mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	One flavour rational unprec added; untested but does compile.
Moving param structs into a single header for later connection to file I/O using macromagic.h
This commit is contained in:
		
							
								
								
									
										26
									
								
								lib/qcd/action/ActionParams.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										26
									
								
								lib/qcd/action/ActionParams.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,26 @@
 | 
			
		||||
#ifndef GRID_QCD_ACTION_PARAMS_H
 | 
			
		||||
#define GRID_QCD_ACTION_PARAMS_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
    // These can move into a params header and be given MacroMagic serialisation
 | 
			
		||||
    struct GparityWilsonImplParams {
 | 
			
		||||
      std::vector<int> twists; 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    struct WilsonImplParams { };
 | 
			
		||||
 | 
			
		||||
    struct OneFlavourRationalParams { 
 | 
			
		||||
      RealD  lo;
 | 
			
		||||
      RealD  hi;
 | 
			
		||||
      int precision=64;
 | 
			
		||||
      int    degree=10;
 | 
			
		||||
      RealD tolerance; // Vector? 
 | 
			
		||||
      RealD MaxIter;   // Vector?
 | 
			
		||||
      OneFlavourRationalParams (RealD lo,RealD hi,int precision=64,int degree = 10);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -14,6 +14,7 @@
 | 
			
		||||
// Abstract base interface
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
#include <qcd/action/ActionBase.h>
 | 
			
		||||
#include <qcd/action/ActionParams.h>
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////
 | 
			
		||||
// Gauge Actions
 | 
			
		||||
@@ -157,9 +158,9 @@ typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
 | 
			
		||||
#include <qcd/action/pseudofermion/TwoFlavourEvenOddRatio.h>
 | 
			
		||||
 | 
			
		||||
//Todo: RHMC
 | 
			
		||||
//#include <qcd/action/pseudofermion/OneFlavour.h>
 | 
			
		||||
//#include <qcd/action/pseudofermion/OneFlavourRatio.h>
 | 
			
		||||
//#include <qcd/action/pseudofermion/OneFlavourEvenOdd.h>
 | 
			
		||||
//#include <qcd/action/pseudofermion/OneFlavourEvenOddRatio.h>
 | 
			
		||||
#include <qcd/action/pseudofermion/OneFlavourRational.h>
 | 
			
		||||
//#include <qcd/action/pseudofermion/OneFlavourRationalRatio.h>
 | 
			
		||||
//#include <qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
 | 
			
		||||
//#include <qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -32,6 +32,8 @@ namespace Grid {
 | 
			
		||||
      virtual RealD  Mdag (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
 | 
			
		||||
      // half checkerboard operaions
 | 
			
		||||
      virtual int    ConstEE(void) { return 1; }; // clover returns zero as EE depends on gauge field
 | 
			
		||||
 | 
			
		||||
      virtual void   Meooe       (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
      virtual void   MeooeDag    (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
      virtual void   Mooee       (const FermionField &in, FermionField &out)=0;
 | 
			
		||||
@@ -49,7 +51,7 @@ namespace Grid {
 | 
			
		||||
      virtual void MDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
 | 
			
		||||
      virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
 | 
			
		||||
      virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
 | 
			
		||||
      virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
 | 
			
		||||
      virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;}; // Clover can override these
 | 
			
		||||
      virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
 | 
			
		||||
 | 
			
		||||
      virtual void DhopDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
 | 
			
		||||
 
 | 
			
		||||
@@ -5,6 +5,7 @@ namespace Grid {
 | 
			
		||||
 | 
			
		||||
  namespace QCD {
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////
 | 
			
		||||
    // Template parameter class constructs to package
 | 
			
		||||
    // externally control Fermion implementations
 | 
			
		||||
@@ -126,8 +127,7 @@ namespace Grid {
 | 
			
		||||
      typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
 | 
			
		||||
 | 
			
		||||
      typedef WilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
 | 
			
		||||
 | 
			
		||||
      typedef struct WilsonImplParams { } ImplParams;
 | 
			
		||||
      typedef WilsonImplParams ImplParams;
 | 
			
		||||
      ImplParams Params;
 | 
			
		||||
      WilsonImpl(const ImplParams &p= ImplParams()) : Params(p) {}; 
 | 
			
		||||
 | 
			
		||||
@@ -177,6 +177,7 @@ PARALLEL_FOR_LOOP
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Flavour doubled spinors; is Gparity the only? what about C*?
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    template<class S,int Nrepresentation>
 | 
			
		||||
    class GparityWilsonImpl : public ImplGauge<S,Nrepresentation> { 
 | 
			
		||||
    public:
 | 
			
		||||
@@ -198,7 +199,7 @@ PARALLEL_FOR_LOOP
 | 
			
		||||
 | 
			
		||||
      typedef WilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
 | 
			
		||||
 | 
			
		||||
      typedef struct GparityWilsonImplParams {std::vector<int> twists; } ImplParams;
 | 
			
		||||
      typedef GparityWilsonImplParams ImplParams;
 | 
			
		||||
      ImplParams Params;
 | 
			
		||||
      GparityWilsonImpl(const ImplParams &p= ImplParams()) : Params(p) {}; 
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										170
									
								
								lib/qcd/action/pseudofermion/OneFlavourRational.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										170
									
								
								lib/qcd/action/pseudofermion/OneFlavourRational.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,170 @@
 | 
			
		||||
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
 | 
			
		||||
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
 | 
			
		||||
 | 
			
		||||
namespace Grid{
 | 
			
		||||
  namespace QCD{
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // One flavour rational
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // S_f = chi^dag *  N(M^dag*M)/D(M^dag*M) * chi
 | 
			
		||||
    //
 | 
			
		||||
    // Here, M is some operator 
 | 
			
		||||
    // N and D makeup the rat. poly 
 | 
			
		||||
    //
 | 
			
		||||
  
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
 | 
			
		||||
    public:
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
      typedef OneFlavourRationalParams Params;
 | 
			
		||||
      Params param;
 | 
			
		||||
 | 
			
		||||
      MultiShiftFunction PowerHalf   ;
 | 
			
		||||
      MultiShiftFunction PowerNegHalf;
 | 
			
		||||
      MultiShiftFunction PowerQuarter;
 | 
			
		||||
      MultiShiftFunction PowerNegQuarter;
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
     
 | 
			
		||||
      FermionOperator<Impl> & FermOp;// the basic operator
 | 
			
		||||
 | 
			
		||||
      // NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
 | 
			
		||||
      // and hasenbusch works better
 | 
			
		||||
 | 
			
		||||
      FermionField Phi; // the pseudo fermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      OneFlavourRationalPseudoFermionAction(FermionOperator<Impl>  &Op, 
 | 
			
		||||
					    Params & p
 | 
			
		||||
					    ) : FermOp(Op), Phi(Op.FermionGrid()), param(p) 
 | 
			
		||||
      {
 | 
			
		||||
	AlgRemez remez(param.lo,param.hi,param.precision);
 | 
			
		||||
 | 
			
		||||
	// MdagM^(+- 1/2)
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
 | 
			
		||||
	remez.generateApprox(param.degree,1,2);
 | 
			
		||||
	PowerHalf.Init(remez,param.tolerance,false);
 | 
			
		||||
	PowerNegHalf.Init(remez,param.tolerance,true);
 | 
			
		||||
 | 
			
		||||
	// MdagM^(+- 1/4)
 | 
			
		||||
	std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
 | 
			
		||||
	remez.generateApprox(param.degree,1,4);
 | 
			
		||||
   	PowerQuarter.Init(remez,param.tolerance,false);
 | 
			
		||||
	PowerNegQuarter.Init(remez,param.tolerance,true);
 | 
			
		||||
      };
 | 
			
		||||
      
 | 
			
		||||
      virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
 | 
			
		||||
 | 
			
		||||
	// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
 | 
			
		||||
	//        = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
 | 
			
		||||
	// Phi = Mdag^{1/4} eta 
 | 
			
		||||
	// P(eta) = e^{- eta^dag eta}
 | 
			
		||||
	//
 | 
			
		||||
	// e^{x^2/2 sig^2} => sig^2 = 0.5.
 | 
			
		||||
	// 
 | 
			
		||||
	// So eta should be of width sig = 1/sqrt(2).
 | 
			
		||||
 | 
			
		||||
	RealD scale = std::sqrt(0.5);
 | 
			
		||||
 | 
			
		||||
	FermionField eta(FermOp.FermionGrid());
 | 
			
		||||
 | 
			
		||||
	gaussian(pRNG,eta);
 | 
			
		||||
 | 
			
		||||
	FermOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	// mutishift CG
 | 
			
		||||
	MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
 | 
			
		||||
	msCG(MdagMOp,eta,Phi);
 | 
			
		||||
 | 
			
		||||
	Phi=Phi*scale;
 | 
			
		||||
	
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // S = phi^dag (Mdag M)^-1/2 phi
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual RealD S(const GaugeField &U) {
 | 
			
		||||
 | 
			
		||||
	FermOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	FermionField Y(FermOp.FermionGrid());
 | 
			
		||||
	
 | 
			
		||||
	MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
 | 
			
		||||
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
 | 
			
		||||
 | 
			
		||||
	msCG(MdagMOp,Phi,Y);
 | 
			
		||||
 | 
			
		||||
	RealD action = norm2(Y);
 | 
			
		||||
	std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
 | 
			
		||||
	return action;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      // Need
 | 
			
		||||
      // dS_f/dU = chi^dag   d[N/D]  chi
 | 
			
		||||
      //
 | 
			
		||||
      // N/D is expressed as partial fraction expansion:
 | 
			
		||||
      //
 | 
			
		||||
      //           a0 + \sum_k ak/(M^dagM + bk)
 | 
			
		||||
      //
 | 
			
		||||
      // d[N/D] is then
 | 
			
		||||
      //
 | 
			
		||||
      //          \sum_k -ak [M^dagM+bk]^{-1}  [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
 | 
			
		||||
      //
 | 
			
		||||
      // Need
 | 
			
		||||
      //       Mf Phi_k = [MdagM+bk]^{-1} Phi
 | 
			
		||||
      //       Mf Phi   = \sum_k ak [MdagM+bk]^{-1} Phi
 | 
			
		||||
      //
 | 
			
		||||
      // With these building blocks
 | 
			
		||||
      //
 | 
			
		||||
      //       dS/dU =  \sum_k -ak Mf Phi_k^dag      [ dM^dag M + M^dag dM ] Mf Phi_k
 | 
			
		||||
      //        S    = innerprodReal(Phi,Mf Phi);
 | 
			
		||||
      //////////////////////////////////////////////////////
 | 
			
		||||
      virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
 | 
			
		||||
 | 
			
		||||
	const int Npole = PowerNegHalf.poles.size();
 | 
			
		||||
 | 
			
		||||
	std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
 | 
			
		||||
 | 
			
		||||
	FermionField X(FermOp.FermionGrid());
 | 
			
		||||
	FermionField Y(FermOp.FermionGrid());
 | 
			
		||||
 | 
			
		||||
	GaugeField   tmp(FermOp.GaugeGrid());
 | 
			
		||||
 | 
			
		||||
	FermOp.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
	MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
 | 
			
		||||
 | 
			
		||||
	ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
 | 
			
		||||
 | 
			
		||||
	msCG(MdagMOp,Phi,MPhi_k);
 | 
			
		||||
 | 
			
		||||
	dSdU = zero;
 | 
			
		||||
	for(int k=0;k<Npole;k++){
 | 
			
		||||
 | 
			
		||||
	  RealD ak = PowerNegHalf.residues[k];
 | 
			
		||||
 | 
			
		||||
	  X  = MPhi_k[k];
 | 
			
		||||
 | 
			
		||||
	  FermOp.M(X,Y);
 | 
			
		||||
 | 
			
		||||
	  FermOp.MDeriv(tmp , Y, X,DaggerNo );  dSdU=dSdU+ak*tmp;
 | 
			
		||||
	  FermOp.MDeriv(tmp , X, Y,DaggerYes);  dSdU=dSdU+ak*tmp;
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dSdU = Ta(dSdU);
 | 
			
		||||
 | 
			
		||||
      };
 | 
			
		||||
    };
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -4,85 +4,6 @@
 | 
			
		||||
namespace Grid{
 | 
			
		||||
  namespace QCD{
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // One flavour rational
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // S_f = chi^dag *  N(M^dag*M)/D(M^dag*M) * chi
 | 
			
		||||
    //
 | 
			
		||||
    // Here, M is some operator 
 | 
			
		||||
    // N and D makeup the rat. poly 
 | 
			
		||||
    //
 | 
			
		||||
    // Need
 | 
			
		||||
    // dS_f/dU = chi^dag   P/Q d[N/D]  P/Q  chi
 | 
			
		||||
    //
 | 
			
		||||
    // Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
 | 
			
		||||
    //
 | 
			
		||||
    // N/D is expressed as partial fraction expansion:
 | 
			
		||||
    //
 | 
			
		||||
    //           a0 + \sum_k ak/(M^dagM + bk)
 | 
			
		||||
    //
 | 
			
		||||
    // d[N/D] is then
 | 
			
		||||
    //
 | 
			
		||||
    //          \sum_k -ak [M^dagM+bk]^{-1}  [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
 | 
			
		||||
    //
 | 
			
		||||
    // Need
 | 
			
		||||
    //
 | 
			
		||||
    //       Mf Phi_k = [MdagM+bk]^{-1} Phi
 | 
			
		||||
    //       Mf Phi   = \sum_k ak [MdagM+bk]^{-1} Phi
 | 
			
		||||
    //
 | 
			
		||||
    // With these building blocks
 | 
			
		||||
    //
 | 
			
		||||
    //       dS/dU =  \sum_k -ak Mf Phi_k^dag      [ dM^dag M + M^dag dM ] Mf Phi_k
 | 
			
		||||
    //        S    = innerprodReal(Phi,Mf Phi);
 | 
			
		||||
    
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // One flavour rational ratio
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
 | 
			
		||||
    //
 | 
			
		||||
    // Here, M is some 5D operator and V is the Pauli-Villars field
 | 
			
		||||
    // N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
 | 
			
		||||
    //
 | 
			
		||||
    // Need
 | 
			
		||||
    // dS_f/dU =  chi^dag d[P/Q]  N/D   P/Q  chi
 | 
			
		||||
    //         +  chi^dag   P/Q d[N/D]  P/Q  chi
 | 
			
		||||
    //         +  chi^dag   P/Q   N/D d[P/Q] chi
 | 
			
		||||
    //
 | 
			
		||||
    // Here P/Q \sim R_{1/4}  ~ (V^dagV)^{1/4}
 | 
			
		||||
    // Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
 | 
			
		||||
    //
 | 
			
		||||
    // P/Q is expressed as partial fraction expansion:
 | 
			
		||||
    //
 | 
			
		||||
    //           a0 + \sum_k ak/(V^dagV + bk)
 | 
			
		||||
    //
 | 
			
		||||
    // d[P/Q] is then
 | 
			
		||||
    //
 | 
			
		||||
    //          \sum_k -ak [V^dagV+bk]^{-1}  [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
 | 
			
		||||
    //
 | 
			
		||||
    // and similar for N/D.
 | 
			
		||||
    // 
 | 
			
		||||
    // Need
 | 
			
		||||
    //       MpvPhi_k   = [Vdag V + bk]^{-1} chi
 | 
			
		||||
    //
 | 
			
		||||
    //       MpvPhi     = {a0 +  \sum_k ak [Vdag V + bk]^{-1} }chi
 | 
			
		||||
    //
 | 
			
		||||
    //       MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
 | 
			
		||||
    //      
 | 
			
		||||
    //       MfMpvPhi   = {a0 +  \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
 | 
			
		||||
    //
 | 
			
		||||
    //       MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
 | 
			
		||||
    //
 | 
			
		||||
    // With these building blocks
 | 
			
		||||
    //
 | 
			
		||||
    //       dS/dU =  
 | 
			
		||||
    //                 \sum_k -ak MpvPhi_k^dag        [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k           <- deriv on P left
 | 
			
		||||
    //             +   \sum_k -ak MpvMfMpvPhi_k^\dag  [ dV^dag V + V^dag dV ] MpvPhi_k
 | 
			
		||||
    //             +   \sum_k -ak MfMpvPhi_k^dag      [ dM^dag M + M^dag dM ] MfMpvPhi_k
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Two flavour pseudofermion action for any dop
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -95,8 +95,8 @@ namespace Grid{
 | 
			
		||||
 | 
			
		||||
	// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
 | 
			
		||||
	// Only really clover term that creates this.
 | 
			
		||||
	//	FermOp.MooeeInvDag(PhiEven,Y);
 | 
			
		||||
	//	action = action + norm2(Y);
 | 
			
		||||
	FermOp.MooeeInvDag(PhiEven,Y);
 | 
			
		||||
	action = action + norm2(Y);
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "Pseudofermion EO action "<<action<<std::endl;
 | 
			
		||||
	return action;
 | 
			
		||||
@@ -135,6 +135,9 @@ namespace Grid{
 | 
			
		||||
	//      FermOp.MooeeInv(Y,X);
 | 
			
		||||
	//	FermOp.MeeDeriv(tmp , Y, X,DaggerNo );    dSdU=tmp;
 | 
			
		||||
	//  FermOp.MeeDeriv(tmp , X, Y,DaggerYes);  dSdU=dSdU+tmp;
 | 
			
		||||
 | 
			
		||||
	assert(FermOp.ConstEE() == 1);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
        FermOp.MooeeInvDag(PhiOdd,Y);
 | 
			
		||||
        FermOp.MooeeInv(Y,X);
 | 
			
		||||
 
 | 
			
		||||
@@ -109,9 +109,9 @@ namespace Grid{
 | 
			
		||||
	// Only really clover term that creates this. Leave the EE portion as a future to do to make most
 | 
			
		||||
	// rapid progresss on DWF for now.
 | 
			
		||||
	//
 | 
			
		||||
	// Vpc.MooeeDag(PhiEven,X);
 | 
			
		||||
	// Mpc.MooeeInvDag(X,Y);
 | 
			
		||||
	// action = action + norm2(Y);
 | 
			
		||||
	NumOp.MooeeDag(PhiEven,X);
 | 
			
		||||
	DenOp.MooeeInvDag(X,Y);
 | 
			
		||||
	action = action + norm2(Y);
 | 
			
		||||
 | 
			
		||||
	return action;
 | 
			
		||||
      };
 | 
			
		||||
@@ -154,6 +154,11 @@ namespace Grid{
 | 
			
		||||
	Mpc.MpcDeriv(force,Y,X);   dSdU=dSdU-force;
 | 
			
		||||
	Mpc.MpcDagDeriv(force,X,Y);  dSdU=dSdU-force;
 | 
			
		||||
 | 
			
		||||
	// FIXME No force contribution from EvenEven assumed here
 | 
			
		||||
	// Needs a fix for clover.
 | 
			
		||||
	assert(NumOp.ConstEE() == 1);
 | 
			
		||||
	assert(DenOp.ConstEE() == 1);
 | 
			
		||||
 | 
			
		||||
	dSdU = -Ta(dSdU);
 | 
			
		||||
 | 
			
		||||
      };
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user