1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 20:57:06 +01:00

Clover term compiles, not tested

This commit is contained in:
Guido Cossu
2017-04-28 15:23:34 +01:00
parent 752048f410
commit 5553b8d2b8
4 changed files with 383 additions and 73 deletions

View File

@ -49,7 +49,7 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
#include <Grid/qcd/action/fermion/WilsonFermion.h> // 4d wilson like
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson like
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion.h>

View File

@ -27,28 +27,35 @@
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/Eigen/Dense>
#include <Grid/qcd/spin/Dirac.h>
namespace Grid {
namespace QCD {
template <class Impl>
void WilsonCloverFermion<Impl>::AddCloverTerm(const FermionField& in,
FermionField& out){
FermionField tmp(out._grid);
tmp = zero;
// the product sigma_munu Fmunu is hermitian
tmp += Bx*(Gamma(Gamma::Algebra::SigmaYZ)*in);
tmp += By*(Gamma(Gamma::Algebra::MinusSigmaXZ)*in);
tmp += Bz*(Gamma(Gamma::Algebra::SigmaXY)*in);
tmp += Ex*(Gamma(Gamma::Algebra::MinusSigmaXT)*in);
tmp += Ey*(Gamma(Gamma::Algebra::MinusSigmaYT)*in);
tmp += Ez*(Gamma(Gamma::Algebra::MinusSigmaZT)*in);
out += tmp*csw; // check signs
}
//WilsonLoop::CloverPlaquette
/////////////////////////////////////////////////////
//// Clover plaquette combination in mu,nu plane with Double Stored U
////////////////////////////////////////////////////
//static void CloverPlaquette(GaugeMat &Q, const std::vector<GaugeMat> &U,
// const int mu, const int nu){
// Q = zero;
// Q += Gimpl::CovShiftBackward(
// U[mu], mu, Gimpl::CovShiftBackward(
// U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[nu] )));
// Q += Gimpl::CovShiftForward(
// U[mu], mu, Gimpl::CovShiftForward(
// U[nu], nu, Gimpl::CovShiftBackward(U[mu], mu, U[nu+Nd] )));
// Q += Gimpl::CovShiftBackward(
// U[nu], nu, Gimpl::CovShiftForward(
// U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[mu+Nd] )));
// Q += Gimpl::CovShiftForward(
// U[mu], mu, Gimpl::CovShiftBackward(
// U[nu], nu, Gimpl::CovShiftBackward(U[mu], mu, U[nu] )));
// }
// *NOT* EO
template <class Impl>
RealD WilsonCloverFermion<Impl>::M(const FermionField& in, FermionField& out) {
// Wilson term
@ -56,7 +63,7 @@ namespace QCD {
this->Dhop(in, out, DaggerNo);
// Clover term
// apply the sigma and Fmunu
AddCloverTerm(in, out);
Mooee(in, out);
// overall factor
return axpy_norm(out, 4 + this->mass, in, out);
}
@ -68,13 +75,16 @@ namespace QCD {
this->Dhop(in, out, DaggerYes);
// Clover term
// apply the sigma and Fmunu
AddCloverTerm(in, out);
MooeeDag(in, out);
return axpy_norm(out, 4 + this->mass, in, out);
}
template <class Impl>
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField& _Umu) {
this->ImportGauge(_Umu);
GridBase* grid = _Umu._grid;
assert(Nd==4); //only works in 4 dim
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
// Compute the field strength terms
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Ydir, Zdir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
@ -82,31 +92,77 @@ namespace QCD {
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Save the contracted term with sigma
// into a dense matrix site by site
// Invert the Moo, Mee terms (using Eigen)
// Compute the Clover Operator acting on Colour and Spin
CloverTerm = fillClover(Bx)*(Gamma(Gamma::Algebra::SigmaYZ));
CloverTerm += fillClover(By)*(Gamma(Gamma::Algebra::MinusSigmaXZ));
CloverTerm += fillClover(Bz)*(Gamma(Gamma::Algebra::SigmaXY));
CloverTerm += fillClover(Ex)*(Gamma(Gamma::Algebra::MinusSigmaXT));
CloverTerm += fillClover(Ey)*(Gamma(Gamma::Algebra::MinusSigmaYT));
CloverTerm += fillClover(Ez)*(Gamma(Gamma::Algebra::MinusSigmaZT));
CloverTerm *= csw;
int lvol = _Umu._grid->lSites();
int DimRep = Impl::Dimension;
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns*DimRep,Ns*DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns*DimRep,Ns*DimRep);
std::vector <int> lcoor;
typename SiteCloverType::scalar_object Qx = zero, Qxinv = zero;
for (int site = 0; site < lvol; site++){
grid->LocalIndexToLocalCoor(site,lcoor);
EigenCloverOp=Eigen::MatrixXcd::Zero(Ns*DimRep,Ns*DimRep);
peekLocalSite(Qx,CloverTerm,lcoor);
Qxinv = zero;
for(int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for(int a = 0; a < DimRep; a++)
for(int b = 0; b < DimRep; b++)
EigenCloverOp(a+j*DimRep,b+k*DimRep) = Qx()(j,k)(a,b);
EigenInvCloverOp = EigenCloverOp.inverse();
for(int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for(int a = 0; a < DimRep; a++)
for(int b = 0; b < DimRep; b++)
Qxinv()(j,k)(a,b) = EigenInvCloverOp(a+j*DimRep,b+k*DimRep);
pokeLocalSite(Qxinv,CloverTermInv,lcoor);
}
}
template<class Impl>
void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out){
this -> MooeeInternal(in, out, DaggerNo, InverseNo);
}
template<class Impl>
void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out){
this -> MooeeInternal(in, out, DaggerNo, InverseYes);
}
template<class Impl>
void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out){
this -> MooeeInternal(in, out, DaggerNo, InverseYes);
}
template<class Impl>
void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out){
this -> MooeeInternal(in, out, DaggerNo, InverseYes);
}
template<class Impl>
void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
assert(0); // to be completed
}
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv){
out.checkerboard = in.checkerboard;
CloverFieldType *Clover;
template<class Impl>
void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out) {
assert(0); // not implemented yet
}
template<class Impl>
void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out) {
assert(0); // not implemented yet
}
template<class Impl>
void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out) {
assert(0); // not implemented yet
}
Clover = (inv) ? &CloverTermInv : &CloverTerm;
if(dag){ out = adj(*Clover)*in;} else {out = *Clover*in;}
} // MooeeInternal
// Derivative parts
template<class Impl>
@ -128,17 +184,6 @@ namespace QCD {
template<class Impl>
void WilsonCloverFermion<Impl>::MooDeriv(GaugeField&mat, const FermionField&U, const FermionField&V, int dag){
// Compute the 8 terms of the derivative
// Pseudocode
// Using Chroma as a template
// for loop on mu and nu, but upper matrix
// take the outer product factor * U x (sigma_mu_nu V)
// derivative of loops
// end of loop
assert(0); // not implemented yet
}
@ -148,7 +193,10 @@ namespace QCD {
assert(0); // not implemented yet
}
FermOpTemplateInstantiate(WilsonCloverFermion);
FermOpTemplateInstantiate(WilsonCloverFermion); // now only for the fundamental representation
//AdjointFermOpTemplateInstantiate(WilsonCloverFermion);
//TwoIndexFermOpTemplateInstantiate(WilsonCloverFermion);
//GparityFermOpTemplateInstantiate(WilsonCloverFermion);
}
}

View File

@ -31,14 +31,20 @@
#include <Grid/Grid.h>
namespace Grid {
namespace QCD {
namespace Grid
{
namespace QCD
{
template <class Impl>
class WilsonCloverFermion : public WilsonFermion<Impl> {
class WilsonCloverFermion : public WilsonFermion<Impl>
{
public:
// Types definitions
INHERIT_IMPL_TYPES(Impl);
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns> >;
typedef iImplClover<Simd> SiteCloverType;
typedef Lattice<SiteCloverType> CloverFieldType;
public:
typedef WilsonFermion<Impl> WilsonBase;
@ -51,43 +57,48 @@ public:
const ImplParams &p = ImplParams()) : WilsonFermion<Impl>(_Umu,
Fgrid,
Hgrid,
_mass, p),
Bx(_Umu._grid),
By(_Umu._grid),
Bz(_Umu._grid),
Ex(_Umu._grid),
Ey(_Umu._grid),
Ez(_Umu._grid)
_mass, p),
CloverTerm(&Fgrid),
CloverTermInv(&Fgrid)
{
csw = _csw;
assert(Nd == 4); // require 4 dimensions
}
virtual RealD M(const FermionField& in, FermionField& out);
virtual RealD Mdag(const FermionField& in, FermionField& out);
virtual RealD M(const FermionField &in, FermionField &out);
virtual RealD Mdag(const FermionField &in, FermionField &out);
virtual void Mooee(const FermionField &in, FermionField &out);
virtual void MooeeDag(const FermionField &in, FermionField &out);
virtual void MooeeInv(const FermionField &in, FermionField &out);
virtual void MooeeInvDag(const FermionField &in, FermionField &out);
virtual void MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv);
virtual void MDeriv(GaugeField&mat, const FermionField&U, const FermionField&V, int dag);
virtual void MooDeriv(GaugeField&mat, const FermionField&U, const FermionField&V, int dag);
virtual void MeeDeriv(GaugeField&mat, const FermionField&U, const FermionField&V, int dag);
virtual void MDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
virtual void MooDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
virtual void MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
void ImportGauge(const GaugeField &_Umu);
private:
// here fixing the 4 dimensions, make it more general?
// Field strengths
GaugeLinkField Bx, By, Bz, Ex, Ey, Ez;
RealD csw; // Clover coefficient
CloverFieldType CloverTerm, CloverTermInv; // Clover term
// eventually these two can be compressed into 6x6 blocks instead of the 12x12
// using the DeGrand-Rossi basis for the gamma matrices
RealD csw; // Clover coefficient
// Methods
void AddCloverTerm(const FermionField& in, FermionField& out);
CloverFieldType fillClover(const GaugeLinkField& F){
CloverFieldType T(F._grid);
PARALLEL_FOR_LOOP
for (int i = 0; i < CloverTerm._grid->oSites(); i++){
for (int s1 = 0; s1 < Nc; s1++)
for (int s2 = 0; s2 < Nc; s2++)
T._odata[i]()(s1,s2) = F._odata[i]()();
}
return T;
}
};
}
}