mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-01 04:24:32 +00:00 
			
		
		
		
	QMR implemented, preserve even if not used much
This commit is contained in:
		
							
								
								
									
										371
									
								
								Grid/algorithms/iterative/QuasiMinimalResidual.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										371
									
								
								Grid/algorithms/iterative/QuasiMinimalResidual.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,371 @@ | ||||
| /************************************************************************************* | ||||
|  | ||||
| Grid physics library, www.github.com/paboyle/Grid | ||||
|  | ||||
| Source file: ./lib/algorithmsf/iterative/QuasiMinimalResidual.h | ||||
|  | ||||
| Copyright (C) 2019 | ||||
|  | ||||
| Author: Peter Boyle <paboyle@ph.ed.ac.uk> | ||||
|  | ||||
| This program is free software; you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation; either version 2 of the License, or | ||||
| (at your option) any later version. | ||||
|  | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU General Public License along | ||||
| with this program; if not, write to the Free Software Foundation, Inc., | ||||
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
|  | ||||
| See the full license in the file "LICENSE" in the top level distribution | ||||
| directory | ||||
| *************************************************************************************/ | ||||
| /*  END LEGAL */ | ||||
| #pragma once | ||||
|  | ||||
| NAMESPACE_BEGIN(Grid); | ||||
|  | ||||
| template<class Field>  | ||||
| RealD innerG5ProductReal(Field &l, Field &r) | ||||
| { | ||||
|   Gamma G5(Gamma::Algebra::Gamma5); | ||||
|   Field tmp(l.Grid()); | ||||
|   //  tmp = G5*r; | ||||
|   G5R5(tmp,r); | ||||
|   ComplexD ip =innerProduct(l,tmp); | ||||
|   std::cout << "innerProductRealG5R5 "<<ip<<std::endl; | ||||
|   return ip.real(); | ||||
| } | ||||
|  | ||||
| template<class Field> | ||||
| class QuasiMinimalResidual : public OperatorFunction<Field> { | ||||
|  public: | ||||
|   using OperatorFunction<Field>::operator(); | ||||
|  | ||||
|   bool ErrorOnNoConverge;  | ||||
|   RealD   Tolerance; | ||||
|   Integer MaxIterations; | ||||
|   Integer IterationCount; | ||||
|  | ||||
|   QuasiMinimalResidual(RealD   tol, | ||||
| 		       Integer maxit, | ||||
| 		       bool    err_on_no_conv = true) | ||||
|       : Tolerance(tol) | ||||
|       , MaxIterations(maxit) | ||||
|       , ErrorOnNoConverge(err_on_no_conv)  | ||||
|   {}; | ||||
|  | ||||
| #if 1 | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)  | ||||
|   { | ||||
|     RealD resid; | ||||
|     IterationCount=0; | ||||
|  | ||||
|     RealD  rho, rho_1, xi, gamma, gamma_1, theta, theta_1; | ||||
|     RealD  eta, delta, ep, beta;  | ||||
|  | ||||
|     GridBase *Grid = b.Grid(); | ||||
|     Field r(Grid), d(Grid), s(Grid); | ||||
|     Field v(Grid), w(Grid), y(Grid),  z(Grid); | ||||
|     Field v_tld(Grid), w_tld(Grid), y_tld(Grid), z_tld(Grid); | ||||
|     Field p(Grid), q(Grid), p_tld(Grid); | ||||
|  | ||||
|     Real normb = norm2(b); | ||||
|  | ||||
|     LinOp.Op(x,r); r = b - r; | ||||
|  | ||||
|     assert(normb> 0.0); | ||||
|  | ||||
|     resid = norm2(r)/normb; | ||||
|     if (resid <= Tolerance) { | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     v_tld = r; | ||||
|     y = v_tld; | ||||
|     rho = norm2(y); | ||||
|  | ||||
|     // Take Gamma5 conjugate | ||||
|     //    Gamma G5(Gamma::Algebra::Gamma5); | ||||
|     //    G5R5(w_tld,r); | ||||
|     //    w_tld = G5* v_tld; | ||||
|     w_tld=v_tld; | ||||
|     z = w_tld; | ||||
|     xi = norm2(z); | ||||
|  | ||||
|     gamma = 1.0; | ||||
|     eta   = -1.0; | ||||
|     theta = 0.0; | ||||
|  | ||||
|     for (int i = 1; i <= MaxIterations; i++) { | ||||
|  | ||||
|       // Breakdown tests | ||||
|       assert( rho != 0.0); | ||||
|       assert( xi  != 0.0); | ||||
|  | ||||
|       v = (1. / rho) * v_tld; | ||||
|       y = (1. / rho) * y; | ||||
|  | ||||
|       w = (1. / xi) * w_tld; | ||||
|       z = (1. / xi) * z; | ||||
|  | ||||
|       ComplexD Zdelta = innerProduct(z, y); // Complex? | ||||
|       std::cout << "Zdelta "<<Zdelta<<std::endl; | ||||
|       delta = Zdelta.real(); | ||||
|  | ||||
|       y_tld = y;  | ||||
|       z_tld = z; | ||||
|  | ||||
|       if (i > 1) { | ||||
| 	p = y_tld - (xi  * delta / ep) * p; | ||||
| 	q = z_tld - (rho * delta / ep) * q; | ||||
|       } else { | ||||
| 	p = y_tld; | ||||
| 	q = z_tld; | ||||
|       } | ||||
|  | ||||
|       LinOp.Op(p,p_tld);      //     p_tld = A * p; | ||||
|       ComplexD Zep = innerProduct(q, p_tld); | ||||
|       ep=Zep.real(); | ||||
|       std::cout << "Zep "<<Zep <<std::endl; | ||||
|       // Complex Audit | ||||
|       assert(abs(ep)>0); | ||||
|  | ||||
|       beta = ep / delta; | ||||
|       assert(abs(beta)>0); | ||||
|  | ||||
|       v_tld = p_tld - beta * v; | ||||
|       y = v_tld; | ||||
|  | ||||
|       rho_1 = rho; | ||||
|       rho   = norm2(y); | ||||
|       LinOp.AdjOp(q,w_tld); | ||||
|       w_tld = w_tld - beta * w; | ||||
|       z = w_tld; | ||||
|  | ||||
|       xi = norm2(z); | ||||
|  | ||||
|       gamma_1 = gamma; | ||||
|       theta_1 = theta; | ||||
|  | ||||
|       theta   = rho / (gamma_1 * beta); | ||||
|       gamma   = 1.0 / sqrt(1.0 + theta * theta); | ||||
|       std::cout << "theta "<<theta<<std::endl; | ||||
|       std::cout << "gamma "<<gamma<<std::endl; | ||||
|  | ||||
|       assert(abs(gamma)> 0.0); | ||||
|  | ||||
|       eta = -eta * rho_1 * gamma* gamma / (beta * gamma_1 * gamma_1); | ||||
|  | ||||
|       if (i > 1) { | ||||
| 	d = eta * p + (theta_1 * theta_1 * gamma * gamma) * d; | ||||
| 	s = eta * p_tld + (theta_1 * theta_1 * gamma * gamma) * s; | ||||
|       } else { | ||||
| 	d = eta * p; | ||||
| 	s = eta * p_tld; | ||||
|       } | ||||
|  | ||||
|       x =x+d;                            // update approximation vector | ||||
|       r =r-s;                            // compute residual | ||||
|  | ||||
|       if ((resid = norm2(r) / normb) <= Tolerance) { | ||||
| 	return; | ||||
|       } | ||||
|       std::cout << "Iteration "<<i<<" resid " << resid<<std::endl; | ||||
|     } | ||||
|     assert(0); | ||||
|     return;                            // no convergence | ||||
|   } | ||||
| #else | ||||
|   // QMRg5 SMP thesis | ||||
|   void operator()(LinearOperatorBase<Field> &LinOp, const Field &b, Field &x)  | ||||
|   { | ||||
|     // Real scalars | ||||
|     GridBase *grid = b.Grid(); | ||||
|  | ||||
|     Field    r(grid); | ||||
|     Field    p_m(grid), p_m_minus_1(grid), p_m_minus_2(grid); | ||||
|     Field    v_m(grid), v_m_minus_1(grid), v_m_plus_1(grid); | ||||
|     Field    tmp(grid); | ||||
|  | ||||
|     RealD    w; | ||||
|     RealD    z1, z2; | ||||
|     RealD    delta_m, delta_m_minus_1; | ||||
|     RealD    c_m_plus_1, c_m, c_m_minus_1; | ||||
|     RealD    s_m_plus_1, s_m, s_m_minus_1; | ||||
|     RealD    alpha, beta, gamma, epsilon; | ||||
|     RealD    mu, nu, rho, theta, xi, chi; | ||||
|     RealD    mod2r, mod2b; | ||||
|     RealD    tau2, target2; | ||||
|  | ||||
|     mod2b=norm2(b); | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Initial residual | ||||
|     ///////////////////////// | ||||
|     LinOp.Op(x,tmp); | ||||
|     r = b - tmp; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // \mu = \rho = |r_0| | ||||
|     ///////////////////////// | ||||
|     mod2r = norm2(r); | ||||
|     rho = sqrt( mod2r); | ||||
|     mu=rho; | ||||
|      | ||||
|     std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl; | ||||
|     ///////////////////////// | ||||
|     // Zero negative history | ||||
|     ///////////////////////// | ||||
|     v_m_plus_1  = Zero(); | ||||
|     v_m_minus_1 = Zero(); | ||||
|     p_m_minus_1 = Zero(); | ||||
|     p_m_minus_2 = Zero(); | ||||
|  | ||||
|     // v0 | ||||
|     v_m = (1.0/rho)*r; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Initial coeffs | ||||
|     ///////////////////////// | ||||
|     delta_m_minus_1 = 1.0; | ||||
|     c_m_minus_1     = 1.0; | ||||
|     c_m             = 1.0; | ||||
|     s_m_minus_1     = 0.0; | ||||
|     s_m             = 0.0; | ||||
|  | ||||
|     ///////////////////////// | ||||
|     // Set up convergence check | ||||
|     ///////////////////////// | ||||
|     tau2    = mod2r; | ||||
|     target2 = mod2b * Tolerance*Tolerance; | ||||
|   | ||||
|     for(int iter = 0 ; iter < MaxIterations; iter++){ | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \delta_m = (v_m, \gamma_5 v_m)  | ||||
|       ///////////////////////// | ||||
|       delta_m = innerG5ProductReal(v_m,v_m); | ||||
|       std::cout << "QuasiMinimalResidual delta_m "<< delta_m<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // tmp = A v_m | ||||
|       ///////////////////////// | ||||
|       LinOp.Op(v_m,tmp); | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \alpha = (v_m, \gamma_5 temp) / \delta_m  | ||||
|       ///////////////////////// | ||||
|       alpha = innerG5ProductReal(v_m,tmp); | ||||
|       alpha = alpha/delta_m ; | ||||
|       std::cout << "QuasiMinimalResidual alpha "<< alpha<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \beta = \rho \delta_m / \delta_{m-1} | ||||
|       ///////////////////////// | ||||
|       beta = rho * delta_m / delta_m_minus_1; | ||||
|       std::cout << "QuasiMinimalResidual beta "<< beta<<std::endl; | ||||
|  | ||||
|       ///////////////////////// | ||||
|       // \tilde{v}_{m+1} = temp - \alpha v_m - \beta v_{m-1} | ||||
|       ///////////////////////// | ||||
|       v_m_plus_1 = tmp - alpha*v_m - beta*v_m_minus_1; | ||||
|  | ||||
|       /////////////////////////////// | ||||
|       // \rho = || \tilde{v}_{m+1} || | ||||
|       /////////////////////////////// | ||||
|       rho = sqrt( norm2(v_m_plus_1) ); | ||||
|       std::cout << "QuasiMinimalResidual rho "<< rho<<std::endl; | ||||
|  | ||||
|       /////////////////////////////// | ||||
|       //      v_{m+1} = \tilde{v}_{m+1} | ||||
|       /////////////////////////////// | ||||
|       v_m_plus_1 = (1.0 / rho) * v_m_plus_1; | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       // QMR recurrence coefficients. | ||||
|       //////////////////////////////// | ||||
|       theta      = s_m_minus_1 * beta; | ||||
|       gamma      = c_m_minus_1 * beta; | ||||
|       epsilon    =  c_m * gamma + s_m * alpha; | ||||
|       xi         = -s_m * gamma + c_m * alpha; | ||||
|       nu         = sqrt( xi*xi + rho*rho ); | ||||
|       c_m_plus_1 = fabs(xi) / nu; | ||||
|       if ( xi == 0.0 ) { | ||||
| 	s_m_plus_1 = 1.0; | ||||
|       } else { | ||||
| 	s_m_plus_1 = c_m_plus_1 * rho / xi; | ||||
|       } | ||||
|       chi = c_m_plus_1 * xi + s_m_plus_1 * rho; | ||||
|  | ||||
|       std::cout << "QuasiMinimalResidual coeffs "<< theta <<" "<<gamma<<" "<< epsilon<<" "<< xi<<" "<< nu<<std::endl; | ||||
|       std::cout << "QuasiMinimalResidual coeffs "<< chi   <<std::endl; | ||||
|  | ||||
|       //////////////////////////////// | ||||
|       //p_m=(v_m - \epsilon p_{m-1} - \theta p_{m-2}) / \chi | ||||
|       //////////////////////////////// | ||||
|       p_m = (1.0/chi) * v_m - (epsilon/chi) * p_m_minus_1 - (theta/chi) * p_m_minus_2; | ||||
|  | ||||
|       //////////////////////////////////////////////////////////////// | ||||
|       //      \psi = \psi + c_{m+1} \mu p_m	 | ||||
|       //////////////////////////////////////////////////////////////// | ||||
|       x = x + ( c_m_plus_1 * mu ) * p_m; | ||||
|  | ||||
|       //////////////////////////////////////// | ||||
|       // | ||||
|       //////////////////////////////////////// | ||||
|       mu              = -s_m_plus_1 * mu; | ||||
|       delta_m_minus_1 = delta_m; | ||||
|       c_m_minus_1     = c_m; | ||||
|       c_m             = c_m_plus_1; | ||||
|       s_m_minus_1     = s_m; | ||||
|       s_m             = s_m_plus_1; | ||||
|  | ||||
|       //////////////////////////////////// | ||||
|       // Could use pointer swizzle games. | ||||
|       //////////////////////////////////// | ||||
|       v_m_minus_1 = v_m; | ||||
|       v_m         = v_m_plus_1; | ||||
|       p_m_minus_2 = p_m_minus_1; | ||||
|       p_m_minus_1 = p_m; | ||||
|  | ||||
|  | ||||
|       ///////////////////////////////////// | ||||
|       // Convergence checks | ||||
|       ///////////////////////////////////// | ||||
|       z1 = RealD(iter+1.0); | ||||
|       z2 = z1 + 1.0; | ||||
|       tau2 = tau2 *( z2 / z1 ) * s_m * s_m; | ||||
|       std::cout << " QuasiMinimumResidual iteration "<< iter<<std::endl; | ||||
|       std::cout << " QuasiMinimumResidual tau bound "<< tau2<<std::endl; | ||||
|  | ||||
|       // Compute true residual | ||||
|       mod2r = tau2; | ||||
|       if ( 1 || (tau2 < (100.0 * target2)) ) { | ||||
| 	LinOp.Op(x,tmp); | ||||
| 	r = b - tmp; | ||||
| 	mod2r = norm2(r); | ||||
| 	std::cout << " QuasiMinimumResidual true residual is "<< mod2r<<std::endl; | ||||
|       } | ||||
|  | ||||
|  | ||||
|       if ( mod2r < target2 ) {  | ||||
|  | ||||
| 	std::cout << " QuasiMinimumResidual has converged"<<std::endl; | ||||
| 	return; | ||||
|  | ||||
|       } | ||||
|  | ||||
|     } | ||||
|  | ||||
|  | ||||
|   } | ||||
| #endif | ||||
| }; | ||||
|  | ||||
| NAMESPACE_END(Grid); | ||||
		Reference in New Issue
	
	Block a user