From 1e54882f7145bd38db8ac1681cb7d4f9bceb2297 Mon Sep 17 00:00:00 2001 From: Azusa Yamaguchi Date: Wed, 4 Oct 2017 10:51:06 +0100 Subject: [PATCH 01/11] Stagger --- tests/solver/Test_staggered_cg_prec.cc | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/tests/solver/Test_staggered_cg_prec.cc b/tests/solver/Test_staggered_cg_prec.cc index 66f11d3d..0a803c21 100644 --- a/tests/solver/Test_staggered_cg_prec.cc +++ b/tests/solver/Test_staggered_cg_prec.cc @@ -83,5 +83,14 @@ int main (int argc, char ** argv) ConjugateGradient CG(1.0e-8,10000); CG(HermOpEO,src_o,res_o); + FermionField tmp(&RBGrid); + + HermOpEO.Mpc(res_o,tmp); + std::cout << "check Mpc resid " << axpy_norm(tmp,-1.0,src_o,tmp)/norm2(src_o) << "\n"; + + RealD n1,n2; + HermOpEO.MpcDagMpc(res_o,tmp,n1,n2); + std::cout << "check MpcDagMpc resid " << axpy_norm(tmp,-1.0,src_o,tmp)/norm2(src_o) << "\n"; + Grid_finalize(); } From 07009c569a206b9e633e5ab01bdef386f10050c5 Mon Sep 17 00:00:00 2001 From: paboyle Date: Mon, 9 Oct 2017 23:16:51 +0100 Subject: [PATCH 02/11] Comms splitting improvements --- lib/communicator/Communicator_base.cc | 36 ++++++++++++++++----------- lib/communicator/Communicator_base.h | 17 +++++++++++++ lib/communicator/Communicator_mpi.cc | 17 +++++++++++++ lib/communicator/Communicator_none.cc | 4 +++ 4 files changed, 60 insertions(+), 14 deletions(-) diff --git a/lib/communicator/Communicator_base.cc b/lib/communicator/Communicator_base.cc index bcf429ab..ce9a3cf0 100644 --- a/lib/communicator/Communicator_base.cc +++ b/lib/communicator/Communicator_base.cc @@ -117,32 +117,40 @@ CartesianCommunicator::CartesianCommunicator(const std::vector &processors, int Nchild = Nparent/childsize; assert (childsize * Nchild == Nparent); - int prank; MPI_Comm_rank(parent.communicator,&prank); - int crank = prank % childsize; - int ccomm = prank / childsize; + std::vector ccoor(_ndimension); // coor within subcommunicator + std::vector scoor(_ndimension); // coor of split within parent + std::vector ssize(_ndimension); // coor of split within parent + + for(int d=0;d<_ndimension;d++){ + ccoor[d] = parent._processor_coor[d] % processors[d]; + scoor[d] = parent._processor_coor[d] / processors[d]; + ssize[d] = parent._processors[d]/ processors[d]; + } + int crank,srank; // rank within subcomm ; rank of subcomm within blocks of subcomms + Lexicographic::IndexFromCoor(ccoor,crank,processors); + Lexicographic::IndexFromCoor(scoor,srank,ssize); MPI_Comm comm_split; if ( Nchild > 1 ) { - std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec< void AllToAll(int dim,std::vector &in, std::vector &out){ + assert(dim>=0); + assert(dim<_ndimension); + int numnode = _processors[dim]; + // std::cerr << " AllToAll in.size() "< void Broadcast(int root,obj &data) { diff --git a/lib/communicator/Communicator_mpi.cc b/lib/communicator/Communicator_mpi.cc index a55c0164..678e4517 100644 --- a/lib/communicator/Communicator_mpi.cc +++ b/lib/communicator/Communicator_mpi.cc @@ -187,6 +187,21 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes) root, communicator); assert(ierr==0); +} +void CartesianCommunicator::AllToAll(int dim,void *in,void *out,int bytes) +{ + std::vector row(_ndimension,1); + assert(dim>=0 && dim<_ndimension); + + // Split the communicator + row[dim] = _processors[dim]; + + CartesianCommunicator Comm(row,*this); + Comm.AllToAll(in,out,bytes); +} +void CartesianCommunicator::AllToAll(void *in,void *out,int bytes) +{ + MPI_Alltoall(in ,bytes,MPI_BYTE,out,bytes,MPI_BYTE,communicator); } /////////////////////////////////////////////////////// // Should only be used prior to Grid Init finished. @@ -207,5 +222,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) assert(ierr==0); } + + } diff --git a/lib/communicator/Communicator_none.cc b/lib/communicator/Communicator_none.cc index 40feefec..e9d71a15 100644 --- a/lib/communicator/Communicator_none.cc +++ b/lib/communicator/Communicator_none.cc @@ -98,6 +98,10 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector & { assert(0); } +void CartesianCommunicator::AllToAll(int dim,void *in,void *out,int bytes) +{ + bcopy(in,out,bytes); +} int CartesianCommunicator::RankWorld(void){return 0;} void CartesianCommunicator::Barrier(void){} From f7cbf82c0487be5a7be37fd6b7be148b74029884 Mon Sep 17 00:00:00 2001 From: paboyle Date: Mon, 9 Oct 2017 23:18:48 +0100 Subject: [PATCH 03/11] Better stdout/err debug --- lib/util/Init.cc | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/lib/util/Init.cc b/lib/util/Init.cc index 3232d32f..1266d34d 100644 --- a/lib/util/Init.cc +++ b/lib/util/Init.cc @@ -243,6 +243,12 @@ void Grid_init(int *argc,char ***argv) fname< Date: Mon, 9 Oct 2017 23:19:45 +0100 Subject: [PATCH 04/11] Split grid communication --- lib/lattice/Lattice_transfer.h | 301 +++++++++++++++++++++++++++++++++ 1 file changed, 301 insertions(+) diff --git a/lib/lattice/Lattice_transfer.h b/lib/lattice/Lattice_transfer.h index cbf31f86..713a8788 100644 --- a/lib/lattice/Lattice_transfer.h +++ b/lib/lattice/Lattice_transfer.h @@ -684,6 +684,307 @@ void precisionChange(Lattice &out, const Lattice &in){ merge(out._odata[out_oidx], ptrs, 0); } } + +//////////////////////////////////////////////////////////////////////////////// +// Communicate between grids +//////////////////////////////////////////////////////////////////////////////// +// +// All to all plan +// +// Subvolume on fine grid is v. Vectors a,b,c,d +// +/////////////////////////////////////////////////////////////////////////////////////////////////////////// +// SIMPLEST CASE: +/////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Mesh of nodes (2) ; subdivide to 1 subdivisions +// +// Lex ord: +// N0 va0 vb0 N1 va1 vb1 +// +// For each dimension do an all to all +// +// full AllToAll(0) +// N0 va0 va1 N1 vb0 vb1 +// +// REARRANGE +// N0 va01 N1 vb01 +// +// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract". +// NB: Easiest to programme if keep in lex order. +// +/////////////////////////////////////////////////////////////////////////////////////////////////////////// +// SIMPLE CASE: +/////////////////////////////////////////////////////////////////////////////////////////////////////////// +// +// Mesh of nodes (2x2) ; subdivide to 1x1 subdivisions +// +// Lex ord: +// N0 va0 vb0 vc0 vd0 N1 va1 vb1 vc1 vd1 +// N2 va2 vb2 vc2 vd2 N3 va3 vb3 vc3 vd3 +// +// Ratio = full[dim] / split[dim] +// +// For each dimension do an all to all; get Nvec -> Nvec / ratio +// Ldim -> Ldim * ratio +// LocalVol -> LocalVol * ratio +// full AllToAll(0) +// N0 va0 vb0 va1 vb1 N1 vc0 vd0 vc1 vd1 +// N2 va2 vb2 va3 vb3 N3 vc2 vd2 vc3 vd3 +// +// REARRANGE +// N0 va01 vb01 N1 vc01 vd01 +// N2 va23 vb23 N3 vc23 vd23 +// +// full AllToAll(1) // Not what is wanted. FIXME +// N0 va01 va23 N1 vc01 vc23 +// N2 vb01 vb23 N3 vd01 vd23 +// +// REARRANGE +// N0 va0123 N1 vc0123 +// N2 vb0123 N3 vd0123 +// +// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract". +// NB: Easiest to programme if keep in lex order. +// +///////////////////////////////////////////////////////// +template +void Grid_split(std::vector > & full,Lattice & split) +{ + typedef typename Vobj::scalar_object Sobj; + + int full_vecs = full.size(); + + assert(full_vecs>=1); + + GridBase * full_grid = full[0]._grid; + GridBase *split_grid = split._grid; + + int ndim = full_grid->_ndimension; + int full_nproc = full_grid->_Nprocessors; + int split_nproc =split_grid->_Nprocessors; + + //////////////////////////////// + // Checkerboard management + //////////////////////////////// + int cb = full[0].checkerboard; + split.checkerboard = cb; + + ////////////////////////////// + // Checks + ////////////////////////////// + assert(full_grid->_ndimension==split_grid->_ndimension); + for(int n=0;n_gdimensions[d]==split._grid->_gdimensions[d]); + assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]); + } + } + + int nvector =full_nproc/split_nproc; + assert(nvector*split_nproc==full_nproc); + assert(nvector == full_vecs); + + std::vector ratio(ndim); + for(int d=0;d_processors[d]/ split_grid->_processors[d]; + } + + int lsites = full_grid->lSites(); + Integer sz = lsites * nvector; + std::vector tmpdata(sz); + std::vector alldata(sz); + std::vector scalardata(lsites); + for(int v=0;v ldims = full_grid->_ldimensions; + std::vector lcoor(ndim); + + for(int d=0;dAllToAll(d,alldata,tmpdata); + + ////////////////////////////////////////// + //Local volume for this dimension is expanded by ratio of processor extents + // Number of vectors is decreased by same factor + // Rearrange to lexico for bigger volume + ////////////////////////////////////////// + nvec /= ratio[d]; + auto rdims = ldims; rdims[d] *= ratio[d]; + auto rsites= lsites*ratio[d]; + for(int v=0;v_processors[d] > 1 ) { + tmpdata = alldata; + split_grid->AllToAll(d,tmpdata,alldata); + } + } + } + + vectorizeFromLexOrdArray(alldata,split); +} + +template +void Grid_split(Lattice &full,Lattice & split) +{ + int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors; + std::vector > full_v(nvector,full._grid); + for(int n=0;n +void Grid_unsplit(std::vector > & full,Lattice & split) +{ + typedef typename Vobj::scalar_object Sobj; + + int full_vecs = full.size(); + + assert(full_vecs>=1); + + GridBase * full_grid = full[0]._grid; + GridBase *split_grid = split._grid; + + int ndim = full_grid->_ndimension; + int full_nproc = full_grid->_Nprocessors; + int split_nproc =split_grid->_Nprocessors; + + //////////////////////////////// + // Checkerboard management + //////////////////////////////// + int cb = full[0].checkerboard; + split.checkerboard = cb; + + ////////////////////////////// + // Checks + ////////////////////////////// + assert(full_grid->_ndimension==split_grid->_ndimension); + for(int n=0;n_gdimensions[d]==split._grid->_gdimensions[d]); + assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]); + } + } + + int nvector =full_nproc/split_nproc; + assert(nvector*split_nproc==full_nproc); + assert(nvector == full_vecs); + + std::vector ratio(ndim); + for(int d=0;d_processors[d]/ split_grid->_processors[d]; + } + + int lsites = full_grid->lSites(); + Integer sz = lsites * nvector; + std::vector tmpdata(sz); + std::vector alldata(sz); + std::vector scalardata(lsites); + + unvectorizeToLexOrdArray(alldata,split); + + ///////////////////////////////////////////////////////////////// + // Start from split grid and work towards full grid + ///////////////////////////////////////////////////////////////// + std::vector lcoor(ndim); + std::vector rcoor(ndim); + + int nvec = 1; + lsites = split_grid->lSites(); + std::vector ldims = split_grid->_ldimensions; + + for(int d=ndim-1;d>=0;d--){ + + if ( ratio[d] != 1 ) { + + if ( split_grid->_processors[d] > 1 ) { + tmpdata = alldata; + split_grid->AllToAll(d,tmpdata,alldata); + } + + ////////////////////////////////////////// + //Local volume for this dimension is expanded by ratio of processor extents + // Number of vectors is decreased by same factor + // Rearrange to lexico for bigger volume + ////////////////////////////////////////// + auto rsites= lsites/ratio[d]; + auto rdims = ldims; rdims[d]/=ratio[d]; + + for(int v=0;v smaller local volume + // lsite, lcoor --> bigger original (single node?) volume + // For loop over each site within smaller subvol + for(int rsite=0;rsiteAllToAll(d,tmpdata,alldata); + } + } + + lsites = full_grid->lSites(); + for(int v=0;v Date: Mon, 9 Oct 2017 23:20:58 +0100 Subject: [PATCH 05/11] Split CG testing --- tests/solver/Test_dwf_mrhs_cg.cc | 64 +++++++--- tests/solver/Test_dwf_mrhs_cg_mpi.cc | 144 ++++++++++++++++++++++ tests/solver/Test_dwf_mrhs_cg_mpieo.cc | 163 +++++++++++++++++++++++++ 3 files changed, 356 insertions(+), 15 deletions(-) create mode 100644 tests/solver/Test_dwf_mrhs_cg_mpi.cc create mode 100644 tests/solver/Test_dwf_mrhs_cg_mpieo.cc diff --git a/tests/solver/Test_dwf_mrhs_cg.cc b/tests/solver/Test_dwf_mrhs_cg.cc index 2d2cfcb1..d9215db2 100644 --- a/tests/solver/Test_dwf_mrhs_cg.cc +++ b/tests/solver/Test_dwf_mrhs_cg.cc @@ -38,7 +38,7 @@ int main (int argc, char ** argv) typedef typename DomainWallFermionR::ComplexField ComplexField; typename DomainWallFermionR::ImplParams params; - const int Ls=8; + const int Ls=4; Grid_init(&argc,&argv); @@ -47,29 +47,24 @@ int main (int argc, char ** argv) std::vector mpi_layout = GridDefaultMpi(); std::vector mpi_split (mpi_layout.size(),1); - std::cout << "UGrid (world root)"<RankCount() ; ///////////////////////////////////////////// // Split into 1^4 mpi communicators ///////////////////////////////////////////// - std::cout << "SGrid (world root)"< src(nrhs,FGrid); + std::vector src_chk(nrhs,FGrid); std::vector result(nrhs,FGrid); + FermionField tmp(FGrid); for(int s=0;sThisRank(); LatticeGaugeField s_Umu(SGrid); FermionField s_src(SFGrid); + FermionField s_src_split(SFGrid); + FermionField s_tmp(SFGrid); FermionField s_res(SFGrid); { @@ -157,6 +156,24 @@ int main (int argc, char ** argv) FGrid->Barrier(); } + /////////////////////////////////////////////////////////////// + // split the source out using MPI instead of I/O + /////////////////////////////////////////////////////////////// + std::cout << GridLogMessage << " Splitting the grid data "<Barrier(); + if ( n==me ) { + std::cerr << GridLogMessage<<"Split "<< me << " " << norm2(s_src_split) << " " << norm2(s_src)<< " diff " << norm2(s_tmp)<Barrier(); + } + /////////////////////////////////////////////////////////////// // Set up N-solvers as trivially parallel @@ -164,6 +181,7 @@ int main (int argc, char ** argv) RealD mass=0.01; RealD M5=1.8; + DomainWallFermionR Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5); DomainWallFermionR Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5); std::cout << GridLogMessage << "****************************************************************** "< HermOp(Ddwf); + MdagMLinearOperator HermOpCk(Dchk); ConjugateGradient CG((1.0e-8/(me+1)),10000); s_res = zero; CG(HermOp,s_src,s_res); - /////////////////////////////////////// - // Share the information - /////////////////////////////////////// + ///////////////////////////////////////////////////////////// + // Report how long they all took + ///////////////////////////////////////////////////////////// std::vector iterations(nrhs,0); iterations[me] = CG.IterationsToComplete; for(int n=0;nGlobalSum(iterations[n]); + std::cout << GridLogMessage<<" Rank "< + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + + See the full license in the file "LICENSE" in the top level distribution directory + *************************************************************************************/ + /* END LEGAL */ +#include +#include + +using namespace std; +using namespace Grid; +using namespace Grid::QCD; + +int main (int argc, char ** argv) +{ + typedef typename DomainWallFermionR::FermionField FermionField; + typedef typename DomainWallFermionR::ComplexField ComplexField; + typename DomainWallFermionR::ImplParams params; + + const int Ls=4; + + Grid_init(&argc,&argv); + + std::vector latt_size = GridDefaultLatt(); + std::vector simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd()); + std::vector mpi_layout = GridDefaultMpi(); + std::vector mpi_split (mpi_layout.size(),1); + + GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); + GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); + GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); + GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); + + int nrhs = UGrid->RankCount() ; + + ///////////////////////////////////////////// + // Split into 1^4 mpi communicators + ///////////////////////////////////////////// + GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(), + GridDefaultSimd(Nd,vComplex::Nsimd()), + mpi_split, + *UGrid); + + GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid); + GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid); + GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid); + + /////////////////////////////////////////////// + // Set up the problem as a 4d spreadout job + /////////////////////////////////////////////// + std::vector seeds({1,2,3,4}); + + GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds); + GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds); + std::vector src(nrhs,FGrid); + std::vector src_chk(nrhs,FGrid); + std::vector result(nrhs,FGrid); + FermionField tmp(FGrid); + + for(int s=0;sThisRank(); + + LatticeGaugeField s_Umu(SGrid); + FermionField s_src(SFGrid); + FermionField s_tmp(SFGrid); + FermionField s_res(SFGrid); + + /////////////////////////////////////////////////////////////// + // split the source out using MPI instead of I/O + /////////////////////////////////////////////////////////////// + Grid_split (Umu,s_Umu); + Grid_split (src,s_src); + + /////////////////////////////////////////////////////////////// + // Set up N-solvers as trivially parallel + /////////////////////////////////////////////////////////////// + RealD mass=0.01; + RealD M5=1.8; + DomainWallFermionR Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5); + DomainWallFermionR Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5); + + std::cout << GridLogMessage << "****************************************************************** "< HermOp(Ddwf); + MdagMLinearOperator HermOpCk(Dchk); + ConjugateGradient CG((1.0e-8/(me+1)),10000); + s_res = zero; + CG(HermOp,s_src,s_res); + + ///////////////////////////////////////////////////////////// + // Report how long they all took + ///////////////////////////////////////////////////////////// + std::vector iterations(nrhs,0); + iterations[me] = CG.IterationsToComplete; + + for(int n=0;nGlobalSum(iterations[n]); + std::cout << GridLogMessage<<" Rank "< + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + + See the full license in the file "LICENSE" in the top level distribution directory + *************************************************************************************/ + /* END LEGAL */ +#include +#include + +using namespace std; +using namespace Grid; +using namespace Grid::QCD; + +int main (int argc, char ** argv) +{ + typedef typename DomainWallFermionR::FermionField FermionField; + typedef typename DomainWallFermionR::ComplexField ComplexField; + typename DomainWallFermionR::ImplParams params; + + const int Ls=4; + + Grid_init(&argc,&argv); + + std::vector latt_size = GridDefaultLatt(); + std::vector simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd()); + std::vector mpi_layout = GridDefaultMpi(); + std::vector mpi_split (mpi_layout.size(),1); + + GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); + GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); + GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); + GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); + + int nrhs = UGrid->RankCount() ; + + ///////////////////////////////////////////// + // Split into 1^4 mpi communicators + ///////////////////////////////////////////// + GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(), + GridDefaultSimd(Nd,vComplex::Nsimd()), + mpi_split, + *UGrid); + + GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid); + GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid); + GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid); + + /////////////////////////////////////////////// + // Set up the problem as a 4d spreadout job + /////////////////////////////////////////////// + std::vector seeds({1,2,3,4}); + + GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds); + GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds); + std::vector src(nrhs,FGrid); + std::vector src_chk(nrhs,FGrid); + std::vector result(nrhs,FGrid); + FermionField tmp(FGrid); + + std::vector src_e(nrhs,FrbGrid); + std::vector src_o(nrhs,FrbGrid); + + for(int s=0;sThisRank(); + + LatticeGaugeField s_Umu(SGrid); + FermionField s_src(SFGrid); + FermionField s_src_e(SFrbGrid); + FermionField s_src_o(SFrbGrid); + FermionField s_tmp(SFGrid); + FermionField s_res(SFGrid); + + /////////////////////////////////////////////////////////////// + // split the source out using MPI instead of I/O + /////////////////////////////////////////////////////////////// + Grid_split (Umu,s_Umu); + Grid_split (src,s_src); + + /////////////////////////////////////////////////////////////// + // Check even odd cases + /////////////////////////////////////////////////////////////// + for(int s=0;s HermOp(Ddwf); + MdagMLinearOperator HermOpCk(Dchk); + ConjugateGradient CG((1.0e-8/(me+1)),10000); + s_res = zero; + CG(HermOp,s_src,s_res); + + ///////////////////////////////////////////////////////////// + // Report how long they all took + ///////////////////////////////////////////////////////////// + std::vector iterations(nrhs,0); + iterations[me] = CG.IterationsToComplete; + + for(int n=0;nGlobalSum(iterations[n]); + std::cout << GridLogMessage<<" Rank "< Date: Tue, 10 Oct 2017 10:00:43 +0100 Subject: [PATCH 06/11] Schur staggered --- lib/algorithms/LinearOperator.h | 104 +++++++++- lib/algorithms/iterative/SchurRedBlack.h | 240 +++++++++++++++++++++++ 2 files changed, 342 insertions(+), 2 deletions(-) diff --git a/lib/algorithms/LinearOperator.h b/lib/algorithms/LinearOperator.h index 6cb77296..6e4da248 100644 --- a/lib/algorithms/LinearOperator.h +++ b/lib/algorithms/LinearOperator.h @@ -192,10 +192,10 @@ namespace Grid { ni=Mpc(in,tmp); no=MpcDag(tmp,out); } - void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ + virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ MpcDagMpc(in,out,n1,n2); } - void HermOp(const Field &in, Field &out){ + virtual void HermOp(const Field &in, Field &out){ RealD n1,n2; HermOpAndNorm(in,out,n1,n2); } @@ -300,6 +300,106 @@ namespace Grid { } }; + // + template + class SchurStaggeredOperator : public SchurOperatorBase { + protected: + Matrix &_Mat; + public: + SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){}; + virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ + ComplexD dot; + n2=Mpc(in,out); + dot= innerProduct(in,out); + n1= real(dot); + } + virtual void HermOp(const Field &in, Field &out){ + Mpc(in,out); + } + virtual RealD Mpc (const Field &in, Field &out) { + Field tmp(in._grid); + _Mat.Meooe(in,tmp); + _Mat.MooeeInv(tmp,out); + _Mat.MeooeDag(out,tmp); + _Mat.Mooee(in,out); + return axpy_norm(out,-1.0,tmp,out); + } + virtual RealD MpcDag (const Field &in, Field &out){ + return Mpc(in,out); + } + virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) { + assert(0);// Never need with staggered + } + }; + template using SchurStagOperator = SchurStaggeredOperator; + + // This is specific to (Z)mobius fermions + template + class KappaSimilarityTransform { + public: + + typedef typename Matrix::Coeff_t Coeff_t; + std::vector kappa, kappaDag, kappaInv, kappaInvDag; + + KappaSimilarityTransform (Matrix &zmob) { + for (int i=0;i<(int)zmob.bs.size();i++) { + Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) ); + kappa.push_back( k ); + kappaDag.push_back( conj(k) ); + kappaInv.push_back( 1.0 / k ); + kappaInvDag.push_back( 1.0 / conj(k) ); + } + } + + template + void sscale(const Lattice& in, Lattice& out, Coeff_t* s) { + GridBase *grid=out._grid; + out.checkerboard = in.checkerboard; + assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now + int Ls = grid->_rdimensions[0]; + parallel_for(int ss=0;ssoSites();ss++){ + vobj tmp = s[ss % Ls]*in._odata[ss]; + vstream(out._odata[ss],tmp); + } + } + + RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) { + sscale(in,out,s); + return norm2(out); + } + + virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); } + virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);} + virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);} + virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);} + + }; + + template + class SchurDiagTwoKappaOperator : public SchurOperatorBase { + public: + KappaSimilarityTransform _S; + SchurDiagTwoOperator _Mat; + + SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {}; + + virtual RealD Mpc (const Field &in, Field &out) { + Field tmp(in._grid); + + _S.MInv(in,out); + _Mat.Mpc(out,tmp); + return _S.M(tmp,out); + + } + virtual RealD MpcDag (const Field &in, Field &out){ + Field tmp(in._grid); + + _S.MDag(in,out); + _Mat.MpcDag(out,tmp); + return _S.MInvDag(tmp,out); + } + }; + ///////////////////////////////////////////////////////////// // Base classes for functions of operators diff --git a/lib/algorithms/iterative/SchurRedBlack.h b/lib/algorithms/iterative/SchurRedBlack.h index 5caabb4b..b6eab762 100644 --- a/lib/algorithms/iterative/SchurRedBlack.h +++ b/lib/algorithms/iterative/SchurRedBlack.h @@ -63,6 +63,85 @@ Author: Peter Boyle */ namespace Grid { + /////////////////////////////////////////////////////////////////////////////////////////////////////// + // Take a matrix and form a Red Black solver calling a Herm solver + // Use of RB info prevents making SchurRedBlackSolve conform to standard interface + /////////////////////////////////////////////////////////////////////////////////////////////////////// + + template class SchurRedBlackStaggeredSolve { + private: + OperatorFunction & _HermitianRBSolver; + int CBfactorise; + public: + + ///////////////////////////////////////////////////// + // Wrap the usual normal equations Schur trick + ///////////////////////////////////////////////////// + SchurRedBlackStaggeredSolve(OperatorFunction &HermitianRBSolver) : + _HermitianRBSolver(HermitianRBSolver) + { + CBfactorise=0; + }; + + template + void operator() (Matrix & _Matrix,const Field &in, Field &out){ + + // FIXME CGdiagonalMee not implemented virtual function + // FIXME use CBfactorise to control schur decomp + GridBase *grid = _Matrix.RedBlackGrid(); + GridBase *fgrid= _Matrix.Grid(); + + SchurStaggeredOperator _HermOpEO(_Matrix); + + Field src_e(grid); + Field src_o(grid); + Field sol_e(grid); + Field sol_o(grid); + Field tmp(grid); + Field Mtmp(grid); + Field resid(fgrid); + + pickCheckerboard(Even,src_e,in); + pickCheckerboard(Odd ,src_o,in); + pickCheckerboard(Even,sol_e,out); + pickCheckerboard(Odd ,sol_o,out); + + ///////////////////////////////////////////////////// + // src_o = Mdag * (source_o - Moe MeeInv source_e) + ///////////////////////////////////////////////////// + _Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even); + _Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd); + tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd); + + _Matrix.Mooee(tmp,src_o); assert(src_o.checkerboard ==Odd); + + ////////////////////////////////////////////////////////////// + // Call the red-black solver + ////////////////////////////////////////////////////////////// + std::cout< using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve; + /////////////////////////////////////////////////////////////////////////////////////////////////////// // Take a matrix and form a Red Black solver calling a Herm solver // Use of RB info prevents making SchurRedBlackSolve conform to standard interface @@ -141,5 +220,166 @@ namespace Grid { } }; + + /////////////////////////////////////////////////////////////////////////////////////////////////////// + // Take a matrix and form a Red Black solver calling a Herm solver + // Use of RB info prevents making SchurRedBlackSolve conform to standard interface + /////////////////////////////////////////////////////////////////////////////////////////////////////// + template class SchurRedBlackDiagTwoSolve { + private: + OperatorFunction & _HermitianRBSolver; + int CBfactorise; + public: + + ///////////////////////////////////////////////////// + // Wrap the usual normal equations Schur trick + ///////////////////////////////////////////////////// + SchurRedBlackDiagTwoSolve(OperatorFunction &HermitianRBSolver) : + _HermitianRBSolver(HermitianRBSolver) + { + CBfactorise=0; + }; + + template + void operator() (Matrix & _Matrix,const Field &in, Field &out){ + + // FIXME CGdiagonalMee not implemented virtual function + // FIXME use CBfactorise to control schur decomp + GridBase *grid = _Matrix.RedBlackGrid(); + GridBase *fgrid= _Matrix.Grid(); + + SchurDiagTwoOperator _HermOpEO(_Matrix); + + Field src_e(grid); + Field src_o(grid); + Field sol_e(grid); + Field sol_o(grid); + Field tmp(grid); + Field Mtmp(grid); + Field resid(fgrid); + + pickCheckerboard(Even,src_e,in); + pickCheckerboard(Odd ,src_o,in); + pickCheckerboard(Even,sol_e,out); + pickCheckerboard(Odd ,sol_o,out); + + ///////////////////////////////////////////////////// + // src_o = Mdag * (source_o - Moe MeeInv source_e) + ///////////////////////////////////////////////////// + _Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even); + _Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd); + tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd); + + // get the right MpcDag + _HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd); + + ////////////////////////////////////////////////////////////// + // Call the red-black solver + ////////////////////////////////////////////////////////////// + std::cout< class SchurRedBlackDiagTwoMixed { + private: + LinearFunction & _HermitianRBSolver; + int CBfactorise; + public: + + ///////////////////////////////////////////////////// + // Wrap the usual normal equations Schur trick + ///////////////////////////////////////////////////// + SchurRedBlackDiagTwoMixed(LinearFunction &HermitianRBSolver) : + _HermitianRBSolver(HermitianRBSolver) + { + CBfactorise=0; + }; + + template + void operator() (Matrix & _Matrix,const Field &in, Field &out){ + + // FIXME CGdiagonalMee not implemented virtual function + // FIXME use CBfactorise to control schur decomp + GridBase *grid = _Matrix.RedBlackGrid(); + GridBase *fgrid= _Matrix.Grid(); + + SchurDiagTwoOperator _HermOpEO(_Matrix); + + Field src_e(grid); + Field src_o(grid); + Field sol_e(grid); + Field sol_o(grid); + Field tmp(grid); + Field Mtmp(grid); + Field resid(fgrid); + + pickCheckerboard(Even,src_e,in); + pickCheckerboard(Odd ,src_o,in); + pickCheckerboard(Even,sol_e,out); + pickCheckerboard(Odd ,sol_o,out); + + ///////////////////////////////////////////////////// + // src_o = Mdag * (source_o - Moe MeeInv source_e) + ///////////////////////////////////////////////////// + _Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even); + _Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd); + tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd); + + // get the right MpcDag + _HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd); + + ////////////////////////////////////////////////////////////// + // Call the red-black solver + ////////////////////////////////////////////////////////////// + std::cout< Date: Tue, 10 Oct 2017 12:02:18 +0100 Subject: [PATCH 07/11] Schur for staggered --- lib/algorithms/LinearOperator.h | 80 +----------- tests/solver/Test_staggered_block_cg_prec.cc | 130 +++++++++++++++++++ tests/solver/Test_staggered_cg_prec.cc | 6 +- 3 files changed, 135 insertions(+), 81 deletions(-) create mode 100644 tests/solver/Test_staggered_block_cg_prec.cc diff --git a/lib/algorithms/LinearOperator.h b/lib/algorithms/LinearOperator.h index 6e4da248..d402c5b7 100644 --- a/lib/algorithms/LinearOperator.h +++ b/lib/algorithms/LinearOperator.h @@ -162,15 +162,10 @@ namespace Grid { _Mat.M(in,out); } void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ - ComplexD dot; - _Mat.M(in,out); - dot= innerProduct(in,out); - n1=real(dot); - - dot = innerProduct(out,out); - n2=real(dot); + ComplexD dot= innerProduct(in,out); n1=real(dot); + n2=norm2(out); } void HermOp(const Field &in, Field &out){ _Mat.M(in,out); @@ -309,9 +304,9 @@ namespace Grid { SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){}; virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ ComplexD dot; - n2=Mpc(in,out); + n2 = Mpc(in,out); dot= innerProduct(in,out); - n1= real(dot); + n1 = real(dot); } virtual void HermOp(const Field &in, Field &out){ Mpc(in,out); @@ -333,73 +328,6 @@ namespace Grid { }; template using SchurStagOperator = SchurStaggeredOperator; - // This is specific to (Z)mobius fermions - template - class KappaSimilarityTransform { - public: - - typedef typename Matrix::Coeff_t Coeff_t; - std::vector kappa, kappaDag, kappaInv, kappaInvDag; - - KappaSimilarityTransform (Matrix &zmob) { - for (int i=0;i<(int)zmob.bs.size();i++) { - Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) ); - kappa.push_back( k ); - kappaDag.push_back( conj(k) ); - kappaInv.push_back( 1.0 / k ); - kappaInvDag.push_back( 1.0 / conj(k) ); - } - } - - template - void sscale(const Lattice& in, Lattice& out, Coeff_t* s) { - GridBase *grid=out._grid; - out.checkerboard = in.checkerboard; - assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now - int Ls = grid->_rdimensions[0]; - parallel_for(int ss=0;ssoSites();ss++){ - vobj tmp = s[ss % Ls]*in._odata[ss]; - vstream(out._odata[ss],tmp); - } - } - - RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) { - sscale(in,out,s); - return norm2(out); - } - - virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); } - virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);} - virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);} - virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);} - - }; - - template - class SchurDiagTwoKappaOperator : public SchurOperatorBase { - public: - KappaSimilarityTransform _S; - SchurDiagTwoOperator _Mat; - - SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {}; - - virtual RealD Mpc (const Field &in, Field &out) { - Field tmp(in._grid); - - _S.MInv(in,out); - _Mat.Mpc(out,tmp); - return _S.M(tmp,out); - - } - virtual RealD MpcDag (const Field &in, Field &out){ - Field tmp(in._grid); - - _S.MDag(in,out); - _Mat.MpcDag(out,tmp); - return _S.MInvDag(tmp,out); - } - }; - ///////////////////////////////////////////////////////////// // Base classes for functions of operators diff --git a/tests/solver/Test_staggered_block_cg_prec.cc b/tests/solver/Test_staggered_block_cg_prec.cc new file mode 100644 index 00000000..1d0117e0 --- /dev/null +++ b/tests/solver/Test_staggered_block_cg_prec.cc @@ -0,0 +1,130 @@ + /************************************************************************************* + + Grid physics library, www.github.com/paboyle/Grid + + Source file: ./tests/Test_wilson_cg_unprec.cc + + Copyright (C) 2015 + +Author: Azusa Yamaguchi +Author: Peter Boyle + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + + See the full license in the file "LICENSE" in the top level distribution directory + *************************************************************************************/ + /* END LEGAL */ +#include + +using namespace std; +using namespace Grid; +using namespace Grid::QCD; + +template +struct scal { + d internal; +}; + + Gamma::Algebra Gmu [] = { + Gamma::Algebra::GammaX, + Gamma::Algebra::GammaY, + Gamma::Algebra::GammaZ, + Gamma::Algebra::GammaT + }; + +int main (int argc, char ** argv) +{ + typedef typename ImprovedStaggeredFermion5DR::FermionField FermionField; + typedef typename ImprovedStaggeredFermion5DR::ComplexField ComplexField; + typename ImprovedStaggeredFermion5DR::ImplParams params; + + const int Ls=8; + + Grid_init(&argc,&argv); + + std::vector latt_size = GridDefaultLatt(); + std::vector simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd()); + std::vector mpi_layout = GridDefaultMpi(); + + GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); + GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); + GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); + GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); + + std::vector seeds({1,2,3,4}); + GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds); + GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds); + + FermionField src(FGrid); random(pRNG5,src); + FermionField src_o(FrbGrid); pickCheckerboard(Odd,src_o,src); + FermionField result_o(FrbGrid); result_o=zero; + RealD nrm = norm2(src); + + LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu); + + RealD mass=0.003; + ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass); + SchurDiagMooeeOperator HermOp(Ds); + + ConjugateGradient CG(1.0e-8,10000); + int blockDim = 0; + BlockConjugateGradient BCGrQ(BlockCGrQ,blockDim,1.0e-8,10000); + BlockConjugateGradient BCG (BlockCG,blockDim,1.0e-8,10000); + BlockConjugateGradient mCG (CGmultiRHS,blockDim,1.0e-8,10000); + + std::cout << GridLogMessage << "****************************************************************** "< HermOp4d(Ds4d); + FermionField src4d(UGrid); random(pRNG,src4d); + FermionField src4d_o(UrbGrid); pickCheckerboard(Odd,src4d_o,src4d); + FermionField result4d_o(UrbGrid); + + result4d_o=zero; + CG(HermOp4d,src4d_o,result4d_o); + std::cout << GridLogMessage << "************************************************************************ "< Date: Tue, 10 Oct 2017 13:48:51 +0100 Subject: [PATCH 08/11] Christop mods --- lib/algorithms/approx/Chebyshev.h | 42 +++++++++++++++++++++++++++++++ 1 file changed, 42 insertions(+) diff --git a/lib/algorithms/approx/Chebyshev.h b/lib/algorithms/approx/Chebyshev.h index 2793f138..f8c21a05 100644 --- a/lib/algorithms/approx/Chebyshev.h +++ b/lib/algorithms/approx/Chebyshev.h @@ -8,6 +8,7 @@ Author: Peter Boyle Author: paboyle +Author: Christoph Lehner This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -193,6 +194,47 @@ namespace Grid { return sum; }; + RealD approxD(RealD x) + { + RealD Un; + RealD Unm; + RealD Unp; + + RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo)); + + RealD U0=1; + RealD U1=2*y; + + RealD sum; + sum = Coeffs[1]*U0; + sum+= Coeffs[2]*U1*2.0; + + Un =U1; + Unm=U0; + for(int i=2;i::quiet_NaN(); + } + // Implement the required interface void operator() (LinearOperatorBase &Linop, const Field &in, Field &out) { From a1d80282eca8df8c1c7eb521c48c3aa78ccdb389 Mon Sep 17 00:00:00 2001 From: paboyle Date: Tue, 10 Oct 2017 13:49:31 +0100 Subject: [PATCH 09/11] cb factorise --- lib/algorithms/iterative/SchurRedBlack.h | 27 ++++++++++++++++++------ 1 file changed, 20 insertions(+), 7 deletions(-) diff --git a/lib/algorithms/iterative/SchurRedBlack.h b/lib/algorithms/iterative/SchurRedBlack.h index b6eab762..a309386b 100644 --- a/lib/algorithms/iterative/SchurRedBlack.h +++ b/lib/algorithms/iterative/SchurRedBlack.h @@ -53,13 +53,28 @@ Author: Peter Boyle * M psi = eta *********************** *Odd - * i) (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o + * i) D_oo psi_o = L^{-1} eta_o * eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e) + * (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o *Even * ii) Mee psi_e + Meo psi_o = src_e * * => sol_e = M_ee^-1 * ( src_e - Meo sol_o )... * + * + * TODO: Other options: + * + * a) change checkerboards for Schur e<->o + * + * Left precon by Moo^-1 + * b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 = (D_oo)^dag M_oo^-dag Moo^-1 L^{-1} eta_o + * eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e) + * + * Right precon by Moo^-1 + * c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o + * eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e) + * psi_o = M_oo^-1 phi_o + * TODO: Deflation */ namespace Grid { @@ -155,12 +170,10 @@ namespace Grid { ///////////////////////////////////////////////////// // Wrap the usual normal equations Schur trick ///////////////////////////////////////////////////// - SchurRedBlackDiagMooeeSolve(OperatorFunction &HermitianRBSolver) : - _HermitianRBSolver(HermitianRBSolver) - { - CBfactorise=0; - }; - + SchurRedBlackDiagMooeeSolve(OperatorFunction &HermitianRBSolver,int cb=0) : _HermitianRBSolver(HermitianRBSolver) + { + CBfactorise=cb; + }; template void operator() (Matrix & _Matrix,const Field &in, Field &out){ From 1374c943d4cbb493a6a909a54b7c55471b677a32 Mon Sep 17 00:00:00 2001 From: Azusa Yamaguchi Date: Tue, 10 Oct 2017 13:59:50 +0100 Subject: [PATCH 10/11] Correct Schur operator called --- tests/solver/Test_staggered_block_cg_prec.cc | 4 ++-- tests/solver/Test_staggered_cg_prec.cc | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/tests/solver/Test_staggered_block_cg_prec.cc b/tests/solver/Test_staggered_block_cg_prec.cc index 1d0117e0..0076e5a0 100644 --- a/tests/solver/Test_staggered_block_cg_prec.cc +++ b/tests/solver/Test_staggered_block_cg_prec.cc @@ -76,7 +76,7 @@ int main (int argc, char ** argv) RealD mass=0.003; ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass); - SchurDiagMooeeOperator HermOp(Ds); + SchurStaggeredOperator HermOp(Ds); ConjugateGradient CG(1.0e-8,10000); int blockDim = 0; @@ -88,7 +88,7 @@ int main (int argc, char ** argv) std::cout << GridLogMessage << " Calling 4d CG "< HermOp4d(Ds4d); + SchurStaggeredOperator HermOp4d(Ds4d); FermionField src4d(UGrid); random(pRNG,src4d); FermionField src4d_o(UrbGrid); pickCheckerboard(Odd,src4d_o,src4d); FermionField result4d_o(UrbGrid); diff --git a/tests/solver/Test_staggered_cg_prec.cc b/tests/solver/Test_staggered_cg_prec.cc index 97251435..9a458f1f 100644 --- a/tests/solver/Test_staggered_cg_prec.cc +++ b/tests/solver/Test_staggered_cg_prec.cc @@ -79,7 +79,7 @@ int main (int argc, char ** argv) pickCheckerboard(Odd,src_o,src); res_o=zero; - SchurDiagMooeeOperator HermOpEO(Ds); + SchurStaggeredOperator HermOpEO(Ds); ConjugateGradient CG(1.0e-8,10000); CG(HermOpEO,src_o,res_o); From bf58557fb1ec710c766e19c9a8809b0a352de239 Mon Sep 17 00:00:00 2001 From: paboyle Date: Tue, 10 Oct 2017 14:15:11 +0100 Subject: [PATCH 11/11] Block compressed Lanczos --- lib/algorithms/LinearOperator.h | 16 +- .../BlockImplicitlyRestartedLanczos.h | 754 ++++++++++++ .../BlockProjector.h | 143 +++ .../BlockedGrid.h | 401 ++++++ .../FieldBasisVector.h | 163 +++ .../FieldVectorIO.h | 1085 +++++++++++++++++ .../action/fermion/DomainWallEOFAFermion.cc | 12 +- lib/qcd/action/fermion/MobiusEOFAFermion.cc | 14 +- tests/solver/Params.h | 136 +++ tests/solver/Test_dwf_compressed_lanczos.cc | 727 +++++++++++ 10 files changed, 3432 insertions(+), 19 deletions(-) create mode 100644 lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockImplicitlyRestartedLanczos.h create mode 100644 lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockProjector.h create mode 100644 lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h create mode 100644 lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h create mode 100644 lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldVectorIO.h create mode 100644 tests/solver/Params.h create mode 100644 tests/solver/Test_dwf_compressed_lanczos.cc diff --git a/lib/algorithms/LinearOperator.h b/lib/algorithms/LinearOperator.h index d402c5b7..f1b8820e 100644 --- a/lib/algorithms/LinearOperator.h +++ b/lib/algorithms/LinearOperator.h @@ -207,7 +207,6 @@ namespace Grid { void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); } - }; template class SchurDiagMooeeOperator : public SchurOperatorBase { @@ -265,7 +264,6 @@ namespace Grid { return axpy_norm(out,-1.0,tmp,in); } }; - template class SchurDiagTwoOperator : public SchurOperatorBase { protected: @@ -294,8 +292,15 @@ namespace Grid { return axpy_norm(out,-1.0,tmp,in); } }; - - // + /////////////////////////////////////////////////////////////////////////////////////////////////// + // Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta + // Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi + /////////////////////////////////////////////////////////////////////////////////////////////////// + template using SchurDiagOneRH = SchurDiagTwoOperator ; + template using SchurDiagOneLH = SchurDiagOneOperator ; + /////////////////////////////////////////////////////////////////////////////////////////////////// + // Staggered use + /////////////////////////////////////////////////////////////////////////////////////////////////// template class SchurStaggeredOperator : public SchurOperatorBase { protected: @@ -303,9 +308,8 @@ namespace Grid { public: SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){}; virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ - ComplexD dot; n2 = Mpc(in,out); - dot= innerProduct(in,out); + ComplexD dot= innerProduct(in,out); n1 = real(dot); } virtual void HermOp(const Field &in, Field &out){ diff --git a/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockImplicitlyRestartedLanczos.h b/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockImplicitlyRestartedLanczos.h new file mode 100644 index 00000000..82a00efa --- /dev/null +++ b/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockImplicitlyRestartedLanczos.h @@ -0,0 +1,754 @@ + /************************************************************************************* + + Grid physics library, www.github.com/paboyle/Grid + + Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h + + Copyright (C) 2015 + +Author: Peter Boyle +Author: paboyle +Author: Chulwoo Jung +Author: Christoph Lehner + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + + See the full license in the file "LICENSE" in the top level distribution directory + *************************************************************************************/ + /* END LEGAL */ +#ifndef GRID_BIRL_H +#define GRID_BIRL_H + +#include //memset + +#include +#include + +#include +#include +#include +#include + +namespace Grid { + +///////////////////////////////////////////////////////////// +// Implicitly restarted lanczos +///////////////////////////////////////////////////////////// + + template + class BlockImplicitlyRestartedLanczos { + + const RealD small = 1.0e-16; +public: + int lock; + int get; + int Niter; + int converged; + + int Nminres; // Minimum number of restarts; only check for convergence after + int Nstop; // Number of evecs checked for convergence + int Nk; // Number of converged sought + int Np; // Np -- Number of spare vecs in kryloc space + int Nm; // Nm -- total number of vectors + + int orth_period; + + RealD OrthoTime; + + RealD eresid, betastp; + SortEigen _sort; + LinearFunction &_HermOp; + LinearFunction &_HermOpTest; + ///////////////////////// + // Constructor + ///////////////////////// + + BlockImplicitlyRestartedLanczos( + LinearFunction & HermOp, + LinearFunction & HermOpTest, + int _Nstop, // sought vecs + int _Nk, // sought vecs + int _Nm, // spare vecs + RealD _eresid, // resid in lmdue deficit + RealD _betastp, // if beta(k) < betastp: converged + int _Niter, // Max iterations + int _Nminres, int _orth_period = 1) : + _HermOp(HermOp), + _HermOpTest(HermOpTest), + Nstop(_Nstop), + Nk(_Nk), + Nm(_Nm), + eresid(_eresid), + betastp(_betastp), + Niter(_Niter), + Nminres(_Nminres), + orth_period(_orth_period) + { + Np = Nm-Nk; assert(Np>0); + }; + + BlockImplicitlyRestartedLanczos( + LinearFunction & HermOp, + LinearFunction & HermOpTest, + int _Nk, // sought vecs + int _Nm, // spare vecs + RealD _eresid, // resid in lmdue deficit + RealD _betastp, // if beta(k) < betastp: converged + int _Niter, // Max iterations + int _Nminres, + int _orth_period = 1) : + _HermOp(HermOp), + _HermOpTest(HermOpTest), + Nstop(_Nk), + Nk(_Nk), + Nm(_Nm), + eresid(_eresid), + betastp(_betastp), + Niter(_Niter), + Nminres(_Nminres), + orth_period(_orth_period) + { + Np = Nm-Nk; assert(Np>0); + }; + + +/* Saad PP. 195 +1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0 +2. For k = 1,2,...,m Do: +3. wk:=Avk−βkv_{k−1} +4. αk:=(wk,vk) // +5. wk:=wk−αkvk // wk orthog vk +6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop +7. vk+1 := wk/βk+1 +8. EndDo + */ + void step(std::vector& lmd, + std::vector& lme, + BasisFieldVector& evec, + Field& w,int Nm,int k) + { + assert( k< Nm ); + + GridStopWatch gsw_op,gsw_o; + + Field& evec_k = evec[k]; + + gsw_op.Start(); + _HermOp(evec_k,w); + gsw_op.Stop(); + + if(k>0){ + w -= lme[k-1] * evec[k-1]; + } + + ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk) + RealD alph = real(zalph); + + w = w - alph * evec_k;// 5. wk:=wk−αkvk + + RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop + // 7. vk+1 := wk/βk+1 + + std::cout<0 && k % orth_period == 0) { + orthogonalize(w,evec,k); // orthonormalise + } + gsw_o.Stop(); + + if(k < Nm-1) { + evec[k+1] = w; + } + + std::cout << GridLogMessage << "Timing: operator=" << gsw_op.Elapsed() << + " orth=" << gsw_o.Elapsed() << std::endl; + + } + + void qr_decomp(std::vector& lmd, + std::vector& lme, + int Nk, + int Nm, + std::vector& Qt, + RealD Dsh, + int kmin, + int kmax) + { + int k = kmin-1; + RealD x; + + RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]); + RealD c = ( lmd[k] -Dsh) *Fden; + RealD s = -lme[k] *Fden; + + RealD tmpa1 = lmd[k]; + RealD tmpa2 = lmd[k+1]; + RealD tmpb = lme[k]; + + lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb; + lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb; + lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb; + x =-s*lme[k+1]; + lme[k+1] = c*lme[k+1]; + + for(int i=0; i& lmd, + std::vector& lme, + int N1, + int N2, + std::vector& Qt, + GridBase *grid){ + + std::cout << GridLogMessage << "diagonalize_lapack start\n"; + GridStopWatch gsw; + + const int size = Nm; + // tevals.resize(size); + // tevecs.resize(size); + LAPACK_INT NN = N1; + std::vector evals_tmp(NN); + std::vector evec_tmp(NN*NN); + memset(&evec_tmp[0],0,sizeof(double)*NN*NN); + // double AA[NN][NN]; + std::vector DD(NN); + std::vector EE(NN); + for (int i = 0; i< NN; i++) + for (int j = i - 1; j <= i + 1; j++) + if ( j < NN && j >= 0 ) { + if (i==j) DD[i] = lmd[i]; + if (i==j) evals_tmp[i] = lmd[i]; + if (j==(i-1)) EE[j] = lme[j]; + } + LAPACK_INT evals_found; + LAPACK_INT lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ; + LAPACK_INT liwork = 3+NN*10 ; + std::vector iwork(liwork); + std::vector work(lwork); + std::vector isuppz(2*NN); + char jobz = 'V'; // calculate evals & evecs + char range = 'I'; // calculate all evals + // char range = 'A'; // calculate all evals + char uplo = 'U'; // refer to upper half of original matrix + char compz = 'I'; // Compute eigenvectors of tridiagonal matrix + std::vector ifail(NN); + LAPACK_INT info; + // int total = QMP_get_number_of_nodes(); + // int node = QMP_get_node_number(); + // GridBase *grid = evec[0]._grid; + int total = grid->_Nprocessors; + int node = grid->_processor; + int interval = (NN/total)+1; + double vl = 0.0, vu = 0.0; + LAPACK_INT il = interval*node+1 , iu = interval*(node+1); + if (iu > NN) iu=NN; + double tol = 0.0; + if (1) { + memset(&evals_tmp[0],0,sizeof(double)*NN); + if ( il <= NN){ + std::cout << GridLogMessage << "dstegr started" << std::endl; + gsw.Start(); + dstegr(&jobz, &range, &NN, + (double*)&DD[0], (double*)&EE[0], + &vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A' + &tol, // tolerance + &evals_found, &evals_tmp[0], (double*)&evec_tmp[0], &NN, + &isuppz[0], + &work[0], &lwork, &iwork[0], &liwork, + &info); + gsw.Stop(); + std::cout << GridLogMessage << "dstegr completed in " << gsw.Elapsed() << std::endl; + for (int i = iu-1; i>= il-1; i--){ + evals_tmp[i] = evals_tmp[i - (il-1)]; + if (il>1) evals_tmp[i-(il-1)]=0.; + for (int j = 0; j< NN; j++){ + evec_tmp[i*NN + j] = evec_tmp[(i - (il-1)) * NN + j]; + if (il>1) evec_tmp[(i-(il-1)) * NN + j]=0.; + } + } + } + { + // QMP_sum_double_array(evals_tmp,NN); + // QMP_sum_double_array((double *)evec_tmp,NN*NN); + grid->GlobalSumVector(&evals_tmp[0],NN); + grid->GlobalSumVector(&evec_tmp[0],NN*NN); + } + } + // cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order. + for(int i=0;i& lmd, + std::vector& lme, + int N2, + int N1, + std::vector& Qt, + GridBase *grid) + { + +#ifdef USE_LAPACK_IRL + const int check_lapack=0; // just use lapack if 0, check against lapack if 1 + + if(!check_lapack) + return diagonalize_lapack(lmd,lme,N2,N1,Qt,grid); + + std::vector lmd2(N1); + std::vector lme2(N1); + std::vector Qt2(N1*N1); + for(int k=0; k= kmin; --j){ + RealD dds = fabs(lmd[j-1])+fabs(lmd[j]); + if(fabs(lme[j-1])+dds > dds){ + kmax = j+1; + goto continued; + } + } + Niter = iter; +#ifdef USE_LAPACK_IRL + if(check_lapack){ + const double SMALL=1e-8; + diagonalize_lapack(lmd2,lme2,N2,N1,Qt2,grid); + std::vector lmd3(N2); + for(int k=0; kSMALL) std::cout<SMALL) std::cout<SMALL) std::cout< dds){ + kmin = j+1; + break; + } + } + } + std::cout< + static RealD normalise(T& v) + { + RealD nn = norm2(v); + nn = sqrt(nn); + v = v * (1.0/nn); + return nn; + } + + void orthogonalize(Field& w, + BasisFieldVector& evec, + int k) + { + double t0=-usecond()/1e6; + + evec.orthogonalize(w,k); + + normalise(w); + t0+=usecond()/1e6; + OrthoTime +=t0; + } + + void setUnit_Qt(int Nm, std::vector &Qt) { + for(int i=0; i K P = M − K † +Compute the factorization AVM = VM HM + fM eM +repeat + Q=I + for i = 1,...,P do + QiRi =HM −θiI Q = QQi + H M = Q †i H M Q i + end for + βK =HM(K+1,K) σK =Q(M,K) + r=vK+1βK +rσK + VK =VM(1:M)Q(1:M,1:K) + HK =HM(1:K,1:K) + →AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM +until convergence +*/ + + void calc(std::vector& eval, + BasisFieldVector& evec, + const Field& src, + int& Nconv, + bool reverse, + int SkipTest) + { + + GridBase *grid = evec._v[0]._grid;//evec.get(0 + evec_offset)._grid; + assert(grid == src._grid); + + std::cout< lme(Nm); + std::vector lme2(Nm); + std::vector eval2(Nm); + std::vector eval2_copy(Nm); + std::vector Qt(Nm*Nm); + + + Field f(grid); + Field v(grid); + + int k1 = 1; + int k2 = Nk; + + Nconv = 0; + + RealD beta_k; + + // Set initial vector + evec[0] = src; + normalise(evec[0]); + std:: cout<0); + evec.rotate(Qt,k1-1,k2+1,0,Nm,Nm); + + t1=usecond()/1e6; + std::cout<= Nminres) { + std::cout << GridLogMessage << "Rotation to test convergence " << std::endl; + + Field ev0_orig(grid); + ev0_orig = evec[0]; + + evec.rotate(Qt,0,Nk,0,Nk,Nm); + + { + std::cout << GridLogMessage << "Test convergence" << std::endl; + Field B(grid); + + for(int j = 0; j=Nstop || beta_k < betastp){ + goto converged; + } + + std::cout << GridLogMessage << "Rotate back" << std::endl; + //B[j] +=Qt[k+_Nm*j] * _v[k]._odata[ss]; + { + Eigen::MatrixXd qm = Eigen::MatrixXd::Zero(Nk,Nk); + for (int k=0;k QtI(Nm*Nm); + for (int k=0;k +class BlockProjector { +public: + + BasisFieldVector& _evec; + BlockedGrid& _bgrid; + + BlockProjector(BasisFieldVector& evec, BlockedGrid& bgrid) : _evec(evec), _bgrid(bgrid) { + } + + void createOrthonormalBasis(RealD thres = 0.0) { + + GridStopWatch sw; + sw.Start(); + + int cnt = 0; + +#pragma omp parallel shared(cnt) + { + int lcnt = 0; + +#pragma omp for + for (int b=0;b<_bgrid._o_blocks;b++) { + + for (int i=0;i<_evec._Nm;i++) { + + auto nrm0 = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]); + + // |i> -= |j> + for (int j=0;j + void coarseToFine(const CoarseField& in, Field& out) { + + out = zero; + out.checkerboard = _evec._v[0].checkerboard; + + int Nbasis = sizeof(in._odata[0]._internal._internal) / sizeof(in._odata[0]._internal._internal[0]); + assert(Nbasis == _evec._Nm); + +#pragma omp parallel for + for (int b=0;b<_bgrid._o_blocks;b++) { + for (int j=0;j<_evec._Nm;j++) { + _bgrid.block_caxpy(b,out,in._odata[b]._internal._internal[j],_evec._v[j],out); + } + } + + } + + template + void fineToCoarse(const Field& in, CoarseField& out) { + + out = zero; + + int Nbasis = sizeof(out._odata[0]._internal._internal) / sizeof(out._odata[0]._internal._internal[0]); + assert(Nbasis == _evec._Nm); + + + Field tmp(_bgrid._grid); + tmp = in; + +#pragma omp parallel for + for (int b=0;b<_bgrid._o_blocks;b++) { + for (int j=0;j<_evec._Nm;j++) { + // |rhs> -= |j> + auto c = _bgrid.block_sp(b,_evec._v[j],tmp); + _bgrid.block_caxpy(b,tmp,-c,_evec._v[j],tmp); // may make this more numerically stable + out._odata[b]._internal._internal[j] = c; + } + } + + } + + template + void deflateFine(BasisFieldVector& _coef,const std::vector& eval,int N,const Field& src_orig,Field& result) { + result = zero; + for (int i=0;i + void deflateCoarse(BasisFieldVector& _coef,const std::vector& eval,int N,const Field& src_orig,Field& result) { + CoarseField src_coarse(_coef._v[0]._grid); + CoarseField result_coarse = src_coarse; + result_coarse = zero; + fineToCoarse(src_orig,src_coarse); + for (int i=0;i + void deflate(BasisFieldVector& _coef,const std::vector& eval,int N,const Field& src_orig,Field& result) { + // Deflation on coarse Grid is much faster, so use it by default. Deflation on fine Grid is kept for legacy reasons for now. + deflateCoarse(_coef,eval,N,src_orig,result); + } + +}; +} diff --git a/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h b/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h new file mode 100644 index 00000000..821272de --- /dev/null +++ b/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h @@ -0,0 +1,401 @@ +namespace Grid { + +template +class BlockedGrid { +public: + GridBase* _grid; + typedef typename Field::scalar_type Coeff_t; + typedef typename Field::vector_type vCoeff_t; + + std::vector _bs; // block size + std::vector _nb; // number of blocks + std::vector _l; // local dimensions irrespective of cb + std::vector _l_cb; // local dimensions of checkerboarded vector + std::vector _l_cb_o; // local dimensions of inner checkerboarded vector + std::vector _bs_cb; // block size in checkerboarded vector + std::vector _nb_o; // number of blocks of simd o-sites + + int _nd, _blocks, _cf_size, _cf_block_size, _cf_o_block_size, _o_blocks, _block_sites; + + BlockedGrid(GridBase* grid, const std::vector& block_size) : + _grid(grid), _bs(block_size), _nd((int)_bs.size()), + _nb(block_size), _l(block_size), _l_cb(block_size), _nb_o(block_size), + _l_cb_o(block_size), _bs_cb(block_size) { + + _blocks = 1; + _o_blocks = 1; + _l = grid->FullDimensions(); + _l_cb = grid->LocalDimensions(); + _l_cb_o = grid->_rdimensions; + + _cf_size = 1; + _block_sites = 1; + for (int i=0;i<_nd;i++) { + _l[i] /= grid->_processors[i]; + + assert(!(_l[i] % _bs[i])); // lattice must accommodate choice of blocksize + + int r = _l[i] / _l_cb[i]; + assert(!(_bs[i] % r)); // checkerboarding must accommodate choice of blocksize + _bs_cb[i] = _bs[i] / r; + _block_sites *= _bs_cb[i]; + _nb[i] = _l[i] / _bs[i]; + _nb_o[i] = _nb[i] / _grid->_simd_layout[i]; + if (_nb[i] % _grid->_simd_layout[i]) { // simd must accommodate choice of blocksize + std::cout << GridLogMessage << "Problem: _nb[" << i << "] = " << _nb[i] << " _grid->_simd_layout[" << i << "] = " << _grid->_simd_layout[i] << std::endl; + assert(0); + } + _blocks *= _nb[i]; + _o_blocks *= _nb_o[i]; + _cf_size *= _l[i]; + } + + _cf_size *= 12 / 2; + _cf_block_size = _cf_size / _blocks; + _cf_o_block_size = _cf_size / _o_blocks; + + std::cout << GridLogMessage << "BlockedGrid:" << std::endl; + std::cout << GridLogMessage << " _l = " << _l << std::endl; + std::cout << GridLogMessage << " _l_cb = " << _l_cb << std::endl; + std::cout << GridLogMessage << " _l_cb_o = " << _l_cb_o << std::endl; + std::cout << GridLogMessage << " _bs = " << _bs << std::endl; + std::cout << GridLogMessage << " _bs_cb = " << _bs_cb << std::endl; + + std::cout << GridLogMessage << " _nb = " << _nb << std::endl; + std::cout << GridLogMessage << " _nb_o = " << _nb_o << std::endl; + std::cout << GridLogMessage << " _blocks = " << _blocks << std::endl; + std::cout << GridLogMessage << " _o_blocks = " << _o_blocks << std::endl; + std::cout << GridLogMessage << " sizeof(vCoeff_t) = " << sizeof(vCoeff_t) << std::endl; + std::cout << GridLogMessage << " _cf_size = " << _cf_size << std::endl; + std::cout << GridLogMessage << " _cf_block_size = " << _cf_block_size << std::endl; + std::cout << GridLogMessage << " _block_sites = " << _block_sites << std::endl; + std::cout << GridLogMessage << " _grid->oSites() = " << _grid->oSites() << std::endl; + + // _grid->Barrier(); + //abort(); + } + + void block_to_coor(int b, std::vector& x0) { + + std::vector bcoor; + bcoor.resize(_nd); + x0.resize(_nd); + assert(b < _o_blocks); + Lexicographic::CoorFromIndex(bcoor,b,_nb_o); + int i; + + for (i=0;i<_nd;i++) { + x0[i] = bcoor[i]*_bs_cb[i]; + } + + //std::cout << GridLogMessage << "Map block b -> " << x0 << std::endl; + + } + + void block_site_to_o_coor(const std::vector& x0, std::vector& coor, int i) { + Lexicographic::CoorFromIndex(coor,i,_bs_cb); + for (int j=0;j<_nd;j++) + coor[j] += x0[j]; + } + + int block_site_to_o_site(const std::vector& x0, int i) { + std::vector coor; coor.resize(_nd); + block_site_to_o_coor(x0,coor,i); + Lexicographic::IndexFromCoor(coor,i,_l_cb_o); + return i; + } + + vCoeff_t block_sp(int b, const Field& x, const Field& y) { + + std::vector x0; + block_to_coor(b,x0); + + vCoeff_t ret = 0.0; + for (int i=0;i<_block_sites;i++) { // only odd sites + int ss = block_site_to_o_site(x0,i); + ret += TensorRemove(innerProduct(x._odata[ss],y._odata[ss])); + } + + return ret; + + } + + vCoeff_t block_sp(int b, const Field& x, const std::vector< ComplexD >& y) { + + std::vector x0; + block_to_coor(b,x0); + + constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t); + int lsize = _cf_o_block_size / _block_sites; + + std::vector< ComplexD > ret(nsimd); + for (int i=0;i + void vcaxpy(iScalar& r,const vCoeff_t& a,const iScalar& x,const iScalar& y) { + vcaxpy(r._internal,a,x._internal,y._internal); + } + + template + void vcaxpy(iVector& r,const vCoeff_t& a,const iVector& x,const iVector& y) { + for (int i=0;i x0; + block_to_coor(b,x0); + + for (int i=0;i<_block_sites;i++) { // only odd sites + int ss = block_site_to_o_site(x0,i); + vcaxpy(ret._odata[ss],a,x._odata[ss],y._odata[ss]); + } + + } + + void block_caxpy(int b, std::vector< ComplexD >& ret, const vCoeff_t& a, const Field& x, const std::vector< ComplexD >& y) { + std::vector x0; + block_to_coor(b,x0); + + constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t); + int lsize = _cf_o_block_size / _block_sites; + + for (int i=0;i<_block_sites;i++) { // only odd sites + int ss = block_site_to_o_site(x0,i); + + int n = lsize / nsimd; + for (int l=0;l& x) { + std::vector x0; + block_to_coor(b,x0); + + int lsize = _cf_o_block_size / _block_sites; + + for (int i=0;i<_block_sites;i++) { // only odd sites + int ss = block_site_to_o_site(x0,i); + + for (int l=0;l& x) { + std::vector x0; + block_to_coor(b,x0); + + int lsize = _cf_o_block_size / _block_sites; + + for (int i=0;i<_block_sites;i++) { // only odd sites + int ss = block_site_to_o_site(x0,i); + + for (int l=0;l + void vcscale(iScalar& r,const vCoeff_t& a,const iScalar& x) { + vcscale(r._internal,a,x._internal); + } + + template + void vcscale(iVector& r,const vCoeff_t& a,const iVector& x) { + for (int i=0;i x0; + block_to_coor(b,x0); + + for (int i=0;i<_block_sites;i++) { // only odd sites + int ss = block_site_to_o_site(x0,i); + vcscale(ret._odata[ss],a,ret._odata[ss]); + } + } + + void getCanonicalBlockOffset(int cb, std::vector& x0) { + const int ndim = 5; + assert(_nb.size() == ndim); + std::vector _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] }; + std::vector _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] }; + x0.resize(ndim); + + assert(cb >= 0); + assert(cb < _nbc[0]*_nbc[1]*_nbc[2]*_nbc[3]*_nbc[4]); + + Lexicographic::CoorFromIndex(x0,cb,_nbc); + int i; + + for (i=0;i& buf) { + std::vector _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] }; + std::vector ldim = v._grid->LocalDimensions(); + std::vector cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] }; + const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4]; + // take canonical block cb of v and put it in canonical ordering in buf + std::vector cx0; + getCanonicalBlockOffset(cb,cx0); + +#pragma omp parallel + { + std::vector co0,cl0; + co0=cx0; cl0=cx0; + +#pragma omp for + for (int i=0;i<_nbsc;i++) { + Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo + for (int j=0;j<(int)_bsc.size();j++) + cl0[j] = cx0[j] + co0[j]; + + std::vector l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] }; + int oi = v._grid->oIndex(l0); + int ii = v._grid->iIndex(l0); + int lti = i; + + //if (cb < 2 && i<2) + // std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl; + + for (int s=0;s<4;s++) + for (int c=0;c<3;c++) { + Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii]; + int ti = 12*lti + 3*s + c; + ld = Coeff_t(buf[2*ti+0], buf[2*ti+1]); + } + } + } + } + + void peekBlockOfVectorCanonical(int cb,const Field& v,std::vector& buf) { + std::vector _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] }; + std::vector ldim = v._grid->LocalDimensions(); + std::vector cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] }; + const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4]; + // take canonical block cb of v and put it in canonical ordering in buf + std::vector cx0; + getCanonicalBlockOffset(cb,cx0); + + buf.resize(_cf_block_size * 2); + +#pragma omp parallel + { + std::vector co0,cl0; + co0=cx0; cl0=cx0; + +#pragma omp for + for (int i=0;i<_nbsc;i++) { + Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo + for (int j=0;j<(int)_bsc.size();j++) + cl0[j] = cx0[j] + co0[j]; + + std::vector l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] }; + int oi = v._grid->oIndex(l0); + int ii = v._grid->iIndex(l0); + int lti = i; + + //if (cb < 2 && i<2) + // std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl; + + for (int s=0;s<4;s++) + for (int c=0;c<3;c++) { + Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii]; + int ti = 12*lti + 3*s + c; + buf[2*ti+0] = ld.real(); + buf[2*ti+1] = ld.imag(); + } + } + } + } + + int globalToLocalCanonicalBlock(int slot,const std::vector& src_nodes,int nb) { + // processor coordinate + int _nd = (int)src_nodes.size(); + std::vector _src_nodes = src_nodes; + std::vector pco(_nd); + Lexicographic::CoorFromIndex(pco,slot,_src_nodes); + std::vector cpco = { pco[1], pco[2], pco[3], pco[4], pco[0] }; + + // get local block + std::vector _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] }; + assert(_nd == 5); + std::vector c_src_local_blocks(_nd); + for (int i=0;i<_nd;i++) { + assert(_grid->_fdimensions[i] % (src_nodes[i] * _bs[i]) == 0); + c_src_local_blocks[(i+4) % 5] = _grid->_fdimensions[i] / src_nodes[i] / _bs[i]; + } + std::vector cbcoor(_nd); // coordinate of block in slot in canonical form + Lexicographic::CoorFromIndex(cbcoor,nb,c_src_local_blocks); + + // cpco, cbcoor + std::vector clbcoor(_nd); + for (int i=0;i<_nd;i++) { + int cgcoor = cpco[i] * c_src_local_blocks[i] + cbcoor[i]; // global block coordinate + int pcoor = cgcoor / _nbc[i]; // processor coordinate in my Grid + int tpcoor = _grid->_processor_coor[(i+1)%5]; + if (pcoor != tpcoor) + return -1; + clbcoor[i] = cgcoor - tpcoor * _nbc[i]; // canonical local block coordinate for canonical dimension i + } + + int lnb; + Lexicographic::IndexFromCoor(clbcoor,lnb,_nbc); + //std::cout << "Mapped slot = " << slot << " nb = " << nb << " to " << lnb << std::endl; + return lnb; + } + + + }; + +} diff --git a/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h b/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h new file mode 100644 index 00000000..e715fc25 --- /dev/null +++ b/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h @@ -0,0 +1,163 @@ +namespace Grid { + +template +class BasisFieldVector { + public: + int _Nm; + + typedef typename Field::scalar_type Coeff_t; + typedef typename Field::vector_type vCoeff_t; + typedef typename Field::vector_object vobj; + typedef typename vobj::scalar_object sobj; + + std::vector _v; // _Nfull vectors + + void report(int n,GridBase* value) { + + std::cout << GridLogMessage << "BasisFieldVector allocated:\n"; + std::cout << GridLogMessage << " Delta N = " << n << "\n"; + std::cout << GridLogMessage << " Size of full vectors (size) = " << + ((double)n*sizeof(vobj)*value->oSites() / 1024./1024./1024.) << " GB\n"; + std::cout << GridLogMessage << " Size = " << _v.size() << " Capacity = " << _v.capacity() << std::endl; + + value->Barrier(); + + if (value->IsBoss()) { + system("cat /proc/meminfo"); + } + + value->Barrier(); + + } + + BasisFieldVector(int Nm,GridBase* value) : _Nm(Nm), _v(Nm,value) { + report(Nm,value); + } + + ~BasisFieldVector() { + } + + Field& operator[](int i) { + return _v[i]; + } + + void orthogonalize(Field& w, int k) { + for(int j=0; j& Qt,int j0, int j1, int k0,int k1,int Nm) { + + GridBase* grid = _v[0]._grid; + +#pragma omp parallel + { + std::vector < vobj > B(Nm); + +#pragma omp for + for(int ss=0;ss < grid->oSites();ss++){ + for(int j=j0; j _Nm) + _v.reserve(n); + + _v.resize(n,_v[0]._grid); + + if (n < _Nm) + _v.shrink_to_fit(); + + report(n - _Nm,_v[0]._grid); + + _Nm = n; + } + + std::vector getIndex(std::vector& sort_vals) { + + std::vector idx(sort_vals.size()); + iota(idx.begin(), idx.end(), 0); + + // sort indexes based on comparing values in v + sort(idx.begin(), idx.end(), + [&sort_vals](int i1, int i2) {return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);}); + + return idx; + } + + void reorderInPlace(std::vector& sort_vals, std::vector& idx) { + GridStopWatch gsw; + gsw.Start(); + + int nswaps = 0; + for (size_t i=0;i& sort_vals, bool reverse) { + + std::vector idx = getIndex(sort_vals); + if (reverse) + std::reverse(idx.begin(), idx.end()); + + reorderInPlace(sort_vals,idx); + + } + + void deflate(const std::vector& eval,const Field& src_orig,Field& result) { + result = zero; + int N = (int)_v.size(); + for (int i=0;i step) { + crc = crc32(crc,&data[blk],step); + blk += step; + len -= step; + } + + crc = crc32(crc,&data[blk],len); + return crc; + + } + + static int get_bfm_index( int* pos, int co, int* s ) { + + int ls = s[0]; + int NtHalf = s[4] / 2; + int simd_coor = pos[4] / NtHalf; + int regu_coor = (pos[1] + s[1] * (pos[2] + s[2] * ( pos[3] + s[3] * (pos[4] % NtHalf) ) )) / 2; + + return regu_coor * ls * 48 + pos[0] * 48 + co * 4 + simd_coor * 2; + } + + static void get_read_geometry(const GridBase* _grid,const std::vector& cnodes, + std::map >& slots, + std::vector& slot_lvol, + std::vector& lvol, + int64_t& slot_lsites,int& ntotal) { + + int _nd = (int)cnodes.size(); + std::vector nodes = cnodes; + + slots.clear(); + slot_lvol.clear(); + lvol.clear(); + + int i; + ntotal = 1; + int64_t lsites = 1; + slot_lsites = 1; + for (i=0;i<_nd;i++) { + assert(_grid->_fdimensions[i] % nodes[i] == 0); + slot_lvol.push_back(_grid->_fdimensions[i] / nodes[i]); + lvol.push_back(_grid->_fdimensions[i] / _grid->_processors[i]); + lsites *= lvol.back(); + slot_lsites *= slot_lvol.back(); + ntotal *= nodes[i]; + } + + std::vector lcoor, gcoor, scoor; + lcoor.resize(_nd); gcoor.resize(_nd); scoor.resize(_nd); + + // create mapping of indices to slots + for (int lidx = 0; lidx < lsites; lidx++) { + Lexicographic::CoorFromIndex(lcoor,lidx,lvol); + for (int i=0;i<_nd;i++) { + gcoor[i] = lcoor[i] + _grid->_processor_coor[i]*lvol[i]; + scoor[i] = gcoor[i] / slot_lvol[i]; + } + int slot; + Lexicographic::IndexFromCoor(scoor,slot,nodes); + auto sl = slots.find(slot); + if (sl == slots.end()) + slots[slot] = std::vector(); + slots[slot].push_back(lidx); + } + } + + static void canonical_block_to_coarse_coordinates(GridBase* _coarsegrid,int nb,int& ii,int& oi) { + // canonical nb needs to be mapped in a coordinate on my coarsegrid (ii,io) + std::vector _l = _coarsegrid->LocalDimensions(); + std::vector _cl = { _l[1], _l[2], _l[3], _l[4], _l[0] }; + std::vector _cc(_l.size()); + Lexicographic::CoorFromIndex(_cc,nb,_cl); + std::vector _c = { _cc[4], _cc[0], _cc[1], _cc[2], _cc[3] }; + ii = _coarsegrid->iIndex(_c); + oi = _coarsegrid->oIndex(_c); + } + + template + static bool read_argonne(BasisFieldVector& ret,const char* dir, const std::vector& cnodes) { + + GridBase* _grid = ret._v[0]._grid; + + std::map > slots; + std::vector slot_lvol, lvol; + int64_t slot_lsites; + int ntotal; + get_read_geometry(_grid,cnodes, + slots,slot_lvol,lvol,slot_lsites, + ntotal); + int _nd = (int)lvol.size(); + + // this is slow code to read the argonne file format for debugging purposes + int nperdir = ntotal / 32; + if (nperdir < 1) + nperdir=1; + std::cout << GridLogMessage << " Read " << dir << " nodes = " << cnodes << std::endl; + std::cout << GridLogMessage << " lvol = " << lvol << std::endl; + + // for error messages + char hostname[1024]; + gethostname(hostname, 1024); + + // now load one slot at a time and fill the vector + for (auto sl=slots.begin();sl!=slots.end();sl++) { + std::vector& idx = sl->second; + int slot = sl->first; + std::vector rdata; + + char buf[4096]; + + sprintf(buf,"%s/checksums.txt",dir); printf("read_argonne: Reading from %s\n",buf); + FILE* f = fopen(buf,"rt"); + if (!f) { + fprintf(stderr,"Node %s cannot read %s\n",hostname,buf); fflush(stderr); + return false; + } + + for (int l=0;l<3+slot;l++) + fgets(buf,sizeof(buf),f); + uint32_t crc_exp = strtol(buf, NULL, 16); + fclose(f); + + // load one slot vector + sprintf(buf,"%s/%2.2d/%10.10d",dir,slot/nperdir,slot); + f = fopen(buf,"rb"); + if (!f) { + fprintf(stderr,"Node %s cannot read %s\n",hostname,buf); fflush(stderr); + return false; + } + + fseeko(f,0,SEEK_END); + off_t total_size = ftello(f); + fseeko(f,0,SEEK_SET); + + int64_t size = slot_lsites / 2 * 24*4; + rdata.resize(size); + + assert(total_size % size == 0); + + int _Nfull = total_size / size; + ret._v.resize(_Nfull,ret._v[0]); + ret._Nm = _Nfull; + + uint32_t crc = 0x0; + GridStopWatch gsw,gsw2; + for (int nev = 0;nev < _Nfull;nev++) { + + gsw.Start(); + assert(fread(&rdata[0],size,1,f) == 1); + gsw.Stop(); + + gsw2.Start(); + crc = crc32_threaded((unsigned char*)&rdata[0],size,crc); + gsw2.Stop(); + + for (int i=0;i lcoor, gcoor, scoor, slcoor; + lcoor.resize(_nd); gcoor.resize(_nd); + slcoor.resize(_nd); scoor.resize(_nd); + +#pragma omp for + for (int64_t lidx = 0; lidx < idx.size(); lidx++) { + int llidx = idx[lidx]; + Lexicographic::CoorFromIndex(lcoor,llidx,lvol); + for (int i=0;i<_nd;i++) { + gcoor[i] = lcoor[i] + _grid->_processor_coor[i]*lvol[i]; + scoor[i] = gcoor[i] / slot_lvol[i]; + slcoor[i] = gcoor[i] - scoor[i]*slot_lvol[i]; + } + + if ((lcoor[1]+lcoor[2]+lcoor[3]+lcoor[4]) % 2 == 1) { + // poke + iScalar, 4> > sc; + for (int s=0;s<4;s++) + for (int c=0;c<3;c++) + sc()(s)(c) = *(std::complex*)&rdata[get_bfm_index(&slcoor[0],c+s*3, &slot_lvol[0] )]; + + pokeLocalSite(sc,ret._v[nev],lcoor); + } + + } + } + } + + fclose(f); + std::cout << GridLogMessage << "Loading slot " << slot << " with " << idx.size() << " points and " + << _Nfull << " vectors in " + << gsw.Elapsed() << " at " + << ( (double)size * _Nfull / 1024./1024./1024. / gsw.useconds()*1000.*1000. ) + << " GB/s " << " crc32 = " << std::hex << crc << " crc32_expected = " << crc_exp << std::dec + << " computed at " + << ( (double)size * _Nfull / 1024./1024./1024. / gsw2.useconds()*1000.*1000. ) + << " GB/s " + << std::endl; + + assert(crc == crc_exp); + } + + _grid->Barrier(); + std::cout << GridLogMessage << "Loading complete" << std::endl; + + return true; + } + + template + static bool read_argonne(BasisFieldVector& ret,const char* dir) { + + + GridBase* _grid = ret._v[0]._grid; + + char buf[4096]; + sprintf(buf,"%s/nodes.txt",dir); + FILE* f = fopen(buf,"rt"); + if (!f) { + if (_grid->IsBoss()) { + fprintf(stderr,"Attempting to load eigenvectors without secifying node layout failed due to absence of nodes.txt\n"); + fflush(stderr); + } + return false; + } + + + std::vector nodes((int)_grid->_processors.size()); + for (int i =0;i<(int)_grid->_processors.size();i++) + assert(fscanf(f,"%d\n",&nodes[i])==1); + fclose(f); + + return read_argonne(ret,dir,nodes); + } + + static void flush_bytes(FILE* f, std::vector& fbuf) { + if (fbuf.size()) { + + if (fwrite(&fbuf[0],fbuf.size(),1,f) != 1) { + fprintf(stderr,"Write failed of %g GB!\n",(double)fbuf.size() / 1024./1024./1024.); + exit(2); + } + + fbuf.resize(0); + + } + } + + static void write_bytes(void* buf, int64_t s, FILE* f, std::vector& fbuf, uint32_t& crc) { + static double data_counter = 0.0; + static GridStopWatch gsw_crc, gsw_flush1,gsw_flush2,gsw_write,gsw_memcpy; + if (s == 0) + return; + + // checksum + gsw_crc.Start(); + crc = crc32_threaded((unsigned char*)buf,s,crc); + gsw_crc.Stop(); + + if (s > fbuf.capacity()) { + // cannot buffer this, so first flush current buffer contents and then write this directly to file + gsw_flush1.Start(); + flush_bytes(f,fbuf); + gsw_flush1.Stop(); + + gsw_write.Start(); + if (fwrite(buf,s,1,f) != 1) { + fprintf(stderr,"Write failed of %g GB!\n",(double)s / 1024./1024./1024.); + exit(2); + } + gsw_write.Stop(); + + } + + // no room left in buffer, flush to disk + if (fbuf.size() + s > fbuf.capacity()) { + gsw_flush2.Start(); + flush_bytes(f,fbuf); + gsw_flush2.Stop(); + } + + // then fill buffer again + { + gsw_memcpy.Start(); + size_t t = fbuf.size(); + fbuf.resize(t + s); + memcpy(&fbuf[t],buf,s); + gsw_memcpy.Stop(); + } + + data_counter += (double)s; + if (data_counter > 1024.*1024.*20.) { + std::cout << GridLogMessage << "Writing " << ((double)data_counter / 1024./1024./1024.) << " GB at" + " crc = " << gsw_crc.Elapsed() << " flush1 = " << gsw_flush1.Elapsed() << " flush2 = " << gsw_flush2.Elapsed() << + " write = " << gsw_write.Elapsed() << " memcpy = " << gsw_memcpy.Elapsed() << std::endl; + data_counter = 0.0; + gsw_crc.Reset(); + gsw_write.Reset(); + gsw_memcpy.Reset(); + gsw_flush1.Reset(); + gsw_flush2.Reset(); + } + } + + static void write_floats(FILE* f, std::vector& fbuf, uint32_t& crc, float* buf, int64_t n) { + write_bytes(buf,n*sizeof(float),f,fbuf,crc); + } + + static void read_floats(char* & ptr, float* out, int64_t n) { + float* in = (float*)ptr; + ptr += 4*n; + + for (int64_t i=0;i 0, [0,6] -> 1; reconstruct 0 -> -3, 1-> 3 + // + // N=2 + // [-6,-2] -> 0, [-2,2] -> 1, [2,6] -> 2; reconstruct 0 -> -4, 1->0, 2->4 + int ret = (int) ( (float)(N+1) * ( (in - min) / (max - min) ) ); + if (ret == N+1) { + ret = N; + } + return ret; + } + + static float fp_unmap(int val, float min, float max, int N) { + return min + (float)(val + 0.5) * (max - min) / (float)( N + 1 ); + } + +#define SHRT_UMAX 65535 +#define FP16_BASE 1.4142135623730950488 +#define FP16_COEF_EXP_SHARE_FLOATS 10 + static float unmap_fp16_exp(unsigned short e) { + float de = (float)((int)e - SHRT_UMAX / 2); + return ::pow( FP16_BASE, de ); + } + + // can assume that v >=0 and need to guarantee that unmap_fp16_exp(map_fp16_exp(v)) >= v + static unsigned short map_fp16_exp(float v) { + // float has exponents 10^{-44.85} .. 10^{38.53} + int exp = (int)ceil(::log(v) / ::log(FP16_BASE)) + SHRT_UMAX / 2; + if (exp < 0 || exp > SHRT_UMAX) { + fprintf(stderr,"Error in map_fp16_exp(%g,%d)\n",v,exp); + exit(3); + } + + return (unsigned short)exp; + } + + template + static void read_floats_fp16(char* & ptr, OPT* out, int64_t n, int nsc) { + + int64_t nsites = n / nsc; + if (n % nsc) { + fprintf(stderr,"Invalid size in write_floats_fp16\n"); + exit(4); + } + + unsigned short* in = (unsigned short*)ptr; + ptr += 2*(n+nsites); + + // do for each site + for (int64_t site = 0;site + static void write_floats_fp16(FILE* f, std::vector& fbuf, uint32_t& crc, OPT* in, int64_t n, int nsc) { + + int64_t nsites = n / nsc; + if (n % nsc) { + fprintf(stderr,"Invalid size in write_floats_fp16\n"); + exit(4); + } + + unsigned short* buf = (unsigned short*)malloc( sizeof(short) * (n + nsites) ); + if (!buf) { + fprintf(stderr,"Out of mem\n"); + exit(1); + } + + // do for each site +#pragma omp parallel for + for (int64_t site = 0;site max) + max = fabs(ev[i]); + } + + unsigned short exp = map_fp16_exp(max); + max = unmap_fp16_exp(exp); + min = -max; + + *bptr++ = exp; + + for (int i=0;i SHRT_UMAX) { + fprintf(stderr,"Assert failed: val = %d (%d), ev[i] = %.15g, max = %.15g, exp = %d\n",val,SHRT_UMAX,ev[i],max,(int)exp); + exit(48); + } + *bptr++ = (unsigned short)val; + } + + } + + write_bytes(buf,sizeof(short)*(n + nsites),f,fbuf,crc); + + free(buf); + } + + template + static bool read_compressed_vectors(const char* dir,BlockProjector& pr,BasisFieldVector& coef, int ngroups = 1) { + + const BasisFieldVector& basis = pr._evec; + GridBase* _grid = basis._v[0]._grid; + + // for error messages + char hostname[1024]; + gethostname(hostname, 1024); + + std::cout << GridLogMessage << "Ready on host " << hostname << " with " << ngroups << " reader groups" << std::endl; + + // first read metadata + char buf[4096]; + sprintf(buf,"%s/metadata.txt",dir); + + std::vector s,b,nb,nn,crc32; + s.resize(5); b.resize(5); nb.resize(5); nn.resize(5); + uint32_t neig, nkeep, nkeep_single, blocks, _FP16_COEF_EXP_SHARE_FLOATS; + uint32_t nprocessors = 1; + + FILE* f = 0; + uint32_t status = 0; + if (_grid->IsBoss()) { + f = fopen(buf,"rb"); + status=f ? 1 : 0; + } + _grid->GlobalSum(status); + std::cout << GridLogMessage << "Read params status " << status << std::endl; + + if (!status) { + return false; + } + +#define _IRL_READ_INT(buf,p) if (f) { assert(fscanf(f,buf,p)==1); } else { *(p) = 0; } _grid->GlobalSum(*(p)); + + for (int i=0;i<5;i++) { + sprintf(buf,"s[%d] = %%d\n",i); + _IRL_READ_INT(buf,&s[(i+1)%5]); + } + for (int i=0;i<5;i++) { + sprintf(buf,"b[%d] = %%d\n",i); + _IRL_READ_INT(buf,&b[(i+1)%5]); + } + for (int i=0;i<5;i++) { + sprintf(buf,"nb[%d] = %%d\n",i); + _IRL_READ_INT(buf,&nb[(i+1)%5]); + } + _IRL_READ_INT("neig = %d\n",&neig); + _IRL_READ_INT("nkeep = %d\n",&nkeep); + _IRL_READ_INT("nkeep_single = %d\n",&nkeep_single); + _IRL_READ_INT("blocks = %d\n",&blocks); + _IRL_READ_INT("FP16_COEF_EXP_SHARE_FLOATS = %d\n",&_FP16_COEF_EXP_SHARE_FLOATS); + + for (int i=0;i<5;i++) { + assert(_grid->FullDimensions()[i] % s[i] == 0); + nn[i] = _grid->FullDimensions()[i] / s[i]; + nprocessors *= nn[i]; + } + + std::cout << GridLogMessage << "Reading data that was generated on node-layout " << nn << std::endl; + + crc32.resize(nprocessors); + for (int i =0;i > slots; + std::vector slot_lvol, lvol; + int64_t slot_lsites; + int ntotal; + std::vector _nn(nn.begin(),nn.end()); + get_read_geometry(_grid,_nn, + slots,slot_lvol,lvol,slot_lsites, + ntotal); + int _nd = (int)lvol.size(); + + // types + typedef typename Field::scalar_type Coeff_t; + typedef typename CoarseField::scalar_type CoeffCoarse_t; + + // slot layout + int nperdir = ntotal / 32; + if (nperdir < 1) + nperdir=1; + + // add read groups + for (int ngroup=0;ngroupThisRank() % ngroups == ngroup; + + std::cout << GridLogMessage << "Reading in group " << ngroup << " / " << ngroups << std::endl; + + // load all necessary slots and store them appropriately + for (auto sl=slots.begin();sl!=slots.end();sl++) { + + std::vector& idx = sl->second; + int slot = sl->first; + std::vector rdata; + + char buf[4096]; + + if (action) { + // load one slot vector + sprintf(buf,"%s/%2.2d/%10.10d.compressed",dir,slot/nperdir,slot); + f = fopen(buf,"rb"); + if (!f) { + fprintf(stderr,"Node %s cannot read %s\n",hostname,buf); fflush(stderr); + return false; + } + } + + uint32_t crc = 0x0; + off_t size; + + GridStopWatch gsw; + _grid->Barrier(); + gsw.Start(); + + std::vector raw_in(0); + if (action) { + fseeko(f,0,SEEK_END); + size = ftello(f); + fseeko(f,0,SEEK_SET); + + raw_in.resize(size); + assert(fread(&raw_in[0],size,1,f) == 1); + } + + _grid->Barrier(); + gsw.Stop(); + + RealD totalGB = (RealD)size / 1024./1024./1024 * _grid->_Nprocessors; + RealD seconds = gsw.useconds() / 1e6; + + if (action) { + std::cout << GridLogMessage << "[" << slot << "] Read " << totalGB << " GB of compressed data at " << totalGB/seconds << " GB/s" << std::endl; + + uint32_t crc_comp = crc32_threaded((unsigned char*)&raw_in[0],size,0); + + if (crc_comp != crc32[slot]) { + std::cout << "Node " << hostname << " found crc mismatch for file " << buf << " (" << std::hex << crc_comp << " vs " << crc32[slot] << std::dec << ")" << std::endl; + std::cout << "Byte size: " << size << std::endl; + } + + assert(crc_comp == crc32[slot]); + } + + _grid->Barrier(); + + if (action) { + fclose(f); + } + + char* ptr = &raw_in[0]; + + GridStopWatch gsw2; + gsw2.Start(); + if (action) { + int nsingleCap = nkeep_single; + if (pr._evec.size() < nsingleCap) + nsingleCap = pr._evec.size(); + + int _cf_block_size = slot_lsites * 12 / 2 / blocks; + +#define FP_16_SIZE(a,b) (( (a) + (a/b) )*2) + + // first read single precision basis vectors +#pragma omp parallel + { + std::vector buf(_cf_block_size * 2); +#pragma omp for + for (int nb=0;nb buf(_cf_block_size * 2); +#pragma omp for + for (int nb=0;nb buf1(nkeep_single*2); + std::vector buf2((nkeep - nkeep_single)*2); + +#pragma omp for + for (int j=0;j<(int)coef.size();j++) + for (int nb=0;nb + static void write_compressed_vectors(const char* dir,const BlockProjector& pr, + const BasisFieldVector& coef, + int nsingle,int writer_nodes = 0) { + + GridStopWatch gsw; + + const BasisFieldVector& basis = pr._evec; + GridBase* _grid = basis._v[0]._grid; + std::vector _l = _grid->FullDimensions(); + for (int i=0;i<(int)_l.size();i++) + _l[i] /= _grid->_processors[i]; + + _grid->Barrier(); + gsw.Start(); + + char buf[4096]; + + // Making the directories is somewhat tricky. + // If we run on a joint filesystem we would just + // have the boss create the directories and then + // have a barrier. We also want to be able to run + // on local /scratch, so potentially all nodes need + // to create their own directories. So do the following + // for now. + for (int j=0;j<_grid->_Nprocessors;j++) { + if (j == _grid->ThisRank()) { + conditionalMkDir(dir); + for (int i=0;i<32;i++) { + sprintf(buf,"%s/%2.2d",dir,i); + conditionalMkDir(buf); + } + _grid->Barrier(); // make sure directories are ready + } + } + + + typedef typename Field::scalar_type Coeff_t; + typedef typename CoarseField::scalar_type CoeffCoarse_t; + + int nperdir = _grid->_Nprocessors / 32; + if (nperdir < 1) + nperdir=1; + + int slot; + Lexicographic::IndexFromCoor(_grid->_processor_coor,slot,_grid->_processors); + + int64_t off = 0x0; + uint32_t crc = 0x0; + if (writer_nodes < 1) + writer_nodes = _grid->_Nprocessors; + int groups = _grid->_Nprocessors / writer_nodes; + if (groups<1) + groups = 1; + + std::cout << GridLogMessage << " Write " << dir << " nodes = " << writer_nodes << std::endl; + + for (int group=0;groupBarrier(); + if (_grid->ThisRank() % groups == group) { + + sprintf(buf,"%s/%2.2d/%10.10d.compressed",dir,slot/nperdir,slot); + FILE* f = fopen(buf,"wb"); + assert(f); + + //buffer does not seem to help + //assert(!setvbuf ( f , NULL , _IOFBF , 1024*1024*2 )); + + int nsingleCap = nsingle; + if (pr._evec.size() < nsingleCap) + nsingleCap = pr._evec.size(); + + GridStopWatch gsw1,gsw2,gsw3,gsw4,gsw5; + + gsw1.Start(); + + std::vector fbuf; + fbuf.reserve( 1024 * 1024 * 8 ); + + // first write single precision basis vectors + for (int nb=0;nb buf; + pr._bgrid.peekBlockOfVectorCanonical(nb,pr._evec._v[i],buf); + +#if 0 + { + RealD nrm = 0.0; + for (int j=0;j<(int)buf.size();j++) + nrm += buf[j]*buf[j]; + std::cout << GridLogMessage << "Norm: " << nrm << std::endl; + } +#endif + write_floats(f,fbuf,crc, &buf[0], buf.size() ); + } + } + + gsw1.Stop(); + gsw2.Start(); + + // then write fixed precision basis vectors + for (int nb=0;nb buf; + pr._bgrid.peekBlockOfVectorCanonical(nb,pr._evec._v[i],buf); + write_floats_fp16(f,fbuf,crc, &buf[0], buf.size(), 24); + } + } + + gsw2.Stop(); + assert(coef._v[0]._grid->_isites*coef._v[0]._grid->_osites == pr._bgrid._blocks); + + gsw3.Start(); + for (int j=0;j<(int)coef.size();j++) { + + int64_t size1 = nsingleCap*2; + int64_t size2 = 2*(pr._evec.size()-nsingleCap); + int64_t size = size1; + if (size2>size) + size=size2; + std::vector buf(size); + + //RealD nrmTest = 0.0; + for (int nb=0;nbGlobalSum(nrmTest); + //std::cout << GridLogMessage << "Test norm: " << nrmTest << std::endl; + } + gsw3.Stop(); + + flush_bytes(f,fbuf); + + off = ftello(f); + fclose(f); + + std::cout<Barrier(); + gsw.Stop(); + + RealD totalGB = (RealD)off / 1024./1024./1024 * _grid->_Nprocessors; + RealD seconds = gsw.useconds() / 1e6; + std::cout << GridLogMessage << "Write " << totalGB << " GB of compressed data at " << totalGB/seconds << " GB/s in " << seconds << " s" << std::endl; + + // gather crcs + std::vector crcs(_grid->_Nprocessors); + for (int i=0;i<_grid->_Nprocessors;i++) { + crcs[i] = 0x0; + } + crcs[slot] = crc; + for (int i=0;i<_grid->_Nprocessors;i++) { + _grid->GlobalSum(crcs[i]); + } + + if (_grid->IsBoss()) { + sprintf(buf,"%s/metadata.txt",dir); + FILE* f = fopen(buf,"wb"); + assert(f); + for (int i=0;i<5;i++) + fprintf(f,"s[%d] = %d\n",i,_grid->FullDimensions()[(i+1)%5] / _grid->_processors[(i+1)%5]); + for (int i=0;i<5;i++) + fprintf(f,"b[%d] = %d\n",i,pr._bgrid._bs[(i+1)%5]); + for (int i=0;i<5;i++) + fprintf(f,"nb[%d] = %d\n",i,pr._bgrid._nb[(i+1)%5]); + fprintf(f,"neig = %d\n",(int)coef.size()); + fprintf(f,"nkeep = %d\n",(int)pr._evec.size()); + fprintf(f,"nkeep_single = %d\n",nsingle); + fprintf(f,"blocks = %d\n",pr._bgrid._blocks); + fprintf(f,"FP16_COEF_EXP_SHARE_FLOATS = %d\n",FP16_COEF_EXP_SHARE_FLOATS); + for (int i =0;i<_grid->_Nprocessors;i++) + fprintf(f,"crc32[%d] = %X\n",i,crcs[i]); + fclose(f); + } + + } + + template + static void write_argonne(const BasisFieldVector& ret,const char* dir) { + + GridBase* _grid = ret._v[0]._grid; + std::vector _l = _grid->FullDimensions(); + for (int i=0;i<(int)_l.size();i++) + _l[i] /= _grid->_processors[i]; + + char buf[4096]; + + if (_grid->IsBoss()) { + mkdir(dir,ACCESSPERMS); + + for (int i=0;i<32;i++) { + sprintf(buf,"%s/%2.2d",dir,i); + mkdir(buf,ACCESSPERMS); + } + } + + _grid->Barrier(); // make sure directories are ready + + + int nperdir = _grid->_Nprocessors / 32; + if (nperdir < 1) + nperdir=1; + std::cout << GridLogMessage << " Write " << dir << " nodes = " << _grid->_Nprocessors << std::endl; + + int slot; + Lexicographic::IndexFromCoor(_grid->_processor_coor,slot,_grid->_processors); + //printf("Slot: %d <> %d\n",slot, _grid->ThisRank()); + + sprintf(buf,"%s/%2.2d/%10.10d",dir,slot/nperdir,slot); + FILE* f = fopen(buf,"wb"); + assert(f); + + int N = (int)ret._v.size(); + uint32_t crc = 0x0; + int64_t cf_size = _grid->oSites()*_grid->iSites()*12; + std::vector< float > rdata(cf_size*2); + + GridStopWatch gsw1,gsw2; + + for (int i=0;i coor(_l.size()); + for (coor[1] = 0;coor[1]<_l[1];coor[1]++) { + for (coor[2] = 0;coor[2]<_l[2];coor[2]++) { + for (coor[3] = 0;coor[3]<_l[3];coor[3]++) { + for (coor[4] = 0;coor[4]<_l[4];coor[4]++) { + for (coor[0] = 0;coor[0]<_l[0];coor[0]++) { + + if ((coor[1]+coor[2]+coor[3]+coor[4]) % 2 == 1) { + // peek + iScalar, 4> > sc; + peekLocalSite(sc,ret._v[i],coor); + for (int s=0;s<4;s++) + for (int c=0;c<3;c++) + *(std::complex*)&rdata[get_bfm_index(&coor[0],c+s*3, &_l[0] )] = sc()(s)(c); + } + } + } + } + } + } + + // endian flip + for (int i=0;i crcs(_grid->_Nprocessors); + for (int i=0;i<_grid->_Nprocessors;i++) { + crcs[i] = 0x0; + } + crcs[slot] = crc; + for (int i=0;i<_grid->_Nprocessors;i++) { + _grid->GlobalSum(crcs[i]); + } + + if (_grid->IsBoss()) { + sprintf(buf,"%s/checksums.txt",dir); + FILE* f = fopen(buf,"wt"); + assert(f); + fprintf(f,"00000000\n\n"); + for (int i =0;i<_grid->_Nprocessors;i++) + fprintf(f,"%X\n",crcs[i]); + fclose(f); + + sprintf(buf,"%s/nodes.txt",dir); + f = fopen(buf,"wt"); + assert(f); + for (int i =0;i<(int)_grid->_processors.size();i++) + fprintf(f,"%d\n",_grid->_processors[i]); + fclose(f); + } + + + std::cout << GridLogMessage << "Writing slot " << slot << " with " + << N << " vectors in " + << gsw2.Elapsed() << " at " + << ( (double)cf_size*2*4 * N / 1024./1024./1024. / gsw2.useconds()*1000.*1000. ) + << " GB/s with crc computed at " + << ( (double)cf_size*2*4 * N / 1024./1024./1024. / gsw1.useconds()*1000.*1000. ) + << " GB/s " + << std::endl; + + _grid->Barrier(); + std::cout << GridLogMessage << "Writing complete" << std::endl; + + } + } + +} diff --git a/lib/qcd/action/fermion/DomainWallEOFAFermion.cc b/lib/qcd/action/fermion/DomainWallEOFAFermion.cc index dd8a500d..37ab5fa6 100644 --- a/lib/qcd/action/fermion/DomainWallEOFAFermion.cc +++ b/lib/qcd/action/fermion/DomainWallEOFAFermion.cc @@ -61,10 +61,10 @@ namespace QCD { } /*************************************************************** - /* Additional EOFA operators only called outside the inverter. - /* Since speed is not essential, simple axpby-style - /* implementations should be fine. - /***************************************************************/ + * Additional EOFA operators only called outside the inverter. + * Since speed is not essential, simple axpby-style + * implementations should be fine. + ***************************************************************/ template void DomainWallEOFAFermion::Omega(const FermionField& psi, FermionField& Din, int sign, int dag) { @@ -116,8 +116,8 @@ namespace QCD { } /******************************************************************** - /* Performance critical fermion operators called inside the inverter - /********************************************************************/ + * Performance critical fermion operators called inside the inverter + ********************************************************************/ template void DomainWallEOFAFermion::M5D(const FermionField& psi, FermionField& chi) diff --git a/lib/qcd/action/fermion/MobiusEOFAFermion.cc b/lib/qcd/action/fermion/MobiusEOFAFermion.cc index 085fa988..0344afbf 100644 --- a/lib/qcd/action/fermion/MobiusEOFAFermion.cc +++ b/lib/qcd/action/fermion/MobiusEOFAFermion.cc @@ -77,11 +77,11 @@ namespace QCD { } } - /*************************************************************** - /* Additional EOFA operators only called outside the inverter. - /* Since speed is not essential, simple axpby-style - /* implementations should be fine. - /***************************************************************/ + /**************************************************************** + * Additional EOFA operators only called outside the inverter. + * Since speed is not essential, simple axpby-style + * implementations should be fine. + ***************************************************************/ template void MobiusEOFAFermion::Omega(const FermionField& psi, FermionField& Din, int sign, int dag) { @@ -194,8 +194,8 @@ namespace QCD { } /******************************************************************** - /* Performance critical fermion operators called inside the inverter - /********************************************************************/ + * Performance critical fermion operators called inside the inverter + ********************************************************************/ template void MobiusEOFAFermion::M5D(const FermionField& psi, FermionField& chi) diff --git a/tests/solver/Params.h b/tests/solver/Params.h new file mode 100644 index 00000000..d9a6d3b3 --- /dev/null +++ b/tests/solver/Params.h @@ -0,0 +1,136 @@ +/* + Params IO + + Author: Christoph Lehner + Date: 2017 +*/ + +#define PADD(p,X) p.get(#X,X); + +class Params { + protected: + + std::string trim(const std::string& sc) { + std::string s = sc; + s.erase(s.begin(), std::find_if(s.begin(), s.end(), + std::not1(std::ptr_fun(std::isspace)))); + s.erase(std::find_if(s.rbegin(), s.rend(), + std::not1(std::ptr_fun(std::isspace))).base(), s.end()); + return s; + } + + public: + + std::map< std::string, std::string > lines; + std::string _fn; + + Params(const char* fn) : _fn(fn) { + FILE* f = fopen(fn,"rt"); + assert(f); + while (!feof(f)) { + char buf[4096]; + if (fgets(buf,sizeof(buf),f)) { + if (buf[0] != '#' && buf[0] != '\r' && buf[0] != '\n') { + char* sep = strchr(buf,'='); + assert(sep); + *sep = '\0'; + lines[trim(buf)] = trim(sep+1); + } + } + } + fclose(f); + } + + ~Params() { + } + + std::string loghead() { + return _fn + ": "; + } + + bool has(const char* name) { + auto f = lines.find(name); + return (f != lines.end()); + } + + const std::string& get(const char* name) { + auto f = lines.find(name); + if (f == lines.end()) { + std::cout << Grid::GridLogMessage << loghead() << "Could not find value for " << name << std::endl; + abort(); + } + return f->second; + } + + void parse(std::string& s, const std::string& cval) { + std::stringstream trimmer; + trimmer << cval; + s.clear(); + trimmer >> s; + } + + void parse(int& i, const std::string& cval) { + assert(sscanf(cval.c_str(),"%d",&i)==1); + } + + void parse(long long& i, const std::string& cval) { + assert(sscanf(cval.c_str(),"%lld",&i)==1); + } + + void parse(double& f, const std::string& cval) { + assert(sscanf(cval.c_str(),"%lf",&f)==1); + } + + void parse(float& f, const std::string& cval) { + assert(sscanf(cval.c_str(),"%f",&f)==1); + } + + void parse(bool& b, const std::string& cval) { + std::string lcval = cval; + std::transform(lcval.begin(), lcval.end(), lcval.begin(), ::tolower); + if (lcval == "true" || lcval == "yes") { + b = true; + } else if (lcval == "false" || lcval == "no") { + b = false; + } else { + std::cout << "Invalid value for boolean: " << b << std::endl; + assert(0); + } + } + + void parse(std::complex& f, const std::string& cval) { + double r,i; + assert(sscanf(cval.c_str(),"%lf %lf",&r,&i)==2); + f = std::complex(r,i); + } + + void parse(std::complex& f, const std::string& cval) { + float r,i; + assert(sscanf(cval.c_str(),"%f %f",&r,&i)==2); + f = std::complex(r,i); + } + + template + void get(const char* name, std::vector& v) { + int i = 0; + v.resize(0); + while (true) { + char buf[4096]; + sprintf(buf,"%s[%d]",name,i++); + if (!has(buf)) + break; + T val; + parse(val,get(buf)); + std::cout << Grid::GridLogMessage << loghead() << "Set " << buf << " to " << val << std::endl; + v.push_back(val); + } + } + + template + void get(const char* name, T& f) { + parse(f,get(name)); + std::cout << Grid::GridLogMessage << loghead() << "Set " << name << " to " << f << std::endl; + } + + +}; diff --git a/tests/solver/Test_dwf_compressed_lanczos.cc b/tests/solver/Test_dwf_compressed_lanczos.cc new file mode 100644 index 00000000..b42a2d55 --- /dev/null +++ b/tests/solver/Test_dwf_compressed_lanczos.cc @@ -0,0 +1,727 @@ +/* + Authors: Christoph Lehner + Date: 2017 + + Multigrid Lanczos + + + + TODO: + + High priority: + - Explore filtering of starting vector again, should really work: If cheby has 4 for low mode region and 1 for high mode, applying 15 iterations has 1e9 suppression + of high modes, which should create the desired invariant subspace already? Missing something here??? Maybe dynamic range dangerous, i.e., could also kill interesting + eigenrange if not careful. + + Better: Use all Cheby up to order N in order to approximate a step function; try this! Problem: width of step function. Can kill eigenspace > 1e-3 and have < 1e-5 equal + to 1 + + Low priority: + - Given that I seem to need many restarts and high degree poly to create the base and this takes about 1 day, seriously consider a simple method to create a basis + (ortho krylov low poly); and then fix up lowest say 200 eigenvalues by 1 run with high-degree poly (600 could be enough) +*/ +#include +#include "Params.h" + +#include + +using namespace std; +using namespace Grid; +using namespace Grid::QCD; + +bool read_evals(GridBase* _grid, char* fn, std::vector& evals) { + + FILE* f = 0; + uint32_t status = 0; + if (_grid->IsBoss()) { + f = fopen(fn,"rt"); + status = f ? 1 : 0; + } + _grid->GlobalSum(status); + + if (!status) + return false; + + uint32_t N; + if (f) + assert(fscanf(f,"%d\n",&N)==1); + else + N = 0; + _grid->GlobalSum(N); + + std::cout << "Reading " << N << " eigenvalues" << std::endl; + + evals.resize(N); + + for (int i=0;iGlobalSumVector(&evals[0],evals.size()); + + if (f) + fclose(f); + return true; +} + +void write_evals(char* fn, std::vector& evals) { + FILE* f = fopen(fn,"wt"); + assert(f); + + int N = (int)evals.size(); + fprintf(f,"%d\n",N); + + for (int i=0;i& hist) { + FILE* f = fopen(fn,"wt"); + assert(f); + + int N = (int)hist.size(); + for (int i=0;i +class FunctionHermOp : public LinearFunction { +public: + OperatorFunction & _poly; + LinearOperatorBase &_Linop; + + FunctionHermOp(OperatorFunction & poly,LinearOperatorBase& linop) : _poly(poly), _Linop(linop) { + } + + void operator()(const Field& in, Field& out) { + _poly(_Linop,in,out); + } +}; + +template +class CheckpointedLinearFunction : public LinearFunction { +public: + LinearFunction& _op; + std::string _dir; + int _max_apply; + int _apply, _apply_actual; + GridBase* _grid; + FILE* _f; + + CheckpointedLinearFunction(GridBase* grid, LinearFunction& op, const char* dir,int max_apply) : _op(op), _dir(dir), _grid(grid), _f(0), + _max_apply(max_apply), _apply(0), _apply_actual(0) { + + FieldVectorIO::conditionalMkDir(dir); + + char fn[4096]; + sprintf(fn,"%s/ckpt_op.%4.4d",_dir.c_str(),_grid->ThisRank()); + printf("CheckpointLinearFunction:: file %s\n",fn); + _f = fopen(fn,"r+b"); + if (!_f) + _f = fopen(fn,"w+b"); + assert(_f); + fseek(_f,0,SEEK_CUR); + + } + + ~CheckpointedLinearFunction() { + if (_f) { + fclose(_f); + _f = 0; + } + } + + bool load_ckpt(const Field& in, Field& out) { + + off_t cur = ftello(_f); + fseeko(_f,0,SEEK_END); + if (cur == ftello(_f)) + return false; + fseeko(_f,cur,SEEK_SET); + + size_t sz = sizeof(out._odata[0]) * out._odata.size(); + + GridStopWatch gsw; + gsw.Start(); + uint32_t crc_exp; + assert(fread(&crc_exp,4,1,_f)==1); + assert(fread(&out._odata[0],sz,1,_f)==1); + assert(FieldVectorIO::crc32_threaded((unsigned char*)&out._odata[0],sz,0x0)==crc_exp); + gsw.Stop(); + + printf("CheckpointLinearFunction:: reading %lld\n",(long long)sz); + std::cout << GridLogMessage << "Loading " << ((RealD)sz/1024./1024./1024.) << " GB in " << gsw.Elapsed() << std::endl; + return true; + } + + void save_ckpt(const Field& in, Field& out) { + + fseek(_f,0,SEEK_CUR); // switch to write + + size_t sz = sizeof(out._odata[0]) * out._odata.size(); + + GridStopWatch gsw; + gsw.Start(); + uint32_t crc = FieldVectorIO::crc32_threaded((unsigned char*)&out._odata[0],sz,0x0); + assert(fwrite(&crc,4,1,_f)==1); + assert(fwrite(&out._odata[0],sz,1,_f)==1); + fflush(_f); // try this on the GPFS to suppress OPA usage for disk during dslash; this is not needed at Lustre/JLAB + gsw.Stop(); + + printf("CheckpointLinearFunction:: writing %lld\n",(long long)sz); + std::cout << GridLogMessage << "Saving " << ((RealD)sz/1024./1024./1024.) << " GB in " << gsw.Elapsed() << std::endl; + } + + void operator()(const Field& in, Field& out) { + + _apply++; + + if (load_ckpt(in,out)) + return; + + _op(in,out); + + save_ckpt(in,out); + + if (_apply_actual++ >= _max_apply) { + std::cout << GridLogMessage << "Maximum application of operator reached, checkpoint and finish in future job" << std::endl; + if (_f) { fclose(_f); _f=0; } + in._grid->Barrier(); + Grid_finalize(); + exit(3); + } + } +}; + +template +class ProjectedFunctionHermOp : public LinearFunction { +public: + OperatorFunction & _poly; + LinearOperatorBase &_Linop; + BlockProjector& _pr; + + ProjectedFunctionHermOp(BlockProjector& pr,OperatorFunction & poly,LinearOperatorBase& linop) : _poly(poly), _Linop(linop), _pr(pr) { + } + + void operator()(const CoarseField& in, CoarseField& out) { + assert(_pr._bgrid._o_blocks == in._grid->oSites()); + + Field fin(_pr._bgrid._grid); + Field fout(_pr._bgrid._grid); + + GridStopWatch gsw1,gsw2,gsw3; + // fill fin + gsw1.Start(); + _pr.coarseToFine(in,fin); + gsw1.Stop(); + + // apply poly + gsw2.Start(); + _poly(_Linop,fin,fout); + gsw2.Stop(); + + // fill out + gsw3.Start(); + _pr.fineToCoarse(fout,out); + gsw3.Stop(); + + auto eps = innerProduct(in,out); + std::cout << GridLogMessage << "Operator timing details: c2f = " << gsw1.Elapsed() << " poly = " << gsw2.Elapsed() << " f2c = " << gsw3.Elapsed() << + " Complimentary Hermiticity check: " << eps.imag() / std::abs(eps) << std::endl; + + } +}; + +template +class ProjectedHermOp : public LinearFunction { +public: + LinearOperatorBase &_Linop; + BlockProjector& _pr; + + ProjectedHermOp(BlockProjector& pr,LinearOperatorBase& linop) : _Linop(linop), _pr(pr) { + } + + void operator()(const CoarseField& in, CoarseField& out) { + assert(_pr._bgrid._o_blocks == in._grid->oSites()); + Field fin(_pr._bgrid._grid); + Field fout(_pr._bgrid._grid); + _pr.coarseToFine(in,fin); + _Linop.HermOp(fin,fout); + _pr.fineToCoarse(fout,out); + + } +}; + +template +class PlainHermOp : public LinearFunction { +public: + LinearOperatorBase &_Linop; + + PlainHermOp(LinearOperatorBase& linop) : _Linop(linop) { + } + + void operator()(const Field& in, Field& out) { + _Linop.HermOp(in,out); + } +}; + +template using CoarseSiteFieldGeneral = iScalar< iVector >; +template using CoarseSiteFieldD = CoarseSiteFieldGeneral< vComplexD, N >; +template using CoarseSiteFieldF = CoarseSiteFieldGeneral< vComplexF, N >; +template using CoarseSiteField = CoarseSiteFieldGeneral< vComplex, N >; +template using CoarseLatticeFermion = Lattice< CoarseSiteField >; +template using CoarseLatticeFermionD = Lattice< CoarseSiteFieldD >; + +template +void CoarseGridLanczos(BlockProjector& pr,RealD alpha2,RealD beta,int Npoly2, + int Nstop2,int Nk2,int Nm2,RealD resid2,RealD betastp2,int MaxIt,int MinRes2, + LinearOperatorBase& HermOp, std::vector& eval1, bool cg_test_enabled, + int cg_test_maxiter,int nsingle,int SkipTest2, int MaxApply2,bool smoothed_eval_enabled, + int smoothed_eval_inner,int smoothed_eval_outer,int smoothed_eval_begin, + int smoothed_eval_end,RealD smoothed_eval_inner_resid) { + + BlockedGrid& bgrid = pr._bgrid; + BasisFieldVector& basis = pr._evec; + + + std::vector coarseFourDimLatt; + for (int i=0;i<4;i++) + coarseFourDimLatt.push_back(bgrid._nb[1+i] * bgrid._grid->_processors[1+i]); + assert(bgrid._grid->_processors[0] == 1); + + std::cout << GridLogMessage << "CoarseGrid = " << coarseFourDimLatt << " with basis = " << Nstop1 << std::endl; + GridCartesian * UCoarseGrid = SpaceTimeGrid::makeFourDimGrid(coarseFourDimLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); + GridCartesian * FCoarseGrid = SpaceTimeGrid::makeFiveDimGrid(bgrid._nb[0],UCoarseGrid); + + Chebyshev Cheb2(alpha2,beta,Npoly2); + CoarseLatticeFermion src_coarse(FCoarseGrid); + + // Second round of Lanczos in blocked space + std::vector eval2(Nm2); + std::vector eval3(Nm2); + BasisFieldVector > coef(Nm2,FCoarseGrid); + + ProjectedFunctionHermOp,LatticeFermion> Op2plain(pr,Cheb2,HermOp); + CheckpointedLinearFunction > Op2ckpt(src_coarse._grid,Op2plain,"checkpoint",MaxApply2); + LinearFunction< CoarseLatticeFermion >* Op2; + if (MaxApply2) { + Op2 = &Op2ckpt; + } else { + Op2 = &Op2plain; + } + ProjectedHermOp,LatticeFermion> Op2nopoly(pr,HermOp); + BlockImplicitlyRestartedLanczos > IRL2(*Op2,*Op2,Nstop2,Nk2,Nm2,resid2,betastp2,MaxIt,MinRes2); + + + src_coarse = 1.0; + + // Precision test + { + Field tmp(bgrid._grid); + CoarseLatticeFermion tmp2(FCoarseGrid); + CoarseLatticeFermion tmp3(FCoarseGrid); + tmp2 = 1.0; + tmp3 = 1.0; + + pr.coarseToFine(tmp2,tmp); + pr.fineToCoarse(tmp,tmp2); + + tmp2 -= tmp3; + std::cout << GridLogMessage << "Precision Test c->f->c: " << norm2(tmp2) / norm2(tmp3) << std::endl; + + //bgrid._grid->Barrier(); + //return; + } + + int Nconv; + if (!FieldVectorIO::read_compressed_vectors("lanczos.output",pr,coef) || + !read_evals(UCoarseGrid,(char *)"lanczos.output/eigen-values.txt",eval3) || + !read_evals(UCoarseGrid,(char *)"lanczos.output/eigen-values.txt.linear",eval1) || + !read_evals(UCoarseGrid,(char *)"lanczos.output/eigen-values.txt.poly",eval2) + ) { + + + IRL2.calc(eval2,coef,src_coarse,Nconv,true,SkipTest2); + + coef.resize(Nstop2); + eval2.resize(Nstop2); + eval3.resize(Nstop2); + + std::vector step3_cache; + + // reconstruct eigenvalues of original operator + for (int i=0;iIsBoss()) { + write_evals((char *)"lanczos.output/eigen-values.txt",eval3); + write_evals((char *)"lanczos.output/eigen-values.txt.linear",eval1); + write_evals((char *)"lanczos.output/eigen-values.txt.poly",eval2); + } + + } + + // fix up eigenvalues + if (!read_evals(UCoarseGrid,(char *)"lanczos.output/eigen-values.txt.smoothed",eval3) && smoothed_eval_enabled) { + + ConjugateGradient CG(smoothed_eval_inner_resid, smoothed_eval_inner, false); + + LatticeFermion v_i(basis[0]._grid); + auto tmp = v_i; + auto tmp2 = v_i; + + for (int i=smoothed_eval_begin;iIsBoss()) { + write_evals((char *)"lanczos.output/eigen-values.txt.smoothed",eval3); + write_evals((char *)"lanczos.output/eigen-values.txt",eval3); // also reset this to the best ones we have available + } + } + + // do CG test with and without deflation + if (cg_test_enabled) { + ConjugateGradient CG(1.0e-8, cg_test_maxiter, false); + LatticeFermion src_orig(bgrid._grid); + src_orig.checkerboard = Odd; + src_orig = 1.0; + src_orig = src_orig * (1.0 / ::sqrt(norm2(src_orig)) ); + auto result = src_orig; + + // undeflated solve + result = zero; + CG(HermOp, src_orig, result); + // if (UCoarseGrid->IsBoss()) + // write_history("cg_test.undefl",CG.ResHistory); + // CG.ResHistory.clear(); + + // deflated solve with all eigenvectors + result = zero; + pr.deflate(coef,eval2,Nstop2,src_orig,result); + CG(HermOp, src_orig, result); + // if (UCoarseGrid->IsBoss()) + // write_history("cg_test.defl_all",CG.ResHistory); + // CG.ResHistory.clear(); + + // deflated solve with non-blocked eigenvectors + result = zero; + pr.deflate(coef,eval1,Nstop1,src_orig,result); + CG(HermOp, src_orig, result); + // if (UCoarseGrid->IsBoss()) + // write_history("cg_test.defl_full",CG.ResHistory); + // CG.ResHistory.clear(); + + // deflated solve with all eigenvectors and original eigenvalues from proj + result = zero; + pr.deflate(coef,eval3,Nstop2,src_orig,result); + CG(HermOp, src_orig, result); + // if (UCoarseGrid->IsBoss()) + // write_history("cg_test.defl_all_ev3",CG.ResHistory); + // CG.ResHistory.clear(); + + } + +} + + +template +void quick_krylov_basis(BasisFieldVector& evec,Field& src,LinearFunction& Op,int Nstop) { + Field tmp = src; + Field tmp2 = tmp; + + for (int i=0;i HermOp(Ddwf); + + // Eigenvector storage + const int Nm1 = Np1 + Nk1; + const int Nm2 = Np2 + Nk2; // maximum number of vectors we need to keep + std::cout << GridLogMessage << "Keep " << Nm1 << " full vectors" << std::endl; + std::cout << GridLogMessage << "Keep " << Nm2 << " total vectors" << std::endl; + assert(Nm2 >= Nm1); + BasisFieldVector evec(Nm1,FrbGrid); // start off with keeping full vectors + + // First and second cheby + Chebyshev Cheb1(alpha1,beta,Npoly1); + FunctionHermOp Op1(Cheb1,HermOp); + PlainHermOp Op1test(HermOp); + + // Eigenvalue storage + std::vector eval1(evec.size()); + + // Construct source vector + LatticeFermion src(FrbGrid); + { + src=1.0; + src.checkerboard = Odd; + + // normalize + RealD nn = norm2(src); + nn = Grid::sqrt(nn); + src = src * (1.0/nn); + } + + // Do a benchmark and a quick exit if performance is too little (ugly but needed due to performance fluctuations) + if (max_cheb_time_ms) { + // one round of warmup + auto tmp = src; + GridStopWatch gsw1,gsw2; + gsw1.Start(); + Cheb1(HermOp,src,tmp); + gsw1.Stop(); + Ddwf.ZeroCounters(); + gsw2.Start(); + Cheb1(HermOp,src,tmp); + gsw2.Stop(); + Ddwf.Report(); + std::cout << GridLogMessage << "Performance check; warmup = " << gsw1.Elapsed() << " test = " << gsw2.Elapsed() << std::endl; + int ms = (int)(gsw2.useconds()/1e3); + if (ms > max_cheb_time_ms) { + std::cout << GridLogMessage << "Performance too poor: " << ms << " ms, cutoff = " << max_cheb_time_ms << " ms" << std::endl; + Grid_finalize(); + return 2; + } + + } + + // First round of Lanczos to get low mode basis + BlockImplicitlyRestartedLanczos IRL1(Op1,Op1test,Nstop1,Nk1,Nm1,resid1,betastp1,MaxIt,MinRes1); + int Nconv; + + char tag[1024]; + if (!FieldVectorIO::read_argonne(evec,(char *)"checkpoint") || !read_evals(UGrid,(char *)"checkpoint/eigen-values.txt",eval1)) { + + if (simple_krylov_basis) { + quick_krylov_basis(evec,src,Op1,Nstop1); + } else { + IRL1.calc(eval1,evec,src,Nconv,false,1); + } + evec.resize(Nstop1); // and throw away superfluous + eval1.resize(Nstop1); + if (checkpoint_basis) + FieldVectorIO::write_argonne(evec,(char *)"checkpoint"); + if (UGrid->IsBoss() && checkpoint_basis) + write_evals((char *)"checkpoint/eigen-values.txt",eval1); + + Ddwf.Report(); + + if (exit_after_basis_calculation) { + Grid_finalize(); + return 0; + } + } + + // now test eigenvectors + if (!simple_krylov_basis) { + for (int i=0;i