1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-10 19:36:56 +01:00

Large scale change to support 5d fermion formulations.

Have 5d replicated wilson with 4d gauge working and matrix regressing
to Ls copies of wilson.
This commit is contained in:
Peter Boyle
2015-05-31 15:09:02 +01:00
parent 59db857ad1
commit 5644ab1e19
45 changed files with 1549 additions and 692 deletions

View File

@ -0,0 +1,103 @@
#include <Grid.h>
namespace Grid {
int LebesgueOrder::UseLebesgueOrder;
LebesgueOrder::IndexInteger LebesgueOrder::alignup(IndexInteger n){
n--; // 1000 0011 --> 1000 0010
n |= n >> 1; // 1000 0010 | 0100 0001 = 1100 0011
n |= n >> 2; // 1100 0011 | 0011 0000 = 1111 0011
n |= n >> 4; // 1111 0011 | 0000 1111 = 1111 1111
n |= n >> 8; // ... (At this point all bits are 1, so further bitwise-or
n |= n >> 16; // operations produce no effect.)
n++; // 1111 1111 --> 1 0000 0000
return n;
};
LebesgueOrder::LebesgueOrder(GridBase *grid)
{
_LebesgueReorder.resize(0);
// Align up dimensions to power of two.
const IndexInteger one=1;
IndexInteger ND = grid->_ndimension;
std::vector<IndexInteger> dims(ND);
std::vector<IndexInteger> adims(ND);
std::vector<std::vector<IndexInteger> > bitlist(ND);
for(IndexInteger mu=0;mu<ND;mu++){
dims[mu] = grid->_rdimensions[mu];
assert ( dims[mu] != 0 );
adims[mu] = alignup(dims[mu]);
}
// List which bits of padded volume coordinate contribute; this strategy
// i) avoids recursion
// ii) has loop lengths at most the width of a 32 bit word.
int sitebit=0;
int split=2;
for(int mu=0;mu<ND;mu++){ // mu 0 takes bit 0; mu 1 takes bit 1 etc...
for(int bit=0;bit<split;bit++){
IndexInteger mask = one<<bit;
if ( mask&(adims[mu]-1) ){
bitlist[mu].push_back(sitebit);
sitebit++;
}
}
}
for(int bit=split;bit<32;bit++){
IndexInteger mask = one<<bit;
for(int mu=0;mu<ND;mu++){ // mu 0 takes bit 0; mu 1 takes bit 1 etc...
if ( mask&(adims[mu]-1) ){
bitlist[mu].push_back(sitebit);
sitebit++;
}
}
}
// Work out padded and unpadded volumes
IndexInteger avol = 1;
for(int mu=0;mu<ND;mu++) avol = avol * adims[mu];
IndexInteger vol = 1;
for(int mu=0;mu<ND;mu++) vol = vol * dims[mu];
// Loop over padded volume, following Lebesgue curve
// We interleave the bits from sequential "mu".
std::vector<IndexInteger> ax(ND);
for(IndexInteger asite=0;asite<avol;asite++){
// Start with zero and collect bits
for(int mu=0;mu<ND;mu++) ax[mu] = 0;
int contained = 1;
for(int mu=0;mu<ND;mu++){
// Build the coordinate on the aligned volume
for(int bit=0;bit<bitlist[mu].size();bit++){
int sbit=bitlist[mu][bit];
if(asite&(one<<sbit)){
ax[mu]|=one<<bit;
}
}
// Is it contained in original box
if ( ax[mu]>dims[mu]-1 ) contained = 0;
}
if ( contained ) {
int site = ax[0]
+ dims[0]*ax[1]
+dims[0]*dims[1]*ax[2]
+dims[0]*dims[1]*dims[2]*ax[3];
_LebesgueReorder.push_back(site);
}
}
assert( _LebesgueReorder.size() == vol );
}
}

View File

@ -0,0 +1,29 @@
#ifndef GRID_LEBESGUE_H
#define GRID_LEBESGUE_H
#include<vector>
// Lebesgue, Morton, Z-graph ordering assistance
namespace Grid {
class LebesgueOrder {
public:
static int UseLebesgueOrder;
typedef uint32_t IndexInteger;
inline IndexInteger Reorder(IndexInteger ss) {
return UseLebesgueOrder ? _LebesgueReorder[ss] : ss;
};
IndexInteger alignup(IndexInteger n);
LebesgueOrder(GridBase *grid);
private:
std::vector<IndexInteger> _LebesgueReorder;
};
}
#endif

View File

@ -3,95 +3,6 @@
namespace Grid {
void CartesianStencil::LebesgueOrder(void)
{
_LebesgueReorder.resize(0);
// Align up dimensions to power of two.
const StencilInteger one=1;
StencilInteger ND = _grid->_ndimension;
std::vector<StencilInteger> dims(ND);
std::vector<StencilInteger> adims(ND);
std::vector<std::vector<StencilInteger> > bitlist(ND);
for(StencilInteger mu=0;mu<ND;mu++){
dims[mu] = _grid->_rdimensions[mu];
assert ( dims[mu] != 0 );
adims[mu] = alignup(dims[mu]);
}
// List which bits of padded volume coordinate contribute; this strategy
// i) avoids recursion
// ii) has loop lengths at most the width of a 32 bit word.
int sitebit=0;
int split=24;
for(int mu=0;mu<ND;mu++){ // mu 0 takes bit 0; mu 1 takes bit 1 etc...
for(int bit=0;bit<split;bit++){
StencilInteger mask = one<<bit;
if ( mask&(adims[mu]-1) ){
bitlist[mu].push_back(sitebit);
sitebit++;
}
}
}
for(int bit=split;bit<32;bit++){
StencilInteger mask = one<<bit;
for(int mu=0;mu<ND;mu++){ // mu 0 takes bit 0; mu 1 takes bit 1 etc...
if ( mask&(adims[mu]-1) ){
bitlist[mu].push_back(sitebit);
sitebit++;
}
}
}
// Work out padded and unpadded volumes
StencilInteger avol = 1;
for(int mu=0;mu<ND;mu++) avol = avol * adims[mu];
StencilInteger vol = 1;
for(int mu=0;mu<ND;mu++) vol = vol * dims[mu];
// Loop over padded volume, following Lebesgue curve
// We interleave the bits from sequential "mu".
std::vector<StencilInteger> ax(ND);
for(StencilInteger asite=0;asite<avol;asite++){
// Start with zero and collect bits
for(int mu=0;mu<ND;mu++) ax[mu] = 0;
int contained = 1;
for(int mu=0;mu<ND;mu++){
// Build the coordinate on the aligned volume
for(int bit=0;bit<bitlist[mu].size();bit++){
int sbit=bitlist[mu][bit];
if(asite&(one<<sbit)){
ax[mu]|=one<<bit;
}
}
// Is it contained in original box
if ( ax[mu]>dims[mu]-1 ) contained = 0;
}
if ( contained ) {
int site = ax[0]
+ dims[0]*ax[1]
+dims[0]*dims[1]*ax[2]
+dims[0]*dims[1]*dims[2]*ax[3];
_LebesgueReorder.push_back(site);
}
}
assert( _LebesgueReorder.size() == vol );
}
CartesianStencil::CartesianStencil(GridBase *grid,
int npoints,
int checkerboard,
@ -110,8 +21,6 @@ void CartesianStencil::LebesgueOrder(void)
_unified_buffer_size=0;
_request_count =0;
LebesgueOrder();
int osites = _grid->oSites();
for(int i=0;i<npoints;i++){
@ -143,8 +52,8 @@ void CartesianStencil::LebesgueOrder(void)
// up a table containing the npoint "neighbours" and whether they
// live in lattice or a comms buffer.
if ( !comm_dim ) {
sshift[0] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,0);
sshift[1] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,1);
sshift[0] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Local(point,dimension,shift,0x3);
@ -154,8 +63,8 @@ void CartesianStencil::LebesgueOrder(void)
}
} else { // All permute extract done in comms phase prior to Stencil application
// So tables are the same whether comm_dim or splice_dim
sshift[0] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,0);
sshift[1] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,1);
sshift[0] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShift(_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Comms(point,dimension,shift,0x3);
} else {
@ -185,7 +94,7 @@ void CartesianStencil::LebesgueOrder(void)
int o = 0;
int bo = x * _grid->_ostride[dimension];
int cb= (cbmask==0x2)? 1 : 0;
int cb= (cbmask==0x2)? Odd : Even;
int sshift = _grid->CheckerBoardShift(_checkerboard,dimension,shift,cb);
int sx = (x+sshift)%rd;
@ -224,7 +133,7 @@ void CartesianStencil::LebesgueOrder(void)
_comm_buf_size[point] = buffer_size; // Size of _one_ plane. Multiple planes may be gathered and
// send to one or more remote nodes.
int cb= (cbmask==0x2)? 1 : 0;
int cb= (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShift(_checkerboard,dimension,shift,cb);
for(int x=0;x<rd;x++){