1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-03 18:55:56 +01:00

Imported changes from feature/gparity_HMC branch:

Added storage of final true residual in mixed-prec CG and enhanced log output
	Fixed const correctness of multi-shift constructor
	Added a mixed precision variant of the multi-shift algorithm that uses a single precision operator and applies periodic reliable update to the residual
	Added tests/solver/Test_dwf_multishift_mixedprec to test the above
	Fixed local coherence lanczos using the (large!) max approx to the chebyshev eval as the scale from which to judge the quality of convergence, resulting a test that always passes
	Added a method to local coherence lanczos class that returns the fine eval/evec pair
	Added iterative log output to power method
	Added optional disabling of the plaquette check in Nerscio to support loading old G-parity configs which have a factor of 2 error in the plaquette
	G-parity Dirac op no longer allows GPBC in the time direction; instead we toggle between periodic and antiperiodic
	Replaced thread_for G-parity 5D force insertion implementation with accelerator_for version capable of running on GPUs
	Generalized tests/lanczos/Test_dwf_lanczos to support regular DWF as well as Gparity, with the action chosen by a command line option
	Modified tests/forces/Test_dwf_gpforce,Test_gpdwf_force,Test_gpwilson_force to use GPBC a spatial direction rather than the t-direction, and antiperiodic BCs for time direction
	tests/core/Test_gparity now supports using APBC in time direction using command line toggle
This commit is contained in:
Christopher Kelly 2022-05-09 16:27:57 -04:00
parent 81fe4c937e
commit 6121397587
14 changed files with 852 additions and 93 deletions

View File

@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
#include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>

View File

@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
RealD TrueResidual;
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
}
void operator() (const FieldD &src_d_in, FieldD &sol_d){
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
@ -97,6 +99,7 @@ NAMESPACE_BEGIN(Grid);
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
@ -130,6 +133,7 @@ NAMESPACE_BEGIN(Grid);
(*guesser)(src_f, sol_f);
//Inner CG
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
@ -150,6 +154,7 @@ NAMESPACE_BEGIN(Grid);
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TrueResidual = CG_d.TrueResidual;
TotalTimer.Stop();
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;

View File

@ -52,7 +52,7 @@ public:
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
MaxIterations(maxit),
shifts(_shifts)
{
@ -183,6 +183,9 @@ public:
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
}
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
///////////////////////////////////////
// Timers
///////////////////////////////////////

View File

@ -0,0 +1,409 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
NAMESPACE_BEGIN(Grid);
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
//Every update_freq iterations the residual is corrected in double precision.
//For safety the a final regular CG is applied to clean up if necessary
//Linop to add shift to input linop, used in cleanup CG
namespace ConjugateGradientMultiShiftMixedPrecSupport{
template<typename Field>
class ShiftedLinop: public LinearOperatorBase<Field>{
public:
LinearOperatorBase<Field> &linop_base;
RealD shift;
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOp(const Field &in, Field &out){
linop_base.HermOp(in, out);
axpy(out, shift, in, out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
};
};
template<class FieldD, class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
public OperatorFunction<FieldD>
{
public:
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
int ReliableUpdateFreq; //number of iterations between reliable updates
GridBase* SinglePrecGrid; //Grid for single-precision fields
LinearOperatorBase<FieldF> &Linop_f; //single precision
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq
) :
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<FieldD> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GridBase *DoublePrecGrid = src_d.Grid();
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
//Double precision search directions
FieldD p_d(DoublePrecGrid);
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
FieldD tmp_d(DoublePrecGrid);
FieldD r_d(DoublePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
FieldF r_f(SinglePrecGrid);
FieldF p_f(SinglePrecGrid);
FieldF tmp_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid);
FieldF src_f(SinglePrecGrid);
precisionChange(src_f, src_d);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src_d);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi_d[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
ps_d[s] = src_d;
}
// r and p for primary
r_f=src_f; //residual maintained in single
p_f=src_f;
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
//MdagM+m[0]
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
axpy(mmp_f,mass[0],p_f,mmp_f);
RealD rn = norm2(p_f);
d += rn*mass[0];
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r_f,b,mmp_f,r_f);
for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterations;k++){
a = c /cp;
//Update double precision search direction by residual
PrecChangeTimer.Start();
precisionChange(r_d, r_f);
PrecChangeTimer.Stop();
AXPYTimer.Start();
axpy(p_d,a,p_d,r_d);
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps_d[s],a,ps_d[s],r_d);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
}
}
}
AXPYTimer.Stop();
PrecChangeTimer.Start();
precisionChange(p_f, p_d); //get back single prec search direction for linop
PrecChangeTimer.Stop();
cp=c;
MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f);
d=real(innerProduct(p_f,mmp_f));
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_f,mass[0],p_f,mmp_f);
AXPYTimer.Stop();
RealD rn = norm2(p_f);
d += rn*mass[0];
bp=b;
b=-cp/d;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
//Update double precision solutions
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
int ss = s;
if( (!converged[s]) ) {
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
}
}
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
AXPYTimer.Stop();
c = c_f;
if(k % ReliableUpdateFreq == 0){
//Replace r with true residual
MatrixTimer.Start();
Linop_d.HermOp(psi_d[0],mmp_d);
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
AXPYTimer.Stop();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
PrecChangeTimer.Start();
precisionChange(r_f, r_d);
PrecChangeTimer.Stop();
c = c_d;
}
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsq[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged ){
SolverTimer.Stop();
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
// Check answers
for(int s=0; s < nshift; s++) {
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
axpy(r_d,-alpha[s],src_d,tmp_d);
RealD rn = norm2(r_d);
RealD cn = norm2(src_d);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
if(rn >= rsq[s]){
CleanupTimer.Start();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
//Setup linear operators for final cleanup
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
cg(src_d, psi_d[s]);
TrueResidualShift[s] = cg.TrueResidual;
CleanupTimer.Stop();
}
}
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
IterationsToComplete = k;
return;
}
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -44,6 +44,7 @@ public:
int, MinRes); // Must restart
};
//This class is the input parameter class for some testing programs
struct LocalCoherenceLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
@ -155,6 +156,7 @@ public:
_coarse_relax_tol(coarse_relax_tol)
{ };
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
CoarseField v(B);
@ -181,8 +183,16 @@ public:
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
evalMaxApprox = 1.0; //cf above
GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
@ -201,13 +211,13 @@ public:
eval = vnum/vden;
fv -= eval*fB;
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
<<std::endl;
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
if( (vv<eresid*eresid) ) return 1;
return 0;
}
@ -285,6 +295,10 @@ public:
evals_coarse.resize(0);
};
//The block inner product is the inner product on the fine grid locally summed over the blocks
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
//vectors under the block inner product. This step must be performed after computing the fine grid
//eigenvectors and before computing the coarse grid eigenvectors.
void Orthogonalise(void ) {
CoarseScalar InnerProd(_CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
@ -328,6 +342,8 @@ public:
}
}
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
{
assert(evals_fine.size() == nbasis);
@ -376,18 +392,23 @@ public:
evals_fine.resize(nbasis);
subspace.resize(nbasis,_FineGrid);
}
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
int Nstop, int Nk, int Nm,RealD resid,
RealD MaxIt, RealD betastp, int MinRes)
{
Chebyshev<FineField> Cheby(cheby_op);
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
//////////////////////////////////////////////////////////////////////////////////////////////////
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
//////////////////////////////////////////////////////////////////////////////////////////////////
Chebyshev<FineField> ChebySmooth(cheby_smooth);
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
evals_coarse.resize(Nm);
@ -395,6 +416,7 @@ public:
CoarseField src(_CoarseGrid); src=1.0;
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
int Nconv=0;
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
@ -405,6 +427,14 @@ public:
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
}
}
//Get the fine eigenvector 'i' by reconstruction
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
blockPromote(evec_coarse[i],evec,subspace);
eval = evals_coarse[i];
}
};
NAMESPACE_END(Grid);

View File

@ -30,6 +30,8 @@ template<class Field> class PowerMethod
RealD vden = norm2(src_n);
RealD na = vnum/vden;
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;

View File

@ -39,9 +39,11 @@ using namespace Grid;
////////////////////////////////////////////////////////////////////////////////
class NerscIO : public BinaryIO {
public:
typedef Lattice<vLorentzColourMatrixD> GaugeField;
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out);
}
@ -198,7 +200,7 @@ public:
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
exit(0);
}
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(nersc_csum == header.checksum );

View File

@ -30,6 +30,18 @@ directory
NAMESPACE_BEGIN(Grid);
/*
Policy implementation for G-parity boundary conditions
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
*/
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
public:
@ -113,7 +125,7 @@ public:
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
//Apply the links
int f_upper = permute_lane ? 1 : 0;
@ -139,10 +151,10 @@ public:
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
assert((sl == 1) || (sl == 2));
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
//If this site is an global boundary site, perform the G-parity flavor twist
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
if ( sl == 2 ) {
//Only do the twist for lanes on the edge of the physical node
ExtractBuffer<sobj> vals(Nsimd);
extract(chi,vals);
@ -197,6 +209,19 @@ public:
reg = memory;
}
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
autoView(poke_f0_v, poke_f0, CpuRead);
autoView(poke_f1_v, poke_f1, CpuRead);
autoView(Uds_v, Uds, CpuWrite);
thread_foreach(ss,poke_f0_v,{
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
});
}
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{
conformable(Uds.Grid(),GaugeGrid);
@ -208,13 +233,18 @@ public:
Lattice<iScalar<vInteger> > coor(GaugeGrid);
for(int mu=0;mu<Nd;mu++){
//Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
for(int mu=0;mu<Nd-1;mu++){
if( Params.twists[mu] ){
LatticeCoordinate(coor,mu);
}
U = PeekIndex<LorentzIndex>(Umu,mu);
Uconj = conjugate(U);
// Implement the isospin rotation sign on the boundary between f=1 and f=0
// This phase could come from a simple bc 1,1,-1,1 ..
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
if ( Params.twists[mu] ) {
@ -260,6 +290,38 @@ public:
});
}
}
{ //periodic / antiperiodic temporal BCs
int mu = Nd-1;
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
GaugeLinkField *Upoke = &U;
if(Params.twists[mu]){ //antiperiodic
Utmp = where(coor == Lmu, -U, U);
Upoke = &Utmp;
}
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
//Get the barrel-shifted field
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
Upoke = &Utmp;
if(Params.twists[mu]){
U = where(coor == 0, -Utmp, Utmp); //boundary phase
Upoke = &U;
}
Uconj = conjugate(*Upoke);
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
@ -300,27 +362,47 @@ public:
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
int Ls=Btilde.Grid()->_fdimensions[0];
int Ls = Btilde.Grid()->_fdimensions[0];
GaugeLinkField tmp(mat.Grid());
tmp = Zero();
{
autoView( tmp_v , tmp, CpuWrite);
autoView( Atilde_v , Atilde, CpuRead);
autoView( Btilde_v , Btilde, CpuRead);
thread_for(ss,tmp.Grid()->oSites(),{
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
GridBase *GaugeGrid = mat.Grid();
Lattice<iScalar<vInteger> > coor(GaugeGrid);
if( Params.twists[mu] ){
LatticeCoordinate(coor,mu);
}
autoView( mat_v , mat, AcceleratorWrite);
autoView( Btilde_v , Btilde, AcceleratorRead);
autoView( Atilde_v , Atilde, AcceleratorRead);
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
int sU=sss;
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
ColorMatrixType sum;
zeroit(sum);
for(int s=0;s<Ls;s++){
int sF = s+Ls*sU;
for(int spn=0;spn<Ns;spn++){ //sum over spin
//Flavor 0
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
sum = sum + outerProduct(bb,aa);
//Flavor 1
bb = coalescedRead(Btilde_v[sF](1)(spn) );
aa = coalescedRead(Atilde_v[sF](1)(spn) );
sum = sum + conjugate(outerProduct(bb,aa));
}
}
coalescedWrite(mat_v[sU](mu)(), sum);
});
}
PokeIndex<LorentzIndex>(mat, tmp, mu);
return;
}
};
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> GparityWilsonImplR; // Real.. whichever prec

View File

@ -55,6 +55,7 @@ static_assert(same_vComplex == 1, "Dirac Operators must have same underlying SIM
int main (int argc, char ** argv)
{
int nu = 0;
int tbc_aprd = 0; //use antiperiodic BCs in the time direction?
Grid_init(&argc,&argv);
@ -62,6 +63,9 @@ int main (int argc, char ** argv)
if(std::string(argv[i]) == "--Gparity-dir"){
std::stringstream ss; ss << argv[i+1]; ss >> nu;
std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
}else if(std::string(argv[i]) == "--Tbc-APRD"){
tbc_aprd = 1;
std::cout << GridLogMessage << "Using antiperiodic BCs in the time direction" << std::endl;
}
}
@ -155,13 +159,18 @@ int main (int argc, char ** argv)
//Coordinate grid for reference
LatticeInteger xcoor_1f5(FGrid_1f);
LatticeCoordinate(xcoor_1f5,1+nu);
LatticeCoordinate(xcoor_1f5,1+nu); //note '1+nu'! This is because for 5D fields the s-direction is direction 0
Replicate(src,src_1f);
src_1f = where( xcoor_1f5 >= Integer(L), 2.0*src_1f,src_1f );
RealD mass=0.0;
RealD M5=1.8;
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS);
//Standard Dirac op
AcceleratorVector<Complex,4> bc_std(Nd, 1.0);
if(tbc_aprd) bc_std[Nd-1] = -1.; //antiperiodic time BC
StandardDiracOp::ImplParams std_params(bc_std);
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS, std_params);
StandardFermionField src_o_1f(FrbGrid_1f);
StandardFermionField result_o_1f(FrbGrid_1f);
@ -172,9 +181,11 @@ int main (int argc, char ** argv)
ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
CG(HermOpEO,src_o_1f,result_o_1f);
// const int nu = 3;
//Gparity Dirac op
std::vector<int> twists(Nd,0);
twists[nu] = 1;
if(tbc_aprd) twists[Nd-1] = 1;
GparityDiracOp::ImplParams params;
params.twists = twists;
GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
@ -271,8 +282,11 @@ int main (int argc, char ** argv)
std::cout << "2f cb "<<result_o_2f.Checkerboard()<<std::endl;
std::cout << "1f cb "<<result_o_1f.Checkerboard()<<std::endl;
std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
//Compare norms
std::cout << " result norms 2f: " <<norm2(result_o_2f)<<" 1f: " <<norm2(result_o_1f)<<std::endl;
//Take the 2f solution and convert into the corresponding 1f solution (odd cb only)
StandardFermionField res0o (FrbGrid_2f);
StandardFermionField res1o (FrbGrid_2f);
StandardFermionField res0 (FGrid_2f);
@ -281,12 +295,13 @@ int main (int argc, char ** argv)
res0=Zero();
res1=Zero();
res0o = PeekIndex<0>(result_o_2f,0);
res1o = PeekIndex<0>(result_o_2f,1);
res0o = PeekIndex<0>(result_o_2f,0); //flavor 0, odd cb
res1o = PeekIndex<0>(result_o_2f,1); //flavor 1, odd cb
std::cout << "res cb "<<res0o.Checkerboard()<<std::endl;
std::cout << "res cb "<<res1o.Checkerboard()<<std::endl;
//poke odd onto non-cb field
setCheckerboard(res0,res0o);
setCheckerboard(res1,res1o);
@ -296,12 +311,13 @@ int main (int argc, char ** argv)
Replicate(res0,replica0);
Replicate(res1,replica1);
//2nd half of doubled lattice has f=1
replica = where( xcoor_1f5 >= Integer(L), replica1,replica0 );
replica0 = Zero();
setCheckerboard(replica0,result_o_1f);
std::cout << "Norm2 solutions is " <<norm2(replica)<<" "<< norm2(replica0)<<std::endl;
std::cout << "Norm2 solutions 1f reconstructed from 2f: " <<norm2(replica)<<" Actual 1f: "<< norm2(replica0)<<std::endl;
replica = replica - replica0;

View File

@ -71,26 +71,14 @@ int main (int argc, char ** argv)
////////////////////////////////////
RealD mass=0.2; //kills the diagonal term
RealD M5=1.8;
// const int nu = 3;
// std::vector<int> twists(Nd,0); // twists[nu] = 1;
// GparityDomainWallFermionR::ImplParams params; params.twists = twists;
// GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
// DomainWallFermionR Dw (U, Grid,RBGrid,mass,M5);
const int nu = 3;
const int nu = 0; //gparity direction
std::vector<int> twists(Nd,0);
twists[nu] = 1;
twists[Nd-1] = 1; //antiperiodic in time
GparityDomainWallFermionR::ImplParams params;
params.twists = twists;
/*
params.boundary_phases[0] = 1.0;
params.boundary_phases[1] = 1.0;
params.boundary_phases[2] = 1.0;
params.boundary_phases[3] =- 1.0;
*/
GparityDomainWallFermionR Dw(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
Dw.M (phi,Mphi);

View File

@ -71,8 +71,10 @@ int main (int argc, char ** argv)
RealD mass=0.01;
RealD M5=1.8;
const int nu = 3;
std::vector<int> twists(Nd,0); twists[nu] = 1;
const int nu = 1;
std::vector<int> twists(Nd,0);
twists[nu] = 1;
twists[3] = 1;
GparityDomainWallFermionR::ImplParams params; params.twists = twists;
GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
Ddwf.M (phi,Mphi);

View File

@ -64,8 +64,12 @@ int main (int argc, char ** argv)
////////////////////////////////////
RealD mass=0.01;
const int nu = 3;
std::vector<int> twists(Nd,0); twists[nu] = 1;
const int nu = 1;
const int Lnu=latt_size[nu];
std::vector<int> twists(Nd,0);
twists[nu] = 1;
twists[3]=1;
GparityWilsonFermionR::ImplParams params; params.twists = twists;
GparityWilsonFermionR Wil(U,*UGrid,*UrbGrid,mass,params);
Wil.M (phi,Mphi);

View File

@ -31,14 +31,38 @@ using namespace std;
using namespace Grid;
;
typedef typename GparityDomainWallFermionR::FermionField FermionField;
template<typename Action>
struct Setup{};
RealD AllZero(RealD x){ return 0.;}
template<>
struct Setup<GparityMobiusFermionR>{
static GparityMobiusFermionR* getAction(LatticeGaugeField &Umu,
GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
RealD mass=0.01;
RealD M5=1.8;
RealD mob_b=1.5;
GparityMobiusFermionD ::ImplParams params;
std::vector<int> twists({1,1,1,0});
params.twists = twists;
return new GparityMobiusFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
template<>
struct Setup<DomainWallFermionR>{
static DomainWallFermionR* getAction(LatticeGaugeField &Umu,
GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
RealD mass=0.01;
RealD M5=1.8;
return new DomainWallFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
}
};
template<typename Action>
void run(){
typedef typename Action::FermionField FermionField;
const int Ls=8;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
@ -56,24 +80,10 @@ int main (int argc, char ** argv)
LatticeGaugeField Umu(UGrid);
SU<Nc>::HotConfiguration(RNG4, Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
}
Action *action = Setup<Action>::getAction(Umu,FGrid,FrbGrid,UGrid,UrbGrid);
RealD mass=0.01;
RealD M5=1.8;
RealD mob_b=1.5;
// DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
GparityMobiusFermionD ::ImplParams params;
std::vector<int> twists({1,1,1,0});
params.twists = twists;
GparityMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
// MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
// SchurDiagTwoOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
// SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
//MdagMLinearOperator<Action,FermionField> HermOp(Ddwf);
SchurDiagTwoOperator<Action,FermionField> HermOp(*action);
const int Nstop = 30;
const int Nk = 40;
@ -91,7 +101,6 @@ int main (int argc, char ** argv)
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
std::vector<RealD> eval(Nm);
FermionField src(FrbGrid);
gaussian(RNG5rb,src);
@ -103,6 +112,28 @@ int main (int argc, char ** argv)
int Nconv;
IRL.calc(eval,evec,src,Nconv);
delete action;
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::string action = "GparityMobius";
for(int i=1;i<argc;i++){
if(std::string(argv[i]) == "-action"){
action = argv[i+1];
}
}
if(action == "GparityMobius"){
run<GparityMobiusFermionR>();
}else if(action == "DWF"){
run<DomainWallFermionR>();
}else{
std::cout << "Unknown action" << std::endl;
exit(1);
}
Grid_finalize();
}

View File

@ -0,0 +1,184 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_multishift_mixedprec.cc
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
template<typename SpeciesD, typename SpeciesF, typename GaugeStatisticsType>
void run_test(int argc, char ** argv, const typename SpeciesD::ImplParams &params){
const int Ls = 16;
GridCartesian* UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d);
GridCartesian* FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_d);
GridRedBlackCartesian* FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_d);
GridCartesian* UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f);
GridCartesian* FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_f);
GridRedBlackCartesian* FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_f);
typedef typename SpeciesD::FermionField FermionFieldD;
typedef typename SpeciesF::FermionField FermionFieldF;
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid_d);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid_d);
RNG4.SeedFixedIntegers(seeds4);
FermionFieldD src_d(FGrid_d);
random(RNG5, src_d);
LatticeGaugeFieldD Umu_d(UGrid_d);
//CPS-created G-parity ensembles have a factor of 2 error in the plaquette that causes the read to fail unless we workaround it
bool gparity_plaquette_fix = false;
for(int i=1;i<argc;i++){
if(std::string(argv[i]) == "--gparity_plaquette_fix"){
gparity_plaquette_fix=true;
break;
}
}
bool cfg_loaded=false;
for(int i=1;i<argc;i++){
if(std::string(argv[i]) == "--load_config"){
assert(i != argc-1);
std::string file = argv[i+1];
NerscIO io;
FieldMetaData metadata;
if(gparity_plaquette_fix) NerscIO::exitOnReadPlaquetteMismatch() = false;
io.readConfiguration<GaugeStatisticsType>(Umu_d, metadata, file);
if(gparity_plaquette_fix){
metadata.plaquette *= 2.; //correct header value
//Get the true plaquette
FieldMetaData tmp;
GaugeStatisticsType gs; gs(Umu_d, tmp);
std::cout << "After correction: plaqs " << tmp.plaquette << " " << metadata.plaquette << std::endl;
assert(fabs(tmp.plaquette -metadata.plaquette ) < 1.0e-5 );
}
cfg_loaded=true;
break;
}
}
if(!cfg_loaded)
SU<Nc>::HotConfiguration(RNG4, Umu_d);
LatticeGaugeFieldF Umu_f(UGrid_f);
precisionChange(Umu_f, Umu_d);
std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << " Ls: " << Ls << std::endl;
RealD mass = 0.01;
RealD M5 = 1.8;
SpeciesD Ddwf_d(Umu_d, *FGrid_d, *FrbGrid_d, *UGrid_d, *UrbGrid_d, mass, M5, params);
SpeciesF Ddwf_f(Umu_f, *FGrid_f, *FrbGrid_f, *UGrid_f, *UrbGrid_f, mass, M5, params);
FermionFieldD src_o_d(FrbGrid_d);
pickCheckerboard(Odd, src_o_d, src_d);
SchurDiagMooeeOperator<SpeciesD, FermionFieldD> HermOpEO_d(Ddwf_d);
SchurDiagMooeeOperator<SpeciesF, FermionFieldF> HermOpEO_f(Ddwf_f);
AlgRemez remez(1e-4, 64, 50);
int order = 15;
remez.generateApprox(order, 1, 2); //sqrt
MultiShiftFunction shifts(remez, 1e-10, false);
int relup_freq = 50;
double t1=usecond();
ConjugateGradientMultiShiftMixedPrec<FermionFieldD,FermionFieldF> mcg(10000, shifts, FrbGrid_f, HermOpEO_f, relup_freq);
std::vector<FermionFieldD> results_o_d(order, FrbGrid_d);
mcg(HermOpEO_d, src_o_d, results_o_d);
double t2=usecond();
//Crosscheck double and mixed prec results
ConjugateGradientMultiShift<FermionFieldD> dmcg(10000, shifts);
std::vector<FermionFieldD> results_o_d_2(order, FrbGrid_d);
dmcg(HermOpEO_d, src_o_d, results_o_d_2);
double t3=usecond();
std::cout << GridLogMessage << "Comparison of mixed prec results to double prec results |mixed - double|^2 :" << std::endl;
FermionFieldD tmp(FrbGrid_d);
for(int i=0;i<order;i++){
RealD ndiff = axpy_norm(tmp, -1., results_o_d[i], results_o_d_2[i]);
std::cout << i << " " << ndiff << std::endl;
}
std::cout<<GridLogMessage << "Mixed precision algorithm: Total usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "Double precision algorithm: Total usec = "<< (t3-t2)<<std::endl;
}
int main (int argc, char ** argv)
{
Grid_init(&argc, &argv);
bool gparity = false;
int gpdir;
for(int i=1;i<argc;i++){
std::string arg(argv[i]);
if(arg == "--Gparity"){
assert(i!=argc-1);
gpdir = std::stoi(argv[i+1]);
assert(gpdir >= 0 && gpdir <= 2); //spatial!
gparity = true;
}
}
if(gparity){
std::cout << "Running test with G-parity BCs in " << gpdir << " direction" << std::endl;
GparityWilsonImplParams params;
params.twists[gpdir] = 1;
std::vector<int> conj_dirs(Nd,0);
conj_dirs[gpdir] = 1;
ConjugateGimplD::setDirections(conj_dirs);
run_test<GparityDomainWallFermionD, GparityDomainWallFermionF, ConjugateGaugeStatistics>(argc,argv,params);
}else{
std::cout << "Running test with periodic BCs" << std::endl;
WilsonImplParams params;
run_test<DomainWallFermionD, DomainWallFermionF, PeriodicGaugeStatistics>(argc,argv,params);
}
Grid_finalize();
}