1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

One flavour rational unprec added; untested but does compile.

Moving param structs into a single header for later connection to file I/O using
macromagic.h
This commit is contained in:
Peter Boyle 2015-08-18 14:40:08 +01:00
parent 2dd9ad7b0f
commit 5c364f8082
10 changed files with 238 additions and 99 deletions

5
TODO
View File

@ -21,8 +21,11 @@ fill in:
- Force Gradient
- Multi-timescale looks broken and operating on single timescale for now.
Fix/debug/rewrite this
- Sign of force term.
- Prefer "RefreshInternal" or such like to "init" in naming
- Rename "Ta" as too unclear
- MacroMagic -> readers
- MacroMagic -> virtual reader class.
- Link smearing/boundary conds; Policy class based implementation

View File

@ -11,20 +11,27 @@ public:
std::vector<RealD> tolerances;
RealD norm;
RealD lo,hi;
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
RealD approx(RealD x);
void csv(std::ostream &out);
void gnuplot(std::ostream &out);
MultiShiftFunction(AlgRemez & remez,double tol,bool inverse) :
order(remez.getDegree()),
tolerances(remez.getDegree(),tol),
poles(remez.getDegree()),
residues(remez.getDegree())
void Init(AlgRemez & remez,double tol,bool inverse)
{
order=remez.getDegree();
tolerances.resize(remez.getDegree(),tol);
poles.resize(remez.getDegree());
residues.resize(remez.getDegree());
remez.getBounds(lo,hi);
if ( inverse ) remez.getIPFE (&residues[0],&poles[0],&norm);
else remez.getPFE (&residues[0],&poles[0],&norm);
else remez.getPFE (&residues[0],&poles[0],&norm);
}
MultiShiftFunction(AlgRemez & remez,double tol,bool inverse)
{
Init(remez,tol,inverse);
}
};
}
#endif

View File

@ -0,0 +1,26 @@
#ifndef GRID_QCD_ACTION_PARAMS_H
#define GRID_QCD_ACTION_PARAMS_H
namespace Grid {
namespace QCD {
// These can move into a params header and be given MacroMagic serialisation
struct GparityWilsonImplParams {
std::vector<int> twists;
};
struct WilsonImplParams { };
struct OneFlavourRationalParams {
RealD lo;
RealD hi;
int precision=64;
int degree=10;
RealD tolerance; // Vector?
RealD MaxIter; // Vector?
OneFlavourRationalParams (RealD lo,RealD hi,int precision=64,int degree = 10);
};
}}
#endif

View File

@ -14,6 +14,7 @@
// Abstract base interface
////////////////////////////////////////////
#include <qcd/action/ActionBase.h>
#include <qcd/action/ActionParams.h>
////////////////////////////////////////////
// Gauge Actions
@ -157,9 +158,9 @@ typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
#include <qcd/action/pseudofermion/TwoFlavourEvenOddRatio.h>
//Todo: RHMC
//#include <qcd/action/pseudofermion/OneFlavour.h>
//#include <qcd/action/pseudofermion/OneFlavourRatio.h>
//#include <qcd/action/pseudofermion/OneFlavourEvenOdd.h>
//#include <qcd/action/pseudofermion/OneFlavourEvenOddRatio.h>
#include <qcd/action/pseudofermion/OneFlavourRational.h>
//#include <qcd/action/pseudofermion/OneFlavourRationalRatio.h>
//#include <qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
//#include <qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
#endif

View File

@ -32,6 +32,8 @@ namespace Grid {
virtual RealD Mdag (const FermionField &in, FermionField &out)=0;
// half checkerboard operaions
virtual int ConstEE(void) { return 1; }; // clover returns zero as EE depends on gauge field
virtual void Meooe (const FermionField &in, FermionField &out)=0;
virtual void MeooeDag (const FermionField &in, FermionField &out)=0;
virtual void Mooee (const FermionField &in, FermionField &out)=0;
@ -49,7 +51,7 @@ namespace Grid {
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;}; // Clover can override these
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;

View File

@ -5,6 +5,7 @@ namespace Grid {
namespace QCD {
//////////////////////////////////////////////
// Template parameter class constructs to package
// externally control Fermion implementations
@ -126,8 +127,7 @@ namespace Grid {
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
typedef struct WilsonImplParams { } ImplParams;
typedef WilsonImplParams ImplParams;
ImplParams Params;
WilsonImpl(const ImplParams &p= ImplParams()) : Params(p) {};
@ -177,6 +177,7 @@ PARALLEL_FOR_LOOP
////////////////////////////////////////////////////////////////////////////////////////
// Flavour doubled spinors; is Gparity the only? what about C*?
////////////////////////////////////////////////////////////////////////////////////////
template<class S,int Nrepresentation>
class GparityWilsonImpl : public ImplGauge<S,Nrepresentation> {
public:
@ -198,7 +199,7 @@ PARALLEL_FOR_LOOP
typedef WilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
typedef struct GparityWilsonImplParams {std::vector<int> twists; } ImplParams;
typedef GparityWilsonImplParams ImplParams;
ImplParams Params;
GparityWilsonImpl(const ImplParams &p= ImplParams()) : Params(p) {};

View File

@ -0,0 +1,170 @@
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
namespace Grid{
namespace QCD{
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
template<class Impl>
class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf ;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> & FermOp;// the basic operator
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
// and hasenbusch works better
FermionField Phi; // the pseudo fermion field for this trajectory
public:
OneFlavourRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params & p
) : FermOp(Op), Phi(Op.FermionGrid()), param(p)
{
AlgRemez remez(param.lo,param.hi,param.precision);
// MdagM^(+- 1/2)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerNegHalf.Init(remez,param.tolerance,true);
// MdagM^(+- 1/4)
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(param.degree,1,4);
PowerQuarter.Init(remez,param.tolerance,false);
PowerNegQuarter.Init(remez,param.tolerance,true);
};
virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
// = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
// Phi = Mdag^{1/4} eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
gaussian(pRNG,eta);
FermOp.ImportGauge(U);
// mutishift CG
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
msCG(MdagMOp,eta,Phi);
Phi=Phi*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
msCG(MdagMOp,Phi,Y);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
return action;
};
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
const int Npole = PowerNegHalf.poles.size();
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
GaugeField tmp(FermOp.GaugeGrid());
FermOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
msCG(MdagMOp,Phi,MPhi_k);
dSdU = zero;
for(int k=0;k<Npole;k++){
RealD ak = PowerNegHalf.residues[k];
X = MPhi_k[k];
FermOp.M(X,Y);
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=dSdU+ak*tmp;
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+ak*tmp;
}
dSdU = Ta(dSdU);
};
};
}
}
#endif

View File

@ -4,85 +4,6 @@
namespace Grid{
namespace QCD{
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
// Need
// dS_f/dU = chi^dag P/Q d[N/D] P/Q chi
//
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
//
// Need
//
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
// S = innerprodReal(Phi,Mf Phi);
///////////////////////////////////////
// One flavour rational ratio
///////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
//
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
//
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
// With these building blocks
//
// dS/dU =
// \sum_k -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k <- deriv on P left
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k
// + \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k
////////////////////////////////////////////////////////////////////////
// Two flavour pseudofermion action for any dop
////////////////////////////////////////////////////////////////////////

View File

@ -95,8 +95,8 @@ namespace Grid{
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this.
// FermOp.MooeeInvDag(PhiEven,Y);
// action = action + norm2(Y);
FermOp.MooeeInvDag(PhiEven,Y);
action = action + norm2(Y);
std::cout << GridLogMessage << "Pseudofermion EO action "<<action<<std::endl;
return action;
@ -135,6 +135,9 @@ namespace Grid{
// FermOp.MooeeInv(Y,X);
// FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
// FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
assert(FermOp.ConstEE() == 1);
/*
FermOp.MooeeInvDag(PhiOdd,Y);
FermOp.MooeeInv(Y,X);

View File

@ -109,9 +109,9 @@ namespace Grid{
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
// rapid progresss on DWF for now.
//
// Vpc.MooeeDag(PhiEven,X);
// Mpc.MooeeInvDag(X,Y);
// action = action + norm2(Y);
NumOp.MooeeDag(PhiEven,X);
DenOp.MooeeInvDag(X,Y);
action = action + norm2(Y);
return action;
};
@ -154,6 +154,11 @@ namespace Grid{
Mpc.MpcDeriv(force,Y,X); dSdU=dSdU-force;
Mpc.MpcDagDeriv(force,X,Y); dSdU=dSdU-force;
// FIXME No force contribution from EvenEven assumed here
// Needs a fix for clover.
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
dSdU = -Ta(dSdU);
};