mirror of
https://github.com/paboyle/Grid.git
synced 2025-08-04 21:56:56 +01:00
Remove Eigen from gitignore
This commit is contained in:
47
lib/Eigen/SVD
Normal file
47
lib/Eigen/SVD
Normal file
@@ -0,0 +1,47 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SVD_MODULE_H
|
||||
#define EIGEN_SVD_MODULE_H
|
||||
|
||||
#include "QR"
|
||||
#include "Householder"
|
||||
#include "Jacobi"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \defgroup SVD_Module SVD module
|
||||
*
|
||||
*
|
||||
*
|
||||
* This module provides SVD decomposition for matrices (both real and complex).
|
||||
* Two decomposition algorithms are provided:
|
||||
* - JacobiSVD implementing two-sided Jacobi iterations is numerically very accurate, fast for small matrices, but very slow for larger ones.
|
||||
* - BDCSVD implementing a recursive divide & conquer strategy on top of an upper-bidiagonalization which remains fast for large problems.
|
||||
* These decompositions are accessible via the respective classes and following MatrixBase methods:
|
||||
* - MatrixBase::jacobiSvd()
|
||||
* - MatrixBase::bdcSvd()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/SVD>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/misc/RealSvd2x2.h"
|
||||
#include "src/SVD/UpperBidiagonalization.h"
|
||||
#include "src/SVD/SVDBase.h"
|
||||
#include "src/SVD/JacobiSVD.h"
|
||||
#include "src/SVD/BDCSVD.h"
|
||||
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
|
||||
#include "src/misc/lapacke.h"
|
||||
#include "src/SVD/JacobiSVD_LAPACKE.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_SVD_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
Reference in New Issue
Block a user