1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-17 15:27:06 +01:00

RRII gpu option

This commit is contained in:
Peter Boyle
2022-10-11 14:44:55 -04:00
parent 584a3ee45c
commit 551a5f8dc8
24 changed files with 1099 additions and 270 deletions

View File

@ -501,7 +501,7 @@ struct Conj{
struct TimesMinusI{
// Complex
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
inline vec<T> operator()(vec<T> a){
vec<T> out;
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
svbool_t pg1 = acle<T>::pg1();
@ -520,7 +520,7 @@ struct TimesMinusI{
struct TimesI{
// Complex
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
inline vec<T> operator()(vec<T> a){
vec<T> out;
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
svbool_t pg1 = acle<T>::pg1();

View File

@ -418,7 +418,7 @@ struct Conj{
struct TimesMinusI{
// Complex float
inline vecf operator()(vecf a, vecf b){
inline vecf operator()(vecf a){
lutf tbl_swap = acle<float>::tbl_swap();
pred pg1 = acle<float>::pg1();
pred pg_odd = acle<float>::pg_odd();
@ -428,7 +428,7 @@ struct TimesMinusI{
return svneg_m(a_v, pg_odd, a_v);
}
// Complex double
inline vecd operator()(vecd a, vecd b){
inline vecd operator()(vecd a){
lutd tbl_swap = acle<double>::tbl_swap();
pred pg1 = acle<double>::pg1();
pred pg_odd = acle<double>::pg_odd();
@ -441,7 +441,7 @@ struct TimesMinusI{
struct TimesI{
// Complex float
inline vecf operator()(vecf a, vecf b){
inline vecf operator()(vecf a){
lutf tbl_swap = acle<float>::tbl_swap();
pred pg1 = acle<float>::pg1();
pred pg_even = acle<float>::pg_even();
@ -451,7 +451,7 @@ struct TimesI{
return svneg_m(a_v, pg_even, a_v);
}
// Complex double
inline vecd operator()(vecd a, vecd b){
inline vecd operator()(vecd a){
lutd tbl_swap = acle<double>::tbl_swap();
pred pg1 = acle<double>::pg1();
pred pg_even = acle<double>::pg_even();

View File

@ -405,12 +405,12 @@ struct Conj{
struct TimesMinusI{
//Complex single
inline __m256 operator()(__m256 in, __m256 ret){
inline __m256 operator()(__m256 in){
__m256 tmp =_mm256_addsub_ps(_mm256_setzero_ps(),in); // r,-i
return _mm256_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //-i,r
}
//Complex double
inline __m256d operator()(__m256d in, __m256d ret){
inline __m256d operator()(__m256d in){
__m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),in); // r,-i
return _mm256_shuffle_pd(tmp,tmp,0x5);
}
@ -418,12 +418,12 @@ struct TimesMinusI{
struct TimesI{
//Complex single
inline __m256 operator()(__m256 in, __m256 ret){
inline __m256 operator()(__m256 in){
__m256 tmp =_mm256_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // i,r
return _mm256_addsub_ps(_mm256_setzero_ps(),tmp); // i,-r
}
//Complex double
inline __m256d operator()(__m256d in, __m256d ret){
inline __m256d operator()(__m256d in){
__m256d tmp = _mm256_shuffle_pd(in,in,0x5);
return _mm256_addsub_pd(_mm256_setzero_pd(),tmp); // i,-r
}

View File

@ -271,14 +271,14 @@ struct Conj{
struct TimesMinusI{
//Complex single
inline __m512 operator()(__m512 in, __m512 ret){
inline __m512 operator()(__m512 in){
//__m512 tmp = _mm512_mask_sub_ps(in,0xaaaa,_mm512_setzero_ps(),in); // real -imag
//return _mm512_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,1,0)); // 0x4E??
__m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
return _mm512_mask_sub_ps(tmp,0xaaaa,_mm512_setzero_ps(),tmp);
}
//Complex double
inline __m512d operator()(__m512d in, __m512d ret){
inline __m512d operator()(__m512d in){
//__m512d tmp = _mm512_mask_sub_pd(in,0xaa,_mm512_setzero_pd(),in); // real -imag
//return _mm512_shuffle_pd(tmp,tmp,0x55);
__m512d tmp = _mm512_shuffle_pd(in,in,0x55);
@ -288,17 +288,16 @@ struct TimesMinusI{
struct TimesI{
//Complex single
inline __m512 operator()(__m512 in, __m512 ret){
inline __m512 operator()(__m512 in){
__m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
return _mm512_mask_sub_ps(tmp,0x5555,_mm512_setzero_ps(),tmp);
}
//Complex double
inline __m512d operator()(__m512d in, __m512d ret){
inline __m512d operator()(__m512d in){
__m512d tmp = _mm512_shuffle_pd(in,in,0x55);
return _mm512_mask_sub_pd(tmp,0x55,_mm512_setzero_pd(),tmp);
}
};
// Gpermute utilities consider coalescing into 1 Gpermute

878
Grid/simd/Grid_gpu_rrii.h Normal file
View File

@ -0,0 +1,878 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_gpu.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//----------------------------------------------------------------------
/*! @file Grid_gpu_rrii.h*/
//----------------------------------------------------------------------
//////////////////////////////
// fp16
//////////////////////////////
#ifdef GRID_CUDA
#include <cuda_fp16.h>
#endif
#ifdef GRID_HIP
#include <hip/hip_fp16.h>
#endif
#if !defined(GRID_HIP) && !defined(GRID_CUDA)
namespace Grid {
typedef struct { uint16_t x;} half;
}
#endif
namespace Grid {
accelerator_inline float half2float(half h)
{
float f;
#if defined(GRID_CUDA) || defined(GRID_HIP)
f = __half2float(h);
#else
Grid_half hh;
hh.x = h.x;
f= sfw_half_to_float(hh);
#endif
return f;
}
accelerator_inline half float2half(float f)
{
half h;
#if defined(GRID_CUDA) || defined(GRID_HIP)
h = __float2half(f);
#else
Grid_half hh = sfw_float_to_half(f);
h.x = hh.x;
#endif
return h;
}
}
#define COALESCE_GRANULARITY ( GEN_SIMD_WIDTH )
namespace Grid {
////////////////////////////////////////////////////////////////////////
// Real vector
////////////////////////////////////////////////////////////////////////
template<int _N, class _datum>
struct GpuVector {
_datum rrrr[_N];
static const int N = _N;
typedef _datum datum;
};
template<int N,class datum>
inline accelerator GpuVector<N,datum> operator*(const GpuVector<N,datum> l,const GpuVector<N,datum> r) {
GpuVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]*r.rrrr[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuVector<N,datum> operator-(const GpuVector<N,datum> l,const GpuVector<N,datum> r) {
GpuVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]-r.rrrr[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuVector<N,datum> operator+(const GpuVector<N,datum> l,const GpuVector<N,datum> r) {
GpuVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]+r.rrrr[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuVector<N,datum> operator/(const GpuVector<N,datum> l,const GpuVector<N,datum> r) {
GpuVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]/r.rrrr[i];
}
return ret;
}
////////////////////////////////////////////////////////////////////////
// Complex vector
////////////////////////////////////////////////////////////////////////
template<int _N, class _datum>
struct GpuComplexVector {
_datum rrrr[_N];
_datum iiii[_N];
static const int N = _N;
typedef _datum datum;
};
template<int N,class datum>
inline accelerator GpuComplexVector<N,datum> operator*(const GpuComplexVector<N,datum> l,const GpuComplexVector<N,datum> r) {
GpuComplexVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]*r.rrrr[i] - l.iiii[i]*r.iiii[i];
ret.iiii[i] = l.rrrr[i]*r.iiii[i] + l.iiii[i]*r.rrrr[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuComplexVector<N,datum> operator-(const GpuComplexVector<N,datum> l,const GpuComplexVector<N,datum> r) {
GpuComplexVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]-r.rrrr[i];
ret.iiii[i] = l.iiii[i]-r.iiii[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuComplexVector<N,datum> operator+(const GpuComplexVector<N,datum> l,const GpuComplexVector<N,datum> r) {
GpuComplexVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]+r.rrrr[i];
ret.iiii[i] = l.iiii[i]+r.iiii[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuComplexVector<N,datum> operator/(const GpuComplexVector<N,datum> l,const GpuComplexVector<N,datum> r) {
GpuComplexVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]/r.rrrr[i];
ret.iiii[i] = l.iiii[i]/r.iiii[i];
}
return ret;
}
////////////////////////////////
// SIMD counts
////////////////////////////////
constexpr int NSIMD_RealH = COALESCE_GRANULARITY / sizeof(half);
constexpr int NSIMD_ComplexH = COALESCE_GRANULARITY / sizeof(half);
constexpr int NSIMD_RealF = COALESCE_GRANULARITY / sizeof(float);
constexpr int NSIMD_ComplexF = COALESCE_GRANULARITY / sizeof(float);
constexpr int NSIMD_RealD = COALESCE_GRANULARITY / sizeof(double);
constexpr int NSIMD_ComplexD = COALESCE_GRANULARITY / sizeof(double);
constexpr int NSIMD_Integer = COALESCE_GRANULARITY / sizeof(Integer);
typedef GpuVector<NSIMD_RealH , half > GpuVectorRH;
typedef GpuComplexVector<NSIMD_ComplexH, half > GpuVectorCH;
typedef GpuVector<NSIMD_RealF, float > GpuVectorRF;
typedef GpuComplexVector<NSIMD_ComplexF, float> GpuVectorCF;
typedef GpuVector<NSIMD_RealD, double > GpuVectorRD;
typedef GpuComplexVector<NSIMD_ComplexD,double> GpuVectorCD;
typedef GpuVector<NSIMD_Integer, Integer > GpuVectorI;
namespace Optimization {
struct Vsplat{
//Complex float
accelerator_inline GpuVectorCF operator()(float a, float b){
GpuVectorCF ret;
for(int i=0;i<GpuVectorCF::N;i++){
ret.rrrr[i] = typename GpuVectorCF::datum(a);
ret.iiii[i] = typename GpuVectorCF::datum(b);
}
return ret;
}
// Real float
accelerator_inline GpuVectorRF operator()(float a){
GpuVectorRF ret;
for(int i=0;i<GpuVectorRF::N;i++){
ret.rrrr[i] = typename GpuVectorRF::datum(a);
}
return ret;
}
//Complex double
accelerator_inline GpuVectorCD operator()(double a, double b){
GpuVectorCD ret;
for(int i=0;i<GpuVectorCD::N;i++){
ret.rrrr[i] = typename GpuVectorCD::datum(a);
ret.iiii[i] = typename GpuVectorCD::datum(b);
}
return ret;
}
//Real double
accelerator_inline GpuVectorRD operator()(double a){
GpuVectorRD ret;
for(int i=0;i<GpuVectorRD::N;i++){
ret.rrrr[i] = typename GpuVectorRD::datum(a);
}
return ret;
}
//Integer
accelerator_inline GpuVectorI operator()(Integer a){
GpuVectorI ret;
for(int i=0;i<GpuVectorI::N;i++){
ret.rrrr[i] = typename GpuVectorI::datum(a);
}
return ret;
}
};
struct Vstore{
template<int N,class datum,class P>
accelerator_inline void operator()(GpuVector<N,datum> a, P* Fp){
GpuVector<N,datum> *vF = (GpuVector<N,datum> *)Fp;
*vF = a;
}
template<int N,class datum,class P>
accelerator_inline void operator()(GpuComplexVector<N,datum> a, P* Fp){
GpuComplexVector<N,datum> *vF = (GpuComplexVector<N,datum> *)Fp;
*vF = a;
}
};
struct Vstream{
template<int N,class datum, class P>
accelerator_inline void operator()(P* F,GpuVector<N,datum> a){
GpuVector<N,datum> *vF = (GpuVector<N,datum> *)F;
*vF = a;
}
template<int N,class datum, class P>
accelerator_inline void operator()(P* F,GpuComplexVector<N,datum> a){
GpuComplexVector<N,datum> *vF = (GpuComplexVector<N,datum> *)F;
*vF = a;
}
};
struct Vset{
// Complex float
accelerator_inline GpuVectorCF operator()(Grid::ComplexF *a){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i].real());
ret.iiii[i] = vec::datum(a[i].imag());
}
return ret;
}
// Complex double
accelerator_inline GpuVectorCD operator()(Grid::ComplexD *a){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i].real());
ret.iiii[i] = vec::datum(a[i].imag());
}
return ret;
}
// Real float
accelerator_inline GpuVectorRF operator()(float *a){
typedef GpuVectorRF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i]);
}
return ret;
}
// Real double
accelerator_inline GpuVectorRD operator()(double *a){
typedef GpuVectorRD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i]);
}
return ret;
}
// Integer
accelerator_inline GpuVectorI operator()(Integer *a){
typedef GpuVectorI vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i]);
}
return ret;
}
};
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
accelerator_inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
exit(1);
return 0;
}
};
/////////////////////////////////////////////////////
// Arithmetic operations
/////////////////////////////////////////////////////
struct Sum{
//Real float
accelerator_inline GpuVectorRF operator()(GpuVectorRF a,GpuVectorRF b){
return a+b;
}
accelerator_inline GpuVectorRD operator()(GpuVectorRD a,GpuVectorRD b){
return a+b;
}
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b){
return a+b;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b){
return a+b;
}
accelerator_inline GpuVectorI operator()(GpuVectorI a,GpuVectorI b){
return a+b;
}
};
struct Sub{
accelerator_inline GpuVectorRF operator()(GpuVectorRF a,GpuVectorRF b){
return a-b;
}
accelerator_inline GpuVectorRD operator()(GpuVectorRD a,GpuVectorRD b){
return a-b;
}
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b){
return a-b;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b){
return a-b;
}
accelerator_inline GpuVectorI operator()(GpuVectorI a,GpuVectorI b){
return a-b;
}
};
struct MultRealPart{
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = a.rrrr[i]*b.rrrr[i];
ret.iiii[i] = a.rrrr[i]*b.iiii[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = a.rrrr[i]*b.rrrr[i];
ret.iiii[i] = a.rrrr[i]*b.iiii[i];
}
return ret;
}
};
struct MaddRealPart{
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b,GpuVectorCF c){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = a.rrrr[i]*b.rrrr[i]+c.rrrr[i];
ret.iiii[i] = a.rrrr[i]*b.iiii[i]+c.iiii[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b,GpuVectorCD c){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = a.rrrr[i]*b.rrrr[i]+c.rrrr[i];
ret.iiii[i] = a.rrrr[i]*b.iiii[i]+c.iiii[i];
}
return ret;
}
};
struct MultComplex{
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b){
return a*b;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b){
return a*b;
}
};
struct Mult{
accelerator_inline void mac(GpuVectorRF &a, GpuVectorRF b, GpuVectorRF c){
a= a+b*c;
}
accelerator_inline void mac(GpuVectorRD &a, GpuVectorRD b, GpuVectorRD c){
a= a+b*c;
}
// Real float
accelerator_inline GpuVectorRF operator()(GpuVectorRF a, GpuVectorRF b){
return a*b;
}
// Real double
accelerator_inline GpuVectorRD operator()(GpuVectorRD a, GpuVectorRD b){
return a*b;
}
accelerator_inline GpuVectorI operator()(GpuVectorI a, GpuVectorI b){
return a*b;
}
};
struct Div{
// Real float
accelerator_inline GpuVectorRF operator()(GpuVectorRF a, GpuVectorRF b){
return a/b;
}
accelerator_inline GpuVectorRD operator()(GpuVectorRD a, GpuVectorRD b){
return a/b;
}
accelerator_inline GpuVectorI operator()(GpuVectorI a, GpuVectorI b){
return a/b;
}
// Danger -- element wise divide fro complex, not complex div.
// See Grid_vector_types.h lines around 735, applied after "toReal"
accelerator_inline GpuVectorCF operator()(GpuVectorCF a, GpuVectorCF b){
return a/b;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a, GpuVectorCD b){
return a/b;
}
};
struct Conj{
// Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = in.rrrr[i];
ret.iiii[i] =-in.iiii[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = in.rrrr[i];
ret.iiii[i] =-in.iiii[i];
}
return ret;
}
};
struct TimesMinusI{
//Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = in.iiii[i];
ret.iiii[i] =-in.rrrr[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = in.iiii[i];
ret.iiii[i] =-in.rrrr[i];
}
return ret;
}
};
struct TimesI{
//Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] =-in.iiii[i];
ret.iiii[i] = in.rrrr[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] =-in.iiii[i];
ret.iiii[i] = in.rrrr[i];
}
return ret;
}
};
struct Permute{
template <int n,int _N, class _datum >
static accelerator_inline GpuVector<_N,_datum> PermuteN(GpuVector<_N,_datum> &in) {
typedef GpuVector<_N,_datum> vec;
vec out;
unsigned int _mask = vec::N >> (n + 1);
for(int i=0;i<vec::N;i++) {
out.rrrr[i] = in.rrrr[i^_mask];
}
return out;
}
template <int n,int _N, class _datum >
static accelerator_inline GpuComplexVector<_N,_datum> PermuteN(GpuComplexVector<_N,_datum> &in) {
typedef GpuComplexVector<_N,_datum> vec;
vec out;
unsigned int _mask = vec::N >> (n + 1);
for(int i=0;i<vec::N;i++) {
out.rrrr[i] = in.rrrr[i^_mask];
out.iiii[i] = in.iiii[i^_mask];
}
return out;
}
template <typename vec> static accelerator_inline vec Permute0(vec in) { return PermuteN<0,vec::N,typename vec::datum>(in); }
template <typename vec> static accelerator_inline vec Permute1(vec in) { return PermuteN<1,vec::N,typename vec::datum>(in); }
template <typename vec> static accelerator_inline vec Permute2(vec in) { return PermuteN<2,vec::N,typename vec::datum>(in); }
template <typename vec> static accelerator_inline vec Permute3(vec in) { return PermuteN<3,vec::N,typename vec::datum>(in); }
};
struct PrecisionChange {
////////////////////////////////////////////////////////////////////////////////////
// Single / Half
////////////////////////////////////////////////////////////////////////////////////
static accelerator_inline GpuVectorCH StoH (GpuVectorCF a,GpuVectorCF b) {
int N = GpuVectorCF::N;
GpuVectorCH h;
for(int i=0;i<N;i++) {
h.rrrr[i ] = float2half(a.rrrr[i]);
h.iiii[i ] = float2half(a.iiii[i]);
h.rrrr[i+N] = float2half(b.rrrr[i]);
h.iiii[i+N] = float2half(b.iiii[i]);
}
return h;
}
static accelerator_inline void HtoS (GpuVectorCH h,GpuVectorCF &sa,GpuVectorCF &sb) {
int N = GpuVectorCF::N;
for(int i=0;i<N;i++) {
sa.rrrr[i] = half2float(h.rrrr[i ]);
sa.iiii[i] = half2float(h.iiii[i ]);
sb.rrrr[i] = half2float(h.rrrr[i+N]);
sb.iiii[i] = half2float(h.iiii[i+N]);
}
}
static accelerator_inline GpuVectorRH StoH (GpuVectorRF a,GpuVectorRF b) {
int N = GpuVectorRF::N;
GpuVectorRH h;
for(int i=0;i<N;i++) {
h.rrrr[i ] = float2half(a.rrrr[i]);
h.rrrr[i+N] = float2half(b.rrrr[i]);
}
return h;
}
static accelerator_inline void HtoS (GpuVectorRH h,GpuVectorRF &sa,GpuVectorRF &sb) {
int N = GpuVectorRF::N;
for(int i=0;i<N;i++) {
sa.rrrr[i] = half2float(h.rrrr[i ]);
sb.rrrr[i] = half2float(h.rrrr[i+N]);
}
}
////////////////////////////////////////////////////////////////////////////////////
// Double Single
////////////////////////////////////////////////////////////////////////////////////
static accelerator_inline GpuVectorCF DtoS (GpuVectorCD a,GpuVectorCD b) {
int N = GpuVectorCD::N;
GpuVectorCF h;
for(int i=0;i<N;i++) {
h.rrrr[i ] = a.rrrr[i];
h.iiii[i ] = a.iiii[i];
h.rrrr[i+N] = b.rrrr[i];
h.iiii[i+N] = b.iiii[i];
}
return h;
}
static accelerator_inline void StoD (GpuVectorCF h,GpuVectorCD &sa,GpuVectorCD &sb) {
int N = GpuVectorCD::N;
for(int i=0;i<N;i++) {
sa.rrrr[i] = h.rrrr[i ];
sa.iiii[i] = h.iiii[i ];
sb.rrrr[i] = h.rrrr[i+N];
sb.iiii[i] = h.iiii[i+N];
}
}
static accelerator_inline GpuVectorRF DtoS (GpuVectorRD a,GpuVectorRD b) {
int N = GpuVectorRD::N;
GpuVectorRF h;
for(int i=0;i<N;i++) {
h.rrrr[i ] = a.rrrr[i];
h.rrrr[i+N] = b.rrrr[i];
}
return h;
}
static accelerator_inline void StoD (GpuVectorRF h,GpuVectorRD &sa,GpuVectorRD &sb) {
int N = GpuVectorRD::N;
for(int i=0;i<N;i++) {
sa.rrrr[i] = h.rrrr[i ];
sb.rrrr[i] = h.rrrr[i+N];
}
}
////////////////////////////////////////////////////////////////////////////////////
// Double Half
////////////////////////////////////////////////////////////////////////////////////
static accelerator_inline GpuVectorCH DtoH (GpuVectorCD a,GpuVectorCD b,GpuVectorCD c,GpuVectorCD d) {
GpuVectorCF sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static accelerator_inline void HtoD (GpuVectorCH h,GpuVectorCD &a,GpuVectorCD &b,GpuVectorCD &c,GpuVectorCD &d) {
GpuVectorCF sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
static accelerator_inline GpuVectorRH DtoH (GpuVectorRD a,GpuVectorRD b,GpuVectorRD c,GpuVectorRD d) {
GpuVectorRF sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static accelerator_inline void HtoD (GpuVectorRH h,GpuVectorRD &a,GpuVectorRD &b,GpuVectorRD &c,GpuVectorRD &d) {
GpuVectorRF sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
struct Exchange{
template <int n,int _N, class _datum >
static accelerator_inline void ExchangeN(GpuVector<_N,_datum> &out1,
GpuVector<_N,_datum> &out2,
GpuVector<_N,_datum> &in1,
GpuVector<_N,_datum> &in2 )
{
typedef GpuVector<_N,_datum> vec;
unsigned int mask = vec::N >> (n + 1);
for(int i=0;i<vec::N;i++) {
int j1 = i&(~mask);
if ( (i&mask) == 0 ) { out1.rrrr[i]=in1.rrrr[j1];}
else { out1.rrrr[i]=in2.rrrr[j1];}
int j2 = i|mask;
if ( (i&mask) == 0 ) { out2.rrrr[i]=in1.rrrr[j2];}
else { out2.rrrr[i]=in2.rrrr[j2];}
}
}
template <int n,int _N, class _datum >
static accelerator_inline void ExchangeN(GpuComplexVector<_N,_datum> &out1,
GpuComplexVector<_N,_datum> &out2,
GpuComplexVector<_N,_datum> &in1,
GpuComplexVector<_N,_datum> &in2 )
{
typedef GpuComplexVector<_N,_datum> vec;
unsigned int mask = vec::N >> (n + 1);
for(int i=0;i<vec::N;i++) {
int j1 = i&(~mask);
if ( (i&mask) == 0 ) {
out1.rrrr[i]=in1.rrrr[j1];
out1.iiii[i]=in1.iiii[j1];
}
else {
out1.rrrr[i]=in2.rrrr[j1];
out1.iiii[i]=in2.iiii[j1];
}
int j2 = i|mask;
if ( (i&mask) == 0 ) {
out2.rrrr[i]=in1.rrrr[j2];
out2.iiii[i]=in1.iiii[j2];
}
else {
out2.rrrr[i]=in2.rrrr[j2];
out2.iiii[i]=in2.iiii[j2];
}
}
}
template <typename vec>
static accelerator_inline void Exchange0(vec &out1,vec &out2,vec &in1,vec &in2){
ExchangeN<0>(out1,out2,in1,in2);
};
template <typename vec>
static accelerator_inline void Exchange1(vec &out1,vec &out2,vec &in1,vec &in2){
ExchangeN<1>(out1,out2,in1,in2);
};
template <typename vec>
static accelerator_inline void Exchange2(vec &out1,vec &out2,vec &in1,vec &in2){
ExchangeN<2>(out1,out2,in1,in2);
};
template <typename vec>
static accelerator_inline void Exchange3(vec &out1,vec &out2,vec &in1,vec &in2){
ExchangeN<3>(out1,out2,in1,in2);
};
};
struct Rotate{
template <int n, typename vec> static accelerator_inline vec tRotate(vec in){
return rotate(in, n);
}
template <int _N, class _datum >
static accelerator_inline GpuComplexVector<_N,_datum> rotate_template(GpuComplexVector<_N,_datum> &in, int n)
{
typedef GpuComplexVector<_N,_datum> vec;
vec out;
for(int i=0;i<vec::N;i++){
out.rrrr[i] = in.rrrr[(i + n)%vec::N];
out.iiii[i] = in.iiii[(i + n)%vec::N];
}
return out;
}
template <int _N, class _datum >
static accelerator_inline GpuVector<_N,_datum> rotate_template(GpuVector<_N,_datum> &in, int n)
{
typedef GpuVector<_N,_datum> vec;
vec out;
for(int i=0;i<vec::N;i++){
out.rrrr[i] = in.rrrr[(i + n)%vec::N];
}
return out;
}
typedef GpuVectorRH SIMD_Htype; // Single precision type
typedef GpuVectorRF SIMD_Ftype; // Single precision type
typedef GpuVectorRD SIMD_Dtype; // Double precision type
typedef GpuVectorI SIMD_Itype; // Integer type
typedef GpuVectorCH SIMD_CHtype; // Single precision type
typedef GpuVectorCF SIMD_CFtype; // Single precision type
typedef GpuVectorCD SIMD_CDtype; // Double precision type
static accelerator_inline GpuVectorRH rotate(GpuVectorRH in, int n){ return rotate_template(in,n);}
static accelerator_inline GpuVectorRF rotate(GpuVectorRF in, int n){ return rotate_template(in,n);}
static accelerator_inline GpuVectorRD rotate(GpuVectorRD in, int n){ return rotate_template(in,n);}
static accelerator_inline GpuVectorI rotate(GpuVectorI in, int n){ return rotate_template(in,n);}
static accelerator_inline GpuVectorCH rotate(GpuVectorCH in, int n){ return rotate_template(in,n/2);} // Measure in complex not float
static accelerator_inline GpuVectorCF rotate(GpuVectorCF in, int n){ return rotate_template(in,n/2);}
static accelerator_inline GpuVectorCD rotate(GpuVectorCD in, int n){ return rotate_template(in,n/2);}
};
//////////////////////////////////////////////
// Some Template specialization
//Complex float Reduce
template<>
accelerator_inline Grid::ComplexF
Reduce<Grid::ComplexF, GpuVectorCF>::operator()(GpuVectorCF in)
{
Grid::ComplexF greduce(in.rrrr[0],in.iiii[0]);
for(int i=1;i<GpuVectorCF::N;i++) {
greduce = greduce+Grid::ComplexF(in.rrrr[i],in.iiii[i]);
}
return greduce;
}
template<>
accelerator_inline Grid::ComplexD
Reduce<Grid::ComplexD, GpuVectorCD>::operator()(GpuVectorCD in)
{
Grid::ComplexD greduce(in.rrrr[0],in.iiii[0]);
for(int i=1;i<GpuVectorCD::N;i++) {
greduce = greduce+ Grid::ComplexD(in.rrrr[i],in.iiii[i]);
}
return greduce;
}
// Real
template<>
accelerator_inline Grid::RealF
Reduce<RealF, GpuVectorRF>::operator()(GpuVectorRF in)
{
RealF ret = in.rrrr[0];
for(int i=1;i<GpuVectorRF::N;i++) {
ret = ret+in.rrrr[i];
}
return ret;
}
template<>
accelerator_inline Grid::RealD
Reduce<RealD, GpuVectorRD>::operator()(GpuVectorRD in)
{
RealD ret = in.rrrr[0];
for(int i=1;i<GpuVectorRD::N;i++) {
ret = ret+in.rrrr[i];
}
return ret;
}
template<>
accelerator_inline Integer
Reduce<Integer, GpuVectorI>::operator()(GpuVectorI in)
{
Integer ret = in.rrrr[0];
for(int i=1;i<GpuVectorI::N;i++) {
ret = ret+in.rrrr[i];
}
return ret;
}
}// End optimizatoin
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
//////////////////////////////////////////////////////////////////////////////////////
typedef GpuVectorRH SIMD_Htype; // Single precision type
typedef GpuVectorRF SIMD_Ftype; // Single precision type
typedef GpuVectorRD SIMD_Dtype; // Double precision type
typedef GpuVectorI SIMD_Itype; // Integer type
typedef GpuVectorCH SIMD_CHtype; // Single precision type
typedef GpuVectorCF SIMD_CFtype; // Single precision type
typedef GpuVectorCD SIMD_CDtype; // Double precision type
// prefetch utilities
accelerator_inline void v_prefetch0(int size, const char *ptr){};
accelerator_inline void prefetch_HINT_T0(const char *ptr){};
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
typedef Optimization::Vset VsetSIMD;
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}

View File

@ -38,7 +38,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_HIP
#include <hip/hip_fp16.h>
#endif
#ifdef GRID_SYCL
#if !defined(GRID_CUDA) && !defined(GRID_HIP)
namespace Grid {
typedef struct { uint16_t x;} half;
typedef struct { half x; half y;} half2;
@ -486,7 +486,7 @@ namespace Optimization {
struct TimesMinusI{
//Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in,GpuVectorCF dummy){
accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
@ -495,7 +495,7 @@ namespace Optimization {
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD in,GpuVectorCD dummy){
accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
@ -508,7 +508,7 @@ namespace Optimization {
struct TimesI{
//Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in,GpuVectorCF dummy){
accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
@ -517,7 +517,7 @@ namespace Optimization {
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD in,GpuVectorCD dummy){
accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){

View File

@ -356,7 +356,7 @@ struct Conj{
struct TimesMinusI{
//Complex double
inline vector4double operator()(vector4double v, vector4double ret){
inline vector4double operator()(vector4double v){
return vec_xxcpnmadd(v, (vector4double){1., 1., 1., 1.},
(vector4double){0., 0., 0., 0.});
}
@ -367,7 +367,7 @@ struct TimesMinusI{
struct TimesI{
//Complex double
inline vector4double operator()(vector4double v, vector4double ret){
inline vector4double operator()(vector4double v){
return vec_xxcpnmadd(v, (vector4double){-1., -1., -1., -1.},
(vector4double){0., 0., 0., 0.});
}

View File

@ -273,27 +273,25 @@ struct Conj{
struct TimesMinusI{
//Complex single
inline __m128 operator()(__m128 in, __m128 ret){
inline __m128 operator()(__m128 in){
__m128 tmp =_mm_addsub_ps(_mm_setzero_ps(),in); // r,-i
return _mm_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1));
}
//Complex double
inline __m128d operator()(__m128d in, __m128d ret){
inline __m128d operator()(__m128d in){
__m128d tmp =_mm_addsub_pd(_mm_setzero_pd(),in); // r,-i
return _mm_shuffle_pd(tmp,tmp,0x1);
}
};
struct TimesI{
//Complex single
inline __m128 operator()(__m128 in, __m128 ret){
inline __m128 operator()(__m128 in){
__m128 tmp =_mm_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
return _mm_addsub_ps(_mm_setzero_ps(),tmp); // r,-i
}
//Complex double
inline __m128d operator()(__m128d in, __m128d ret){
inline __m128d operator()(__m128d in){
__m128d tmp = _mm_shuffle_pd(in,in,0x1);
return _mm_addsub_pd(_mm_setzero_pd(),tmp); // r,-i
}

View File

@ -110,11 +110,10 @@ accelerator_inline Grid_half sfw_float_to_half(float ff) {
#ifdef GPU_VEC
#include "Grid_gpu_vec.h"
#endif
/*
#ifdef GEN
#include "Grid_generic.h"
#ifdef GPU_RRII
#include "Grid_gpu_rrii.h"
#endif
*/
#ifdef GEN
#if defined(A64FX) || defined(A64FXFIXEDSIZE) // breakout A64FX SVE ACLE here
@ -131,7 +130,6 @@ accelerator_inline Grid_half sfw_float_to_half(float ff) {
#include "Grid_a64fx-fixedsize.h"
#endif
#else
//#pragma message("building GEN") // generic
#include "Grid_generic.h"
#endif
#endif
@ -270,12 +268,14 @@ public:
typedef Vector_type vector_type;
typedef Scalar_type scalar_type;
/*
typedef union conv_t_union {
Vector_type v;
Scalar_type s[sizeof(Vector_type) / sizeof(Scalar_type)];
accelerator_inline conv_t_union(){};
} conv_t;
*/
Vector_type v;
static accelerator_inline constexpr int Nsimd(void) {
@ -555,15 +555,13 @@ public:
template <class functor>
friend accelerator_inline Grid_simd SimdApply(const functor &func, const Grid_simd &v) {
Grid_simd ret;
Grid_simd::conv_t conv;
Grid_simd::scalar_type s;
conv.v = v.v;
for (int i = 0; i < Nsimd(); i++) {
s = conv.s[i];
conv.s[i] = func(s);
s = v.getlane(i);
s = func(s);
ret.putlane(s,i);
}
ret.v = conv.v;
return ret;
}
template <class functor>
@ -571,18 +569,14 @@ public:
const Grid_simd &x,
const Grid_simd &y) {
Grid_simd ret;
Grid_simd::conv_t cx;
Grid_simd::conv_t cy;
Grid_simd::scalar_type sx,sy;
cx.v = x.v;
cy.v = y.v;
for (int i = 0; i < Nsimd(); i++) {
sx = cx.s[i];
sy = cy.s[i];
cx.s[i] = func(sx,sy);
sx = x.getlane(i);
sy = y.getlane(i);
sx = func(sx,sy);
ret.putlane(sx,i);
}
ret.v = cx.v;
return ret;
}
///////////////////////
@ -645,15 +639,36 @@ public:
///////////////////////////////
// Getting single lanes
///////////////////////////////
accelerator_inline Scalar_type getlane(int lane) {
#ifdef GPU_RRII
template <class S = Scalar_type,IfComplex<S> = 0>
accelerator_inline Scalar_type getlane(int lane) const {
return Scalar_type(v.rrrr[lane],v.iiii[lane]);
}
template <class S = Scalar_type,IfComplex<S> = 0>
accelerator_inline void putlane(const Scalar_type &_S, int lane){
v.rrrr[lane] = real(_S);
v.iiii[lane] = imag(_S);
}
template <class S = Scalar_type,IfNotComplex<S> = 0>
accelerator_inline Scalar_type getlane(int lane) const {
return ((S*)&v)[lane];
}
template <class S = Scalar_type,IfNotComplex<S> = 0>
accelerator_inline void putlane(const S &_S, int lane){
((Scalar_type*)&v)[lane] = _S;
}
#else // Can pun to an array of complex
accelerator_inline Scalar_type getlane(int lane) const {
return ((Scalar_type*)&v)[lane];
}
accelerator_inline void putlane(const Scalar_type &S, int lane){
((Scalar_type*)&v)[lane] = S;
}
#endif
}; // end of Grid_simd class definition
///////////////////////////////
// Define available types
///////////////////////////////
@ -663,7 +678,7 @@ typedef Grid_simd<double , SIMD_Dtype> vRealD;
typedef Grid_simd<Integer, SIMD_Itype> vInteger;
typedef Grid_simd<uint16_t,SIMD_Htype> vRealH;
#ifdef GPU_VEC
#if defined(GPU_VEC) || defined(GPU_RRII)
typedef Grid_simd<complex<uint16_t>, SIMD_CHtype> vComplexH;
typedef Grid_simd<complex<float> , SIMD_CFtype> vComplexF;
typedef Grid_simd<complex<double> , SIMD_CDtype> vComplexD;
@ -763,6 +778,7 @@ accelerator_inline void vsplat(Grid_simd<S, V> &ret, NotEnableIf<is_complex<S>,
}
//////////////////////////
///////////////////////////////////////////////
// Initialise to 1,0,i for the correct types
///////////////////////////////////////////////
@ -907,34 +923,6 @@ accelerator_inline Grid_simd<S, V> fxmac(Grid_simd<S, V> a, Grid_simd<S, V> b, G
// ----------------------------------------------
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
typedef Grid_simd<S, V> simd;
simd ret;
simd den;
typename simd::conv_t conv;
ret = a * conjugate(b) ;
den = b * conjugate(b) ;
// duplicates real part
auto real_den = toReal(den);
simd zden;
memcpy((void *)&zden.v,(void *)&real_den.v,sizeof(zden));
ret.v=binary<V>(ret.v, zden.v, DivSIMD());
return ret;
};
// Real/Integer types
template <class S, class V, IfNotComplex<S> = 0>
accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, DivSIMD());
return ret;
};
///////////////////////
// Conjugate
///////////////////////
@ -959,30 +947,29 @@ accelerator_inline Grid_simd<S, V> adj(const Grid_simd<S, V> &in) {
///////////////////////
template <class S, class V, IfComplex<S> = 0>
accelerator_inline void timesMinusI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesMinusISIMD());
ret.v = unary<V>(in.v, TimesMinusISIMD());
}
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret;
timesMinusI(ret, in);
ret.v=unary<V>(in.v, TimesMinusISIMD());
return ret;
}
template <class S, class V, IfNotComplex<S> = 0>
accelerator_inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
return in;
}
///////////////////////
// timesI
///////////////////////
template <class S, class V, IfComplex<S> = 0>
accelerator_inline void timesI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesISIMD());
ret.v = unary<V>(in.v, TimesISIMD());
}
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret;
timesI(ret, in);
ret.v= unary<V>(in.v, TimesISIMD());
return ret;
}
template <class S, class V, IfNotComplex<S> = 0>
@ -990,6 +977,35 @@ accelerator_inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
return in;
}
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
typedef Grid_simd<S, V> simd;
simd ret;
simd den;
ret = a * conjugate(b) ;
den = b * conjugate(b) ;
// duplicates real part
auto real_den = toReal(den);
simd zden;
memcpy((void *)&zden.v,(void *)&real_den.v,sizeof(zden));
ret.v=binary<V>(ret.v, zden.v, DivSIMD());
return ret;
};
// Real/Integer types
template <class S, class V, IfNotComplex<S> = 0>
accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, DivSIMD());
return ret;
};
/////////////////////
// Inner, outer
/////////////////////
@ -1021,12 +1037,12 @@ template <class Csimd> // must be a real arg
accelerator_inline typename toRealMapper<Csimd>::Realified toReal(const Csimd &in) {
typedef typename toRealMapper<Csimd>::Realified Rsimd;
Rsimd ret;
typename Rsimd::conv_t conv;
memcpy((void *)&conv.v,(void *)&in.v,sizeof(conv.v));
int j=0;
for (int i = 0; i < Rsimd::Nsimd(); i += 2) {
conv.s[i + 1] = conv.s[i]; // duplicate (r,r);(r,r);(r,r); etc...
auto s = real(in.getlane(j++));
ret.putlane(s,i);
ret.putlane(s,i+1);
}
memcpy((void *)&ret.v,(void *)&conv.v,sizeof(ret.v));
return ret;
}
@ -1039,18 +1055,19 @@ template <class Rsimd> // must be a real arg
accelerator_inline typename toComplexMapper<Rsimd>::Complexified toComplex(const Rsimd &in) {
typedef typename toComplexMapper<Rsimd>::Complexified Csimd;
typename Rsimd::conv_t conv; // address as real
conv.v = in.v;
typedef typename Csimd::scalar_type scalar_type;
int j=0;
Csimd ret;
for (int i = 0; i < Rsimd::Nsimd(); i += 2) {
assert(conv.s[i + 1] == conv.s[i]);
auto rr = in.getlane(i);
auto ri = in.getlane(i+1);
assert(rr==ri);
// trap any cases where real was not duplicated
// indicating the SIMD grids of real and imag assignment did not correctly
// match
conv.s[i + 1] = 0.0; // zero imaginary parts
scalar_type s(rr,0.0);
ret.putlane(s,j++);
}
Csimd ret;
memcpy((void *)&ret.v,(void *)&conv.v,sizeof(ret.v));
return ret;
}
@ -1146,6 +1163,27 @@ template <> struct is_simd<vInteger> : public std::true_type {};
template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value, unsigned> >;
///////////////////////////////////////////////
// Convenience insert / extract with complex support
///////////////////////////////////////////////
template <class S, class V>
accelerator_inline S getlane(const Grid_simd<S, V> &in,int lane) {
return in.getlane(lane);
}
template <class S, class V>
accelerator_inline void putlane(Grid_simd<S, V> &vec,const S &_S, int lane){
vec.putlane(_S,lane);
}
template <class S,IfNotSimd<S> = 0 >
accelerator_inline S getlane(const S &in,int lane) {
return in;
}
template <class S,IfNotSimd<S> = 0 >
accelerator_inline void putlane(S &vec,const S &_S, int lane){
vec = _S;
}
NAMESPACE_END(Grid);
#endif

View File

@ -69,6 +69,7 @@ typedef RealF Real;
typedef thrust::complex<RealF> ComplexF;
typedef thrust::complex<RealD> ComplexD;
typedef thrust::complex<Real> Complex;
typedef thrust::complex<uint16_t> ComplexH;
template<class T> using complex = thrust::complex<T>;
accelerator_inline ComplexD pow(const ComplexD& r,RealD y){ return(thrust::pow(r,(double)y)); }
@ -77,6 +78,7 @@ accelerator_inline ComplexF pow(const ComplexF& r,RealF y){ return(thrust::pow(r
typedef std::complex<RealF> ComplexF;
typedef std::complex<RealD> ComplexD;
typedef std::complex<Real> Complex;
typedef std::complex<uint16_t> ComplexH; // Hack
template<class T> using complex = std::complex<T>;
accelerator_inline ComplexD pow(const ComplexD& r,RealD y){ return(std::pow(r,y)); }