
FieldMetaData header; FieldMetaData header;
NerscIO::readConfiguration(Umu, header, param.conf_in); NerscIO::readConfiguration(Umu, header, param.conf_in);
// Create a padded cell of extra padding depth=1 Smear_HISQ_3link hisq_3link(&GRID);
int depth = 1;
PaddedCell Ghost(depth,&GRID);
LatticeGaugeField Ughost = Ghost.Exchange(Umu);
// Array for <tr U_mu_nu>(x) hisq_3link.smear(U_smr,Umu);
GridBase *GhostGrid = Ughost.Grid();
LatticeComplex gplaq(GhostGrid);
// This is where the 3-link constructs will be stored NerscIO::writeConfiguration(U_smr,param.conf_out,"HISQ");
LatticeGaugeField Ughost_3link(Ughost.Grid());
// Create 3-link stencil (class will build its own stencils)
// writing your own stencil, you're hard-coding the periodic BCs, so you don't need
// the policy-based stuff, at least for now
std::vector<Coordinate> shifts;
for(int mu=0;mu<Nd;mu++){
for(int nu=mu+1;nu<Nd;nu++){
// forward shifts
Coordinate shift_0(Nd,0);
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
// push_back creates an element at the end of shifts and
// assigns the data in the argument to it.
shifts.push_back(shift_mu);
shifts.push_back(shift_nu);
shifts.push_back(shift_0);
// reverse shifts
shift_nu[nu]=-1;
Coordinate shift_munu(Nd,0); shift_munu[mu]=1; shift_munu[nu]=-1;
shifts.push_back(shift_munu);
shifts.push_back(shift_nu);
shifts.push_back(shift_nu);
}
}
GeneralLocalStencil gStencil(GhostGrid,shifts);
Ughost_3link=Zero();
// Create the accessors, here U_v and U_3link_v
autoView(U_v , Ughost , CpuRead);
autoView(U_3link_v, Ughost_3link, CpuWrite);
// This is a loop over local sites. TODO: get backwards directions
for(int ss=0;ss<U_v.size();ss++){
// This is the stencil index. It increases as we make our way through the spacetime sites,
// plaquette orientations, and as we travel around a plaquette.
int s=0;
for(int mu=0;mu<Nd;mu++){
for(int nu=mu+1;nu<Nd;nu++){
// shift_mu; shift_mu[mu]=1
// shift_nu; shift_nu[nu]=1
// shift_0
// shift_munu; shift_munu[mu]= 1; shift_munu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
auto SE0 = gStencil.GetEntry(s+0,ss);
auto SE1 = gStencil.GetEntry(s+1,ss);
auto SE2 = gStencil.GetEntry(s+2,ss);
auto SE3 = gStencil.GetEntry(s+3,ss);
auto SE4 = gStencil.GetEntry(s+4,ss);
auto SE5 = gStencil.GetEntry(s+5,ss);
// Each offset corresponds to a site around the plaquette.
int o0 = SE0->_offset;
int o1 = SE1->_offset;
int o2 = SE2->_offset;
int o3 = SE3->_offset;
int o4 = SE4->_offset;
int o5 = SE5->_offset;
auto U0 = U_v[o0](nu);
auto U1 = adj(U_v[o1](mu));
auto U2 = adj(U_v[o2](nu));
gpermute(U0,SE0->_permute);
gpermute(U1,SE1->_permute);
gpermute(U2,SE2->_permute);
auto U3 = adj(U_v[o3](nu));
auto U4 = adj(U_v[o4](mu));
auto U5 = U_v[o5](nu);
gpermute(U3,SE3->_permute);
gpermute(U4,SE4->_permute);
gpermute(U5,SE5->_permute);
// Forward contribution from this orientation
auto W = U0*U1*U2;
U_3link_v[ss](mu) = U_3link_v[ss](mu) + W;
// Backward contribution from this orientation
W = U3*U4*U5;
U_3link_v[ss](mu) = U_3link_v[ss](mu) + W;
s=s+6;
}
}
}
// Here is my understanding of this part: The padded cell has its own periodic BCs, so
// if I take a step to the right at the right-most side of the cell, I end up on the
// left-most side. This means that the plaquettes in the padding are wrong. Luckily
// all we care about are the plaquettes in the cell, which we obtain from Extract.
Umu = Ghost.Extract(Ughost_3link);
NerscIO::writeConfiguration(Umu,param.conf_out,"HISQ");
Grid_finalize(); Grid_finalize();
} }