1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 12:47:05 +01:00

Lattice matrix exponential ok

This commit is contained in:
neo
2015-06-17 20:41:07 +09:00
parent e31dfa79d1
commit 4eb71d2cd2
9 changed files with 136 additions and 89 deletions

View File

@ -1,5 +1,7 @@
#ifndef GRID_MATH_TA_H
#define GRID_MATH_TA_H
namespace Grid {
///////////////////////////////////////////////
@ -36,7 +38,8 @@ namespace Grid {
///////////////////////////////////////////////
// ProjectOnGroup function for scalar, vector, matrix
// ProjectOnGroup function for scalar, vector, matrix
// Projects on orthogonal, unitary group
///////////////////////////////////////////////
@ -59,22 +62,23 @@ namespace Grid {
{
// need a check for the group type?
iMatrix<vtype,N> ret(arg);
double nrm;
RealD nrm;
vtype inner;
for(int c1=0;c1<N;c1++){
nrm = 0.0;
zeroit(inner);
for(int c2=0;c2<N;c2++)
nrm += real(innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]));
nrm = 1.0/sqrt(nrm);
std::cout << "norm : "<< nrm << "\n";
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
nrm = 1.0/sqrt(Reduce(toReal(inner)));
for(int c2=0;c2<N;c2++)
ret._internal[c1][c2]*= nrm;
for (int b=c1+1; b<N; ++b){
decltype(ret._internal[b][b]*ret._internal[b][b]) pr = 0.0;
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
zeroit(pr);
for(int c=0; c<N; ++c)
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c];
std::cout << "pr : "<< pr << "\n";
for(int c=0; c<N; ++c){
ret._internal[b][c] -= pr * ret._internal[c1][c];
}
@ -86,74 +90,6 @@ namespace Grid {
}
///////////////////////////////////////////////
// Determinant function for scalar, vector, matrix
///////////////////////////////////////////////
inline ComplexF Determinant( const ComplexF &arg){ return arg;}
inline ComplexD Determinant( const ComplexD &arg){ return arg;}
inline RealF Determinant( const RealF &arg){ return arg;}
inline RealD Determinant( const RealD &arg){ return arg;}
template<class vtype> inline auto Determinant(const iScalar<vtype>&r) -> iScalar<decltype(Determinant(r._internal))>
{
iScalar<decltype(Determinant(r._internal))> ret;
ret._internal = Determinant(r._internal);
return ret;
}
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
inline iScalar<vtype> Determinant(const iMatrix<vtype,N> &arg)
{
iMatrix<vtype,N> ret(arg);
iScalar<vtype> det = vtype(1.0);
/* Conversion of matrix to upper triangular */
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
if(j>i){
vtype ratio = ret._internal[j][i]/ret._internal[i][i];
for(int k = 0; k < N; k++){
ret._internal[j][k] -= ratio * ret._internal[i][k];
}
}
}
}
for(int i = 0; i < N; i++)
det *= ret._internal[i][i];
return det;
}
///////////////////////////////////////////////
// Exponentiate function for scalar, vector, matrix
///////////////////////////////////////////////
template<class vtype> inline iScalar<vtype> Exponentiate(const iScalar<vtype>&r, double alpha, int Nexp)
{
iScalar<vtype> ret;
ret._internal = Exponentiate(r._internal, alpha, Nexp);
return ret;
}
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
inline iMatrix<vtype,N> Exponentiate(const iMatrix<vtype,N> &arg, double alpha, int Nexp)
{
iMatrix<vtype,N> unit(1.0);
iMatrix<vtype,N> temp(unit);
for(int i=Nexp; i>=1;--i){
temp *= alpha/double(i);
temp = unit + temp*arg;
}
return ProjectOnGroup(temp);
}
}
#endif

View File

@ -0,0 +1,45 @@
#ifndef GRID_MATH_DET_H
#define GRID_MATH_DET_H
namespace Grid {
///////////////////////////////////////////////
// Determinant function for scalar, vector, matrix
///////////////////////////////////////////////
inline ComplexF Determinant( const ComplexF &arg){ return arg;}
inline ComplexD Determinant( const ComplexD &arg){ return arg;}
inline RealF Determinant( const RealF &arg){ return arg;}
inline RealD Determinant( const RealD &arg){ return arg;}
template<class vtype> inline auto Determinant(const iScalar<vtype>&r) -> iScalar<decltype(Determinant(r._internal))>
{
iScalar<decltype(Determinant(r._internal))> ret;
ret._internal = Determinant(r._internal);
return ret;
}
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
inline iScalar<vtype> Determinant(const iMatrix<vtype,N> &arg)
{
iMatrix<vtype,N> ret(arg);
iScalar<vtype> det = vtype(1.0);
/* Conversion of matrix to upper triangular */
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
if(j>i){
vtype ratio = ret._internal[j][i]/ret._internal[i][i];
for(int k = 0; k < N; k++){
ret._internal[j][k] -= ratio * ret._internal[i][k];
}
}
}
}
for(int i = 0; i < N; i++)
det *= ret._internal[i][i];
return det;
}
}
#endif

37
lib/tensors/Tensor_exp.h Normal file
View File

@ -0,0 +1,37 @@
#ifndef GRID_MATH_EXP_H
#define GRID_MATH_EXP_H
#define DEFAULT_MAT_EXP 12
namespace Grid {
///////////////////////////////////////////////
// Exponentiate function for scalar, vector, matrix
///////////////////////////////////////////////
template<class vtype> inline iScalar<vtype> Exponentiate(const iScalar<vtype>&r, ComplexD alpha , Integer Nexp = DEFAULT_MAT_EXP)
{
iScalar<vtype> ret;
ret._internal = Exponentiate(r._internal, alpha, Nexp);
return ret;
}
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
inline iMatrix<vtype,N> Exponentiate(const iMatrix<vtype,N> &arg, ComplexD alpha , Integer Nexp = DEFAULT_MAT_EXP )
{
iMatrix<vtype,N> unit(1.0);
iMatrix<vtype,N> temp(unit);
for(int i=Nexp; i>=1;--i){
temp *= alpha/ComplexD(i);
temp = unit + temp*arg;
}
return ProjectOnGroup(temp);//maybe not strictly necessary
}
}
#endif