1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00

Merge GPU support (upstream/develop) into distillation branch.

This compiles and looks right ... but may need some testing

* develop: (762 commits)
  Tensor ambiguous fix
  Fix for GCC preprocessor/pragma handling bug
  Trips up NVCC for reasons I dont understand on summit
  Fix GCC complaint
  Zero() change
  Force a couple of things to compile on NVCC
  Remove debug code
  nvcc error suppress
  Merge develop
  Reduction finished and hopefully fixes CI regression fail on single precisoin and force
  Double precision variants for summation accuracy
  Update todo list
  Freeze the seed
  Fix compiling of MSource::Gauss for single precision
  Think the reduction is now sorted and cleaned up
  Fix force term
  Printing improvement
  GPU reduction fix and also exit backtrace option
  GPU friendly
  Simplify the comms benchmark
  ...

# Conflicts:
#	Grid/communicator/SharedMemoryMPI.cc
#	Grid/qcd/action/fermion/WilsonKernelsAsm.cc
#	Grid/qcd/action/fermion/implementation/StaggeredKernelsAsm.h
#	Grid/qcd/smearing/StoutSmearing.h
#	Hadrons/Modules.hpp
#	Hadrons/Utilities/Contractor.cc
#	Hadrons/modules.inc
#	tests/forces/Test_dwf_force_eofa.cc
#	tests/forces/Test_dwf_gpforce_eofa.cc
This commit is contained in:
Michael Marshall 2019-09-13 13:30:00 +01:00
commit 61d017d0a5
796 changed files with 41536 additions and 52391 deletions

View File

@ -30,8 +30,34 @@ directory
#ifndef DISABLE_WARNINGS_H
#define DISABLE_WARNINGS_H
#if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
//disables and intel compiler specific warning (in json.hpp)
#pragma warning disable 488
#ifdef __NVCC__
//disables nvcc specific warning in json.hpp
#pragma clang diagnostic ignored "-Wdeprecated-register"
#pragma diag_suppress unsigned_compare_with_zero
#pragma diag_suppress cast_to_qualified_type
//disables nvcc specific warning in many files
#pragma diag_suppress esa_on_defaulted_function_ignored
#pragma diag_suppress extra_semicolon
//Eigen only
#endif
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
#ifdef __ALTIVEC__
#define EIGEN_DONT_VECTORIZE
#endif
#ifdef __VSX__
#define EIGEN_DONT_VECTORIZE
#endif
#endif

View File

@ -38,16 +38,19 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_BASE_H
#define GRID_BASE_H
#include <Grid/GridStd.h>
#include <Grid/DisableWarnings.h>
#include <Grid/Namespace.h>
#include <Grid/GridStd.h>
#include <Grid/threads/Pragmas.h>
#include <Grid/perfmon/Timer.h>
#include <Grid/perfmon/PerfCount.h>
#include <Grid/util/Util.h>
#include <Grid/log/Log.h>
#include <Grid/allocator/AlignedAllocator.h>
#include <Grid/simd/Simd.h>
#include <Grid/serialisation/Serialisation.h>
#include <Grid/threads/Threads.h>
#include <Grid/util/Util.h>
#include <Grid/serialisation/Serialisation.h>
#include <Grid/util/Sha.h>
#include <Grid/communicator/Communicator.h>
#include <Grid/cartesian/Cartesian.h>
@ -57,5 +60,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/stencil/Stencil.h>
#include <Grid/parallelIO/BinaryIO.h>
#include <Grid/algorithms/Algorithms.h>
NAMESPACE_CHECK(GridCore)
#endif

View File

@ -38,5 +38,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/qcd/spin/Spin.h>
#include <Grid/qcd/utils/Utils.h>
#include <Grid/qcd/representations/Representations.h>
NAMESPACE_CHECK(GridQCDCore);
#endif

View File

@ -7,6 +7,7 @@
#include <cassert>
#include <complex>
#include <vector>
#include <array>
#include <string>
#include <iostream>
#include <iomanip>

View File

@ -1,14 +1,41 @@
#include <Grid/GridCore.h>
#pragma once
// Force Eigen to use MKL if Grid has been configured with --enable-mkl
#ifdef USE_MKL
#define EIGEN_USE_MKL_ALL
#endif
#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
/* NVCC save and restore compile environment*/
#ifdef __NVCC__
#pragma push
#pragma diag_suppress code_is_unreachable
#pragma push_macro("__CUDA_ARCH__")
#pragma push_macro("__NVCC__")
#pragma push_macro("__CUDACC__")
#undef __NVCC__
#undef __CUDACC__
#undef __CUDA_ARCH__
#define __NVCC__REDEFINE__
#endif
#include <Grid/Eigen/Dense>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
/* NVCC restore */
#ifdef __NVCC__REDEFINE__
#pragma pop_macro("__CUDACC__")
#pragma pop_macro("__NVCC__")
#pragma pop_macro("__CUDA_ARCH__")
#pragma pop
#endif
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

1
Grid/Grid_Eigen_Tensor.h Normal file
View File

@ -0,0 +1 @@
#include <Grid/Grid_Eigen_Dense.h>

38
Grid/Namespace.h Normal file
View File

@ -0,0 +1,38 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Namespace.h
Copyright (C) 2016
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <type_traits>
#include <cassert>
#define NAMESPACE_BEGIN(A) namespace A {
#define NAMESPACE_END(A) }
#define GRID_NAMESPACE_BEGIN NAMESPACE_BEGIN(Grid)
#define GRID_NAMESPACE_END NAMESPACE_END(Grid)
#define NAMESPACE_CHECK(x) struct namespaceTEST##x {}; static_assert(std::is_same<namespaceTEST##x, ::namespaceTEST##x>::value,"Not in :: at" );

View File

@ -32,7 +32,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define GRID_ALGORITHM_COARSENED_MATRIX_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
class Geometry {
// int dimension;
@ -104,7 +104,7 @@ namespace Grid {
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
int Checkerboard(void){return checkerboard;}
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
@ -127,10 +127,10 @@ namespace Grid {
CoarseVector eProj(CoarseGrid);
for(int i=0;i<nbasis;i++){
blockProject(iProj,subspace[i],subspace);
eProj=zero;
parallel_for(int ss=0;ss<CoarseGrid->oSites();ss++){
eProj._odata[ss](i)=CComplex(1.0);
}
eProj=Zero();
thread_for(ss, CoarseGrid->oSites(),{
eProj[ss](i)=CComplex(1.0);
});
eProj=eProj - iProj;
std::cout<<GridLogMessage<<"Orthog check error "<<i<<" " << norm2(eProj)<<std::endl;
}
@ -140,7 +140,7 @@ namespace Grid {
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.checkerboard = subspace[0].checkerboard;
FineVec.Checkerboard() = subspace[0].Checkerboard();
blockPromote(CoarseVec,FineVec,subspace);
}
void CreateSubspaceRandom(GridParallelRNG &RNG){
@ -211,7 +211,7 @@ namespace Grid {
for(int b=0;b<nn;b++){
subspace[b] = zero;
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
@ -255,7 +255,8 @@ namespace Grid {
////////////////////
Geometry geom;
GridBase * _grid;
CartesianStencil<siteVector,siteVector> Stencil;
CartesianStencil<siteVector,siteVector,int> Stencil;
std::vector<CoarseMatrix> A;
@ -267,14 +268,15 @@ namespace Grid {
RealD M (const CoarseVector &in, CoarseVector &out){
conformable(_grid,in._grid);
conformable(in._grid,out._grid);
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
siteVector res = zero;
auto in_v = in.View();
auto out_v = in.View();
thread_for(ss,Grid()->oSites(),{
siteVector res = Zero();
siteVector nbr;
int ptype;
StencilEntry *SE;
@ -283,16 +285,17 @@ namespace Grid {
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local&&SE->_permute) {
permute(nbr,in._odata[SE->_offset],ptype);
permute(nbr,in_v[SE->_offset],ptype);
} else if(SE->_is_local) {
nbr = in._odata[SE->_offset];
nbr = in_v[SE->_offset];
} else {
nbr = Stencil.CommBuf()[SE->_offset];
}
res = res + A[point]._odata[ss]*nbr;
}
vstream(out._odata[ss],res);
auto A_point = A[point].View();
res = res + A_point[ss]*nbr;
}
vstream(out_v[ss],res);
});
return norm2(out);
};
@ -310,8 +313,8 @@ namespace Grid {
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
conformable(_grid,in._grid);
conformable(in._grid,out._grid);
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
@ -323,8 +326,10 @@ namespace Grid {
return (4 * dir + 1 - disp) / 2;
}();
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
siteVector res = zero;
auto out_v = out.View();
auto in_v = in.View();
thread_for(ss,Grid()->oSites(),{
siteVector res = Zero();
siteVector nbr;
int ptype;
StencilEntry *SE;
@ -332,28 +337,30 @@ namespace Grid {
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local&&SE->_permute) {
permute(nbr,in._odata[SE->_offset],ptype);
permute(nbr,in_v[SE->_offset],ptype);
} else if(SE->_is_local) {
nbr = in._odata[SE->_offset];
nbr = in_v[SE->_offset];
} else {
nbr = Stencil.CommBuf()[SE->_offset];
}
res = res + A[point]._odata[ss]*nbr;
auto A_point = A[point].View();
res = res + A_point[ss]*nbr;
vstream(out._odata[ss],res);
}
vstream(out_v[ss],res);
});
};
void Mdiag(const CoarseVector &in, CoarseVector &out){
Mdir(in, out, 0, 0); // use the self coupling (= last) point of the stencil
};
CoarsenedMatrix(GridCartesian &CoarseGrid) :
_grid(&CoarseGrid),
geom(CoarseGrid._ndimension),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid)
{
};
@ -366,7 +373,7 @@ namespace Grid {
FineField phi(FineGrid);
FineField tmp(FineGrid);
FineField zz(FineGrid); zz=zero;
FineField zz(FineGrid); zz=Zero();
FineField Mphi(FineGrid);
Lattice<iScalar<vInteger> > coor(FineGrid);
@ -382,7 +389,7 @@ namespace Grid {
// set of vectors.
int self_stencil=-1;
for(int p=0;p<geom.npoint;p++){
A[p]=zero;
A[p]=Zero();
if( geom.displacements[p]==0){
self_stencil=p;
}
@ -415,7 +422,7 @@ namespace Grid {
////////////////////////////////////////////////////////////////////////
if ( disp==0 ) {
iblock = Mphi;
oblock = zero;
oblock = Zero();
} else if ( disp==1 ) {
oblock = where(mod(coor,block)==(block-1),Mphi,zz);
iblock = where(mod(coor,block)!=(block-1),Mphi,zz);
@ -430,14 +437,18 @@ namespace Grid {
Subspace.ProjectToSubspace(oProj,oblock);
// blockProject(iProj,iblock,Subspace.subspace);
// blockProject(oProj,oblock,Subspace.subspace);
parallel_for(int ss=0;ss<Grid()->oSites();ss++){
auto iProj_v = iProj.View() ;
auto oProj_v = oProj.View() ;
auto A_p = A[p].View();
auto A_self = A[self_stencil].View();
thread_for(ss, Grid()->oSites(),{
for(int j=0;j<nbasis;j++){
if( disp!= 0 ) {
A[p]._odata[ss](j,i) = oProj._odata[ss](j);
}
A[self_stencil]._odata[ss](j,i) = A[self_stencil]._odata[ss](j,i) + iProj._odata[ss](j);
A_p[ss](j,i) = oProj_v[ss](j);
}
A_self[ss](j,i) = A_self[ss](j,i) + iProj_v[ss](j);
}
});
}
}
@ -466,32 +477,7 @@ namespace Grid {
// AssertHermitian();
// ForceDiagonal();
}
void ForceDiagonal(void) {
std::cout<<GridLogMessage<<"**************************************************"<<std::endl;
std::cout<<GridLogMessage<<"**** Forcing coarse operator to be diagonal ****"<<std::endl;
std::cout<<GridLogMessage<<"**************************************************"<<std::endl;
for(int p=0;p<8;p++){
A[p]=zero;
}
GridParallelRNG RNG(Grid()); RNG.SeedFixedIntegers(std::vector<int>({55,72,19,17,34}));
Lattice<iScalar<CComplex> > val(Grid()); random(RNG,val);
Complex one(1.0);
iMatrix<CComplex,nbasis> ident; ident=one;
val = val*adj(val);
val = val + 1.0;
A[8] = val*ident;
// for(int s=0;s<Grid()->oSites();s++) {
// A[8]._odata[s]=val._odata[s];
// }
}
void ForceHermitian(void) {
for(int d=0;d<4;d++){
int dd=d+1;
@ -522,5 +508,5 @@ namespace Grid {
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -38,7 +38,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#endif
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class scalar> struct FFTW { };
@ -115,9 +115,9 @@ namespace Grid {
double flops_call;
uint64_t usec;
std::vector<int> dimensions;
std::vector<int> processors;
std::vector<int> processor_coor;
Coordinate dimensions;
Coordinate processors;
Coordinate processor_coor;
public:
@ -137,7 +137,7 @@ namespace Grid {
{
flops=0;
usec =0;
std::vector<int> layout(Nd,1);
Coordinate layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors);
};
@ -146,10 +146,10 @@ namespace Grid {
}
template<class vobj>
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,std::vector<int> mask,int sign){
void FFT_dim_mask(Lattice<vobj> &result,const Lattice<vobj> &source,Coordinate mask,int sign){
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
Lattice<vobj> tmp(vgrid);
tmp = source;
for(int d=0;d<Nd;d++){
@ -162,7 +162,7 @@ namespace Grid {
template<class vobj>
void FFT_all_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int sign){
std::vector<int> mask(Nd,1);
Coordinate mask(Nd,1);
FFT_dim_mask(result,source,mask,sign);
}
@ -172,14 +172,14 @@ namespace Grid {
#ifndef HAVE_FFTW
assert(0);
#else
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
conformable(result.Grid(),vgrid);
conformable(source.Grid(),vgrid);
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
std::vector<int> layout(Nd,1);
std::vector<int> pencil_gd(vgrid->_fdimensions);
Coordinate layout(Nd,1);
Coordinate pencil_gd(vgrid->_fdimensions);
pencil_gd[dim] = G*processors[dim];
@ -191,7 +191,7 @@ namespace Grid {
typedef typename sobj::scalar_type scalar;
Lattice<sobj> pgbuf(&pencil_g);
auto pgbuf_v = pgbuf.View();
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
@ -217,8 +217,8 @@ namespace Grid {
FFTW_plan p;
{
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[0];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[0];
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[0];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[0];
p = FFTW<scalar>::fftw_plan_many_dft(rank,n,howmany,
in,inembed,
istride,idist,
@ -228,26 +228,20 @@ namespace Grid {
}
// Barrel shift and collect global pencil
std::vector<int> lcoor(Nd), gcoor(Nd);
Coordinate lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
PARALLEL_REGION
{
std::vector<int> cbuf(Nd);
thread_for(idx, sgrid->lSites(),{
Coordinate cbuf(Nd);
sobj s;
PARALLEL_FOR_LOOP_INTERN
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,result,cbuf);
cbuf[dim]+=((pc+p) % processors[dim])*L;
// cbuf[dim]+=p*L;
pokeLocalSite(s,pgbuf,cbuf);
}
}
if (p != processors[dim] - 1)
{
});
if (p != processors[dim] - 1) {
result = Cshift(result,dim,L);
}
}
@ -256,20 +250,15 @@ namespace Grid {
int NN=pencil_g.lSites();
GridStopWatch timer;
timer.Start();
PARALLEL_REGION
{
std::vector<int> cbuf(Nd);
PARALLEL_FOR_LOOP_INTERN
for(int idx=0;idx<NN;idx++) {
thread_for( idx,NN,{
Coordinate cbuf(Nd);
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[idx];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[idx];
FFTW_scalar *in = (FFTW_scalar *)&pgbuf_v[idx];
FFTW_scalar *out= (FFTW_scalar *)&pgbuf_v[idx];
FFTW<scalar>::fftw_execute_dft(p,in,out);
}
}
}
});
timer.Stop();
// performance counting
@ -280,20 +269,15 @@ namespace Grid {
flops+= flops_call*NN;
// writing out result
PARALLEL_REGION
{
std::vector<int> clbuf(Nd), cgbuf(Nd);
thread_for(idx,sgrid->lSites(),{
Coordinate clbuf(Nd), cgbuf(Nd);
sobj s;
PARALLEL_FOR_LOOP_INTERN
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,clbuf);
cgbuf = clbuf;
cgbuf[dim] = clbuf[dim]+L*pc;
peekLocalSite(s,pgbuf,cgbuf);
pokeLocalSite(s,result,clbuf);
}
}
});
result = result*div;
// destroying plan
@ -301,6 +285,7 @@ namespace Grid {
#endif
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -26,16 +26,15 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_LINEAR_OP_H
#define GRID_ALGORITHM_LINEAR_OP_H
#pragma once
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////
// LinearOperators Take a something and return a something.
/////////////////////////////////////////////////////////////////////////////////////////////
//
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real):
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian Conjugateugate (transpose if real):
//SBase
// i) F(a x + b y) = aF(x) + b F(y).
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
@ -183,13 +182,13 @@ namespace Grid {
virtual RealD Mpc (const Field &in, Field &out) =0;
virtual RealD MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp(in._grid);
tmp.checkerboard = in.checkerboard;
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
ni=Mpc(in,tmp);
no=MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
out.checkerboard = in.checkerboard;
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out,n1,n2);
}
virtual void HermOp(const Field &in, Field &out){
@ -216,20 +215,20 @@ namespace Grid {
Matrix &_Mat;
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
tmp.checkerboard = !in.checkerboard;
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
//std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
//std::cout << "cb in " << in.checkerboard << " cb out " << out.checkerboard << std::endl;
//std::cout << "cb in " << in.Checkerboard() << " cb out " << out.Checkerboard() << std::endl;
_Mat.Mooee(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
Field tmp(in.Grid());
_Mat.MeooeDag(in,tmp);
_Mat.MooeeInvDag(tmp,out);
@ -247,7 +246,7 @@ namespace Grid {
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
Field tmp(in.Grid());
_Mat.Meooe(in,out);
_Mat.MooeeInv(out,tmp);
@ -257,7 +256,7 @@ namespace Grid {
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
Field tmp(in.Grid());
_Mat.MooeeInvDag(in,out);
_Mat.MeooeDag(out,tmp);
@ -275,7 +274,7 @@ namespace Grid {
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
Field tmp(in.Grid());
_Mat.MooeeInv(in,out);
_Mat.Meooe(out,tmp);
@ -285,7 +284,7 @@ namespace Grid {
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
Field tmp(in.Grid());
_Mat.MeooeDag(in,out);
_Mat.MooeeInvDag(out,tmp);
@ -353,7 +352,17 @@ namespace Grid {
axpby(out,-1.0,mass*mass,tmp,in);
taxpby_norm+=usecond();
}
virtual RealD Mpc (const Field &in, Field &out) {
virtual RealD Mpc (const Field &in, Field &out)
{
Field tmp(in.Grid());
Field tmp2(in.Grid());
// std::cout << GridLogIterative << " HermOp.Mpc "<<std::endl;
_Mat.Mooee(in,out);
_Mat.Mooee(out,tmp);
// std::cout << GridLogIterative << " HermOp.MooeeMooee "<<std::endl;
tMeo-=usecond();
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp);
@ -464,13 +473,15 @@ namespace Grid {
private:
std::vector<RealD> Coeffs;
public:
using OperatorFunction<Field>::operator();
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN(in._grid);
Field Mtmp(in._grid);
Field AtoN(in.Grid());
Field Mtmp(in.Grid());
AtoN = in;
out = AtoN*Coeffs[0];
for(int n=1;n<Coeffs.size();n++){
@ -481,6 +492,4 @@ namespace Grid {
};
};
}
#endif
NAMESPACE_END(Grid);

View File

@ -28,7 +28,7 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
#ifndef GRID_PRECONDITIONER_H
#define GRID_PRECONDITIONER_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class Field> class Preconditioner : public LinearFunction<Field> {
virtual void operator()(const Field &src, Field & psi)=0;
@ -42,5 +42,5 @@ namespace Grid {
TrivialPrecon(void){};
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#define GRID_ALGORITHM_SPARSE_MATRIX_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
@ -41,7 +41,7 @@ namespace Grid {
virtual RealD M (const Field &in, Field &out)=0;
virtual RealD Mdag (const Field &in, Field &out)=0;
virtual void MdagM(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp (in._grid);
Field tmp (in.Grid());
ni=M(in,tmp);
no=Mdag(tmp,out);
}
@ -74,6 +74,6 @@ namespace Grid {
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -32,7 +32,7 @@ Author: Christoph Lehner <clehner@bnl.gov>
#include <Grid/algorithms/LinearOperator.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
struct ChebyParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
@ -47,6 +47,8 @@ struct ChebyParams : Serializable {
template<class Field>
class Chebyshev : public OperatorFunction<Field> {
private:
using OperatorFunction<Field>::operator();
std::vector<RealD> Coeffs;
int order;
RealD hi;
@ -55,7 +57,7 @@ struct ChebyParams : Serializable {
public:
void csv(std::ostream &out){
RealD diff = hi-lo;
RealD delta = (hi-lo)*1.0e-9;
RealD delta = diff*1.0e-9;
for (RealD x=lo; x<hi; x+=delta) {
delta*=1.1;
RealD f = approx(x);
@ -212,9 +214,9 @@ struct ChebyParams : Serializable {
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in._grid;
GridBase *grid=in.Grid();
// std::cout << "Chevyshef(): in._grid="<<in._grid<<std::endl;
// std::cout << "Chevyshef(): in.Grid()="<<in.Grid()<<std::endl;
//std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
int vol=grid->gSites();
@ -321,7 +323,7 @@ struct ChebyParams : Serializable {
// shift_Multiply in Rudy's code
void AminusMuSq(LinearOperatorBase<Field> &Linop, const Field &in, Field &out)
{
GridBase *grid=in._grid;
GridBase *grid=in.Grid();
Field tmp(grid);
RealD aa= alpha*alpha;
@ -338,7 +340,7 @@ struct ChebyParams : Serializable {
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in._grid;
GridBase *grid=in.Grid();
int vol=grid->gSites();
@ -373,5 +375,5 @@ struct ChebyParams : Serializable {
}
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -31,7 +31,7 @@ See the full license in the file "LICENSE" in the top level distribution directo
#ifndef INCLUDED_FORECAST_H
#define INCLUDED_FORECAST_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
// Abstract base class.
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
@ -57,10 +57,10 @@ namespace Grid {
Field chi(phi); // forecasted solution
// Trivial cases
if(degree == 0){ chi = zero; return chi; }
if(degree == 0){ chi = Zero(); return chi; }
else if(degree == 1){ return prev_solns[0]; }
RealD dot;
// RealD dot;
ComplexD xp;
Field r(phi); // residual
Field Mv(phi);
@ -92,7 +92,7 @@ namespace Grid {
for(int j=0; j<degree; j++){
for(int k=j+1; k<degree; k++){
G[j][k] = innerProduct(v[j],MdagMv[k]);
G[k][j] = std::conj(G[j][k]);
G[k][j] = conjugate(G[j][k]);
}}
// Gauss-Jordan elimination with partial pivoting
@ -100,7 +100,7 @@ namespace Grid {
// Perform partial pivoting
int k = i;
for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } }
for(int j=i+1; j<degree; j++){ if(abs(G[j][j]) > abs(G[k][k])){ k = j; } }
if(k != i){
xp = b[k];
b[k] = b[i];
@ -121,7 +121,7 @@ namespace Grid {
}
// Use Gaussian elimination to solve equations and calculate initial guess
chi = zero;
chi = Zero();
r = phi;
for(int i=degree-1; i>=0; i--){
a[i] = 0.0;
@ -136,7 +136,7 @@ namespace Grid {
for(int i=0; i<degree; i++){
tmp = -b[i];
for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
tmp = std::conj(tmp)*tmp;
tmp = conjugate(tmp)*tmp;
true_r += std::sqrt(tmp.real());
}
@ -147,6 +147,6 @@ namespace Grid {
};
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -27,7 +27,8 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
/* END LEGAL */
#include <Grid/GridCore.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
double MultiShiftFunction::approx(double x)
{
double a = norm;
@ -53,4 +54,4 @@ void MultiShiftFunction::csv(std::ostream &out)
}
return;
}
}
NAMESPACE_END(Grid);

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef MULTI_SHIFT_FUNCTION
#define MULTI_SHIFT_FUNCTION
namespace Grid {
NAMESPACE_BEGIN(Grid);
class MultiShiftFunction {
public:
@ -63,5 +63,5 @@ public:
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -298,7 +298,7 @@ void AlgRemez::stpini(bigfloat *step) {
// Search for error maxima and minima
void AlgRemez::search(bigfloat *step) {
bigfloat a, q, xm, ym, xn, yn, xx0, xx1;
int i, j, meq, emsign, ensign, steps;
int i, meq, emsign, ensign, steps;
meq = neq + 1;
bigfloat *yy = new bigfloat[meq];
@ -306,7 +306,6 @@ void AlgRemez::search(bigfloat *step) {
bigfloat eclose = 1.0e30;
bigfloat farther = 0l;
j = 1;
xx0 = apstrt;
for (i = 0; i < meq; i++) {

View File

@ -58,8 +58,8 @@
/* Compute the partial fraction expansion coefficients (alpha) from the
* factored form */
namespace Grid {
namespace Approx {
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
static void construct_partfrac(izd *z) {
int dn = z -> dn, dd = z -> dd, type = z -> type;
@ -516,7 +516,9 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
free(d);
return zd;
}
}}
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
#ifdef TEST
@ -585,6 +587,7 @@ static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
return (ONE - T) / (ONE + T);
}
/* Test program. Apart from printing out the parameters for R(x) it produces
* the following data files for plotting (unless NPLOT is defined):
*
@ -723,5 +726,5 @@ int main(int argc, char** argv) {
return EXIT_SUCCESS;
}
#endif /* TEST */

View File

@ -1,13 +1,13 @@
/* -*- Mode: C; comment-column: 22; fill-column: 79; -*- */
#ifdef __cplusplus
namespace Grid {
namespace Approx {
#include <Grid/Namespace.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
#endif
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
#ifndef ZOLOTAREV_INTERNAL
#ifndef PRECISION
#define PRECISION double
@ -83,5 +83,6 @@ void zolotarev_free(zolotarev_data *zdata);
#endif
#ifdef __cplusplus
}}
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
#endif

View File

@ -10,10 +10,12 @@
#ifndef INCLUDED_BIGFLOAT_H
#define INCLUDED_BIGFLOAT_H
#define __GMP_WITHIN_CONFIGURE
#include <gmp.h>
#include <mpf2mpfr.h>
#include <mpfr.h>
#undef __GMP_WITHIN_CONFIGURE
class bigfloat {
private:

View File

@ -90,8 +90,8 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
void operator() (const Field &src, Field &psi){
void operator() (const Field &src, Field &psi){
psi.checkerboard = src.checkerboard;
grid = src._grid;
psi.Checkerboard() = src.Checkerboard();
grid = src.Grid();
RealD f;
RealD rtzp,rtz,a,d,b;

View File

@ -27,11 +27,9 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BLOCK_CONJUGATE_GRADIENT_H
#define GRID_BLOCK_CONJUGATE_GRADIENT_H
#pragma once
namespace Grid {
NAMESPACE_BEGIN(Grid);
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
@ -154,12 +152,12 @@ virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Fiel
void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = B._grid->_fdimensions[Orthog];
Nblock = B.Grid()->_fdimensions[Orthog];
/* FAKE */
Nblock=8;
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
X.checkerboard = B.checkerboard;
X.Checkerboard() = B.Checkerboard();
conformable(X, B);
Field tmp(B);
@ -334,11 +332,11 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = blockDim; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
Nblock = Src.Grid()->_fdimensions[Orthog];
std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
Psi.Checkerboard() = Src.Checkerboard();
conformable(Psi, Src);
Field P(Src);
@ -478,7 +476,7 @@ void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] + (scale*m(bp,b))*X[bp];
tmp[b] = tmp[b] + scomplex(scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
@ -488,9 +486,9 @@ void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
for(int b=0;b<Nblock;b++){
AP[b] = zero;
AP[b] = Zero();
for(int bp=0;bp<Nblock;bp++) {
AP[b] += (m(bp,b))*X[bp];
AP[b] += scomplex(m(bp,b))*X[bp];
}
}
}
@ -517,7 +515,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
for(int b=0;b<Nblock;b++){
X[b].checkerboard = B[b].checkerboard;
X[b].Checkerboard() = B[b].Checkerboard();
conformable(X[b], B[b]);
conformable(X[b], X[0]);
}
@ -690,9 +688,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
IterationsToComplete = k;
}
};
}
#endif
NAMESPACE_END(Grid);

View File

@ -34,6 +34,8 @@ namespace Grid {
template<class Field>
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
// defaults to true
@ -52,10 +54,10 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
CommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
Integer maxit,
@ -76,7 +78,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
psi.checkerboard = src.checkerboard;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
@ -86,7 +88,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src._grid);
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
@ -142,11 +144,11 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
RealD cp = 0;
Field w(src._grid);
Field r(src._grid);
Field w(src.Grid());
Field r(src.Grid());
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
@ -157,7 +159,9 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
gamma[0] = sqrt(norm2(r));
v[0] = (1. / gamma[0]) * r;
ComplexD scale = 1.0/gamma[0];
v[0] = scale * r;
LinalgTimer.Stop();
for (int i=0; i<RestartLength; i++) {
@ -168,7 +172,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
qrUpdate(i);
cp = std::norm(gamma[i+1]);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
@ -194,11 +198,11 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
@ -206,13 +210,13 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
@ -221,7 +225,7 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
@ -231,8 +235,8 @@ class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)

View File

@ -31,7 +31,7 @@ directory
#ifndef GRID_CONJUGATE_GRADIENT_H
#define GRID_CONJUGATE_GRADIENT_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
@ -41,6 +41,9 @@ namespace Grid {
template <class Field>
class ConjugateGradient : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
@ -54,11 +57,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.Checkerboard() = src.Checkerboard();
psi.checkerboard = src.checkerboard;
conformable(psi, src);
RealD cp, c, a, d, b, ssq, qq, b_pred;
RealD cp, c, a, d, b, ssq, qq;
//RealD b_pred;
Field p(src);
Field mmp(src);
@ -127,10 +131,13 @@ class ConjugateGradient : public OperatorFunction<Field> {
b = cp / c;
LinearCombTimer.Start();
parallel_for(int ss=0;ss<src._grid->oSites();ss++){
vstream(psi[ss], a * p[ss] + psi[ss]);
vstream(p [ss], b * p[ss] + r[ss]);
}
auto psi_v = psi.View();
auto p_v = p.View();
auto r_v = r.View();
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
});
LinearCombTimer.Stop();
LinalgTimer.Stop();
@ -143,12 +150,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
Linop.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD srcnorm = std::sqrt(norm2(src));
RealD resnorm = std::sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
@ -174,5 +181,5 @@ class ConjugateGradient : public OperatorFunction<Field> {
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -28,8 +28,7 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu>
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
//Mixed precision restarted defect correction CG
template<class FieldD,class FieldF,
@ -73,18 +72,18 @@ namespace Grid {
GridStopWatch TotalTimer;
TotalTimer.Start();
int cb = src_d_in.checkerboard;
sol_d.checkerboard = cb;
int cb = src_d_in.Checkerboard();
sol_d.Checkerboard() = cb;
RealD src_norm = norm2(src_d_in);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in._grid;
GridBase* DoublePrecGrid = src_d_in.Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.checkerboard = cb;
tmp_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.checkerboard = cb;
tmp2_d.Checkerboard() = cb;
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
@ -92,10 +91,10 @@ namespace Grid {
RealD inner_tol = InnerTolerance;
FieldF src_f(SinglePrecGrid);
src_f.checkerboard = cb;
src_f.Checkerboard() = cb;
FieldF sol_f(SinglePrecGrid);
sol_f.checkerboard = cb;
sol_f.Checkerboard() = cb;
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
@ -123,7 +122,7 @@ namespace Grid {
precisionChange(src_f, src_d);
PrecChangeTimer.Stop();
zeroit(sol_f);
sol_f = Zero();
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL)
@ -157,8 +156,6 @@ namespace Grid {
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
#define GRID_CONJUGATE_MULTI_SHIFT_GRADIENT_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
@ -41,6 +41,9 @@ namespace Grid {
public OperatorFunction<Field>
{
public:
using OperatorFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
@ -56,7 +59,7 @@ public:
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
{
GridBase *grid = src._grid;
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<Field> results(nshift,grid);
(*this)(Linop,src,results,psi);
@ -78,7 +81,7 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
{
GridBase *grid = src._grid;
GridBase *grid = src.Grid();
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
@ -318,5 +321,5 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -28,9 +28,11 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu>
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
template<class FieldD,class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
@ -74,7 +76,7 @@ namespace Grid {
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
bool using_fallback = false;
psi.checkerboard = src.checkerboard;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD cp, c, a, d, b, ssq, qq, b_pred;
@ -108,17 +110,17 @@ namespace Grid {
// Check if guess is really REALLY good :)
if (cp <= rsq) {
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
return;
}
//Single prec initialization
FieldF r_f(SinglePrecGrid);
r_f.checkerboard = r.checkerboard;
r_f.Checkerboard() = r.Checkerboard();
precisionChange(r_f, r);
FieldF psi_f(r_f);
psi_f = zero;
psi_f = Zero();
FieldF p_f(r_f);
FieldF mmp_f(r_f);
@ -178,12 +180,12 @@ namespace Grid {
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD srcnorm = std::sqrt(norm2(src));
RealD resnorm = std::sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
@ -217,7 +219,7 @@ namespace Grid {
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
r = src - mmp;
psi_f = zero;
psi_f = Zero();
precisionChange(r_f, r);
cp = norm2(r);
MaxResidSinceLastRelUp = cp;
@ -249,7 +251,7 @@ namespace Grid {
};
};
NAMESPACE_END(Grid);

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_CONJUGATE_RESIDUAL_H
#define GRID_CONJUGATE_RESIDUAL_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
@ -39,6 +39,8 @@ namespace Grid {
template<class Field>
class ConjugateResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;
@ -49,14 +51,14 @@ namespace Grid {
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
RealD a, b, c, d;
RealD a, b; // c, d;
RealD cp, ssq,rsq;
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
GridBase *grid = src._grid;
psi=zero;
GridBase *grid = src.Grid();
psi=Zero();
Field r(grid), p(grid), Ap(grid), Ar(grid);
r=src;
@ -95,8 +97,8 @@ namespace Grid {
axpy(r,-1.0,src,Ap);
RealD true_resid = norm2(r)/ssq;
std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual "<<sqrt(true_resid)
<< " computed residual "<<std::sqrt(cp/ssq)
<< " true residual "<<std::sqrt(true_resid)
<< " target " <<Tolerance <<std::endl;
return;
}
@ -107,5 +109,5 @@ namespace Grid {
assert(0);
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -33,7 +33,7 @@ namespace Grid {
template<class Field>
class ZeroGuesser: public LinearFunction<Field> {
public:
virtual void operator()(const Field &src, Field &guess) { guess = zero; };
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
};
template<class Field>
class DoNothingGuesser: public LinearFunction<Field> {
@ -60,14 +60,14 @@ public:
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
virtual void operator()(const Field &src,Field &guess) {
guess = zero;
guess = Zero();
assert(evec.size()==eval.size());
auto N = evec.size();
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
}
guess.checkerboard = src.checkerboard;
guess.Checkerboard() = src.Checkerboard();
}
};
@ -90,15 +90,15 @@ public:
void operator()(const FineField &src,FineField &guess) {
int N = (int)evec_coarse.size();
CoarseField src_coarse(evec_coarse[0]._grid);
CoarseField guess_coarse(evec_coarse[0]._grid); guess_coarse = zero;
CoarseField src_coarse(evec_coarse[0].Grid());
CoarseField guess_coarse(evec_coarse[0].Grid()); guess_coarse = Zero();
blockProject(src_coarse,src,subspace);
for (int i=0;i<N;i++) {
const CoarseField & tmp = evec_coarse[i];
axpy(guess_coarse,TensorRemove(innerProduct(tmp,src_coarse)) / eval_coarse[i],tmp,guess_coarse);
}
blockPromote(guess_coarse,guess,subspace);
guess.checkerboard = src.checkerboard;
guess.Checkerboard() = src.Checkerboard();
};
};

View File

@ -34,6 +34,8 @@ namespace Grid {
template<class Field>
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
// defaults to true
@ -53,10 +55,10 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
LinearFunction<Field> &Preconditioner;
@ -81,7 +83,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
psi.checkerboard = src.checkerboard;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
@ -91,7 +93,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src._grid);
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
@ -149,12 +151,12 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
RealD cp = 0;
Field w(src._grid);
Field r(src._grid);
Field w(src.Grid());
Field r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
std::vector<Field> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero;
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
@ -176,7 +178,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
qrUpdate(i);
cp = std::norm(gamma[i+1]);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
@ -206,11 +208,11 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
@ -218,13 +220,13 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
@ -233,7 +235,7 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
@ -243,8 +245,8 @@ class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorF
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)

View File

@ -34,6 +34,8 @@ namespace Grid {
template<class Field>
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
// defaults to true
@ -53,10 +55,10 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
LinearFunction<Field> &Preconditioner;
@ -79,7 +81,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.checkerboard = src.checkerboard;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
@ -89,7 +91,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src._grid);
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
@ -147,12 +149,12 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
RealD cp = 0;
Field w(src._grid);
Field r(src._grid);
Field w(src.Grid());
Field r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
std::vector<Field> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero;
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
@ -174,7 +176,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
qrUpdate(i);
cp = std::norm(gamma[i+1]);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
@ -204,11 +206,11 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
@ -216,13 +218,13 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
@ -231,7 +233,7 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
@ -241,8 +243,8 @@ class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)

View File

@ -34,6 +34,8 @@ namespace Grid {
template<class Field>
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
// defaults to true
@ -52,10 +54,10 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
GeneralisedMinimalResidual(RealD tol,
Integer maxit,
@ -74,7 +76,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
psi.checkerboard = src.checkerboard;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
@ -84,7 +86,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
Field r(src._grid);
Field r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
@ -140,11 +142,11 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
RealD cp = 0;
Field w(src._grid);
Field r(src._grid);
Field w(src.Grid());
Field r(src.Grid());
// this should probably be made a class member so that it is only allocated once, not in every restart
std::vector<Field> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
@ -166,7 +168,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
qrUpdate(i);
cp = std::norm(gamma[i+1]);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
@ -192,11 +194,11 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
@ -204,13 +206,13 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
@ -219,7 +221,7 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
@ -229,8 +231,8 @@ class GeneralisedMinimalResidual : public OperatorFunction<Field> {
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)

View File

@ -35,7 +35,7 @@ Author: Christoph Lehner <clehner@bnl.gov>
//#include <zlib.h>
#include <sys/stat.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////
// Move following 100 LOC to lattice/Lattice_basis.h
@ -52,26 +52,31 @@ void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
template<class Field>
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef decltype(basis[0].View()) View;
auto tmp_v = basis[0].View();
std::vector<View> basis_v(basis.size(),tmp_v);
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0]._grid;
GridBase* grid = basis[0].Grid();
parallel_region
for(int k=0;k<basis.size();k++){
basis_v[k] = basis[k].View();
}
thread_region
{
std::vector < vobj , commAllocator<vobj> > B(Nm); // Thread private
parallel_for_internal(int ss=0;ss < grid->oSites();ss++){
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis[k]._odata[ss];
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis[j]._odata[ss] = B[j];
}
basis_v[j][ss] = B[j];
}
});
}
}
@ -80,16 +85,18 @@ template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0]._grid;
GridBase* grid = basis[0].Grid();
result.checkerboard = basis[0].checkerboard;
parallel_for(int ss=0;ss < grid->oSites();ss++){
vobj B = zero;
result.Checkerboard() = basis[0].Checkerboard();
auto result_v=result.View();
thread_for(ss, grid->oSites(),{
vobj B = Zero();
for(int k=k0; k<k1; ++k){
B +=Qt(j,k) * basis[k]._odata[ss];
}
result._odata[ss] = B;
auto basis_k = basis[k].View();
B +=Qt(j,k) * basis_k[ss];
}
result_v[ss] = B;
});
}
template<class Field>
@ -119,7 +126,7 @@ void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, s
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
std::swap(_v[i]._odata,_v[idx[i]]._odata); // should use vector move constructor, no data copy
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
@ -150,6 +157,19 @@ void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, boo
basisReorderInPlace(_v,sort_vals,idx);
}
// PAB: faster to compute the inner products first then fuse loops.
// If performance critical can improve.
template<class Field>
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
result = Zero();
assert(_v.size()==eval.size());
int N = (int)_v.size();
for (int i=0;i<N;i++) {
Field& tmp = _v[i];
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
}
}
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////
@ -289,7 +309,7 @@ public:
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
nn = std::sqrt(nn);
v = v * (1.0/nn);
return nn;
}
@ -321,8 +341,8 @@ until convergence
*/
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
{
GridBase *grid = src._grid;
assert(grid == evec[0]._grid);
GridBase *grid = src.Grid();
assert(grid == evec[0].Grid());
GridLogIRL.TimingMode(1);
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
@ -446,7 +466,7 @@ until convergence
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
std::cout<<GridLogIRL <<"basisRotated by Qt"<<std::endl;
std::cout<<GridLogIRL <<"basisRotated by Qt *"<<k1-1<<","<<k2+1<<")"<<std::endl;
////////////////////////////////////////////////////
// Compressed vector f and beta(k2)
@ -454,7 +474,7 @@ until convergence
f *= Qt(k2-1,Nm-1);
f += lme[k2-1] * evec[k2];
beta_k = norm2(f);
beta_k = sqrt(beta_k);
beta_k = std::sqrt(beta_k);
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
RealD betar = 1.0/beta_k;
@ -477,7 +497,7 @@ until convergence
std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
Field B(grid); B.checkerboard = evec[0].checkerboard;
Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
// power of two search pattern; not every evalue in eval2 is assessed.
int allconv =1;
@ -515,7 +535,7 @@ until convergence
converged:
{
Field B(grid); B.checkerboard = evec[0].checkerboard;
Field B(grid); B.Checkerboard() = evec[0].Checkerboard();
basisRotate(evec,Qt,0,Nk,0,Nk,Nm);
std::cout << GridLogIRL << " Rotated basis"<<std::endl;
Nconv=0;
@ -807,7 +827,7 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
// determination of 2x2 leading submatrix
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD dd = std::sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
// (Dsh: shift)
@ -838,5 +858,6 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
abort();
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -29,8 +29,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_LOCAL_COHERENCE_IRL_H
#define GRID_LOCAL_COHERENCE_IRL_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
struct LanczosParams : Serializable {
public:
@ -59,7 +58,7 @@ struct LocalCoherenceLanczosParams : Serializable {
RealD , coarse_relax_tol,
std::vector<int>, blockSize,
std::string, config,
std::vector < std::complex<double> >, omega,
std::vector < ComplexD >, omega,
RealD, mass,
RealD, M5);
};
@ -83,11 +82,11 @@ public:
};
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = subspace[0]._grid;
int checkerboard = subspace[0].checkerboard;
GridBase *FineGrid = subspace[0].Grid();
int checkerboard = subspace[0].Checkerboard();
FineField fin (FineGrid); fin.checkerboard= checkerboard;
FineField fout(FineGrid); fout.checkerboard = checkerboard;
FineField fin (FineGrid); fin.Checkerboard()= checkerboard;
FineField fout(FineGrid); fout.Checkerboard() = checkerboard;
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
@ -118,11 +117,11 @@ public:
void operator()(const CoarseField& in, CoarseField& out) {
GridBase *FineGrid = subspace[0]._grid;
int checkerboard = subspace[0].checkerboard;
GridBase *FineGrid = subspace[0].Grid();
int checkerboard = subspace[0].Checkerboard();
FineField fin (FineGrid); fin.checkerboard =checkerboard;
FineField fout(FineGrid);fout.checkerboard =checkerboard;
FineField fin (FineGrid); fin.Checkerboard() =checkerboard;
FineField fout(FineGrid);fout.Checkerboard() =checkerboard;
blockPromote(in,fin,subspace); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
@ -182,10 +181,10 @@ class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanc
}
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
{
GridBase *FineGrid = _subspace[0]._grid;
int checkerboard = _subspace[0].checkerboard;
FineField fB(FineGrid);fB.checkerboard =checkerboard;
FineField fv(FineGrid);fv.checkerboard =checkerboard;
GridBase *FineGrid = _subspace[0].Grid();
int checkerboard = _subspace[0].Checkerboard();
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
FineField fv(FineGrid);fv.Checkerboard() =checkerboard;
blockPromote(B,fv,_subspace);
@ -305,11 +304,11 @@ public:
int Nk = nbasis;
subspace.resize(Nk,_FineGrid);
subspace[0]=1.0;
subspace[0].checkerboard=_checkerboard;
subspace[0].Checkerboard()=_checkerboard;
normalise(subspace[0]);
PlainHermOp<FineField> Op(_FineOp);
for(int k=1;k<Nk;k++){
subspace[k].checkerboard=_checkerboard;
subspace[k].Checkerboard()=_checkerboard;
Op(subspace[k-1],subspace[k]);
normalise(subspace[k]);
}
@ -360,7 +359,11 @@ public:
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
FineField src(_FineGrid); src=1.0; src.checkerboard = _checkerboard;
FineField src(_FineGrid);
typedef typename FineField::scalar_type Scalar;
// src=1.0;
src=Scalar(1.0);
src.Checkerboard() = _checkerboard;
int Nconv;
IRL.calc(evals_fine,subspace,src,Nconv,false);
@ -402,5 +405,5 @@ public:
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -33,6 +33,8 @@ namespace Grid {
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
// Defaults true.
RealD Tolerance;
@ -46,11 +48,11 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.checkerboard = src.checkerboard;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
Complex a, c;
Real d;
ComplexD a, c;
RealD d;
Field Mr(src);
Field r(src);
@ -71,7 +73,6 @@ template<class Field> class MinimalResidual : public OperatorFunction<Field> {
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
std::cout << GridLogIterative << "MinimalResidual: src " << ssq << std::endl;
std::cout << GridLogIterative << "MinimalResidual: mp " << d << std::endl;
std::cout << GridLogIterative << "MinimalResidual: cp,r " << cp << std::endl;
if (cp <= rsq) {

View File

@ -34,6 +34,9 @@ namespace Grid {
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
public:
using OperatorFunction<FieldD>::operator();
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
// defaults to true
@ -54,10 +57,10 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
Eigen::MatrixXcd H;
std::vector<std::complex<double>> y;
std::vector<std::complex<double>> gamma;
std::vector<std::complex<double>> c;
std::vector<std::complex<double>> s;
std::vector<ComplexD> y;
std::vector<ComplexD> gamma;
std::vector<ComplexD> c;
std::vector<ComplexD> s;
GridBase* SinglePrecGrid;
@ -84,7 +87,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
psi.checkerboard = src.checkerboard;
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD guess = norm2(psi);
@ -94,7 +97,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
RealD ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq;
FieldD r(src._grid);
FieldD r(src.Grid());
std::cout << std::setprecision(4) << std::scientific;
std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
@ -154,12 +157,12 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
RealD cp = 0;
FieldD w(src._grid);
FieldD r(src._grid);
FieldD w(src.Grid());
FieldD r(src.Grid());
// these should probably be made class members so that they are only allocated once, not in every restart
std::vector<FieldD> v(RestartLength + 1, src._grid); for (auto &elem : v) elem = zero;
std::vector<FieldD> z(RestartLength + 1, src._grid); for (auto &elem : z) elem = zero;
std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
MatrixTimer.Start();
LinOp.Op(psi, w);
@ -181,7 +184,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
qrUpdate(i);
cp = std::norm(gamma[i+1]);
cp = norm(gamma[i+1]);
std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
<< " residual " << cp << " target " << rsq << std::endl;
@ -223,11 +226,11 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
LinalgTimer.Start();
for (int i = 0; i <= iter; ++i) {
H(iter, i) = innerProduct(v[i], w);
w = w - H(iter, i) * v[i];
w = w - ComplexD(H(iter, i)) * v[i];
}
H(iter, iter + 1) = sqrt(norm2(w));
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
v[iter + 1] = ComplexD(1. / H(iter, iter + 1)) * w;
LinalgTimer.Stop();
}
@ -235,13 +238,13 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
QrTimer.Start();
for (int i = 0; i < iter ; ++i) {
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
auto tmp = -s[i] * ComplexD(H(iter, i)) + c[i] * ComplexD(H(iter, i + 1));
H(iter, i) = conjugate(c[i]) * ComplexD(H(iter, i)) + conjugate(s[i]) * ComplexD(H(iter, i + 1));
H(iter, i + 1) = tmp;
}
// Compute new Givens Rotation
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
auto nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
c[iter] = H(iter, iter) / nu;
s[iter] = H(iter, iter + 1) / nu;
@ -250,7 +253,7 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
H(iter, iter + 1) = 0.;
gamma[iter + 1] = -s[iter] * gamma[iter];
gamma[iter] = std::conj(c[iter]) * gamma[iter];
gamma[iter] = conjugate(c[iter]) * gamma[iter];
QrTimer.Stop();
}
@ -260,8 +263,8 @@ class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction
for (int i = iter; i >= 0; i--) {
y[i] = gamma[i];
for (int k = i + 1; k <= iter; k++)
y[i] = y[i] - H(k, i) * y[k];
y[i] = y[i] / H(i, i);
y[i] = y[i] - ComplexD(H(k, i)) * y[k];
y[i] = y[i] / ComplexD(H(i, i));
}
for (int i = 0; i <= iter; i++)

View File

@ -28,7 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_NORMAL_EQUATIONS_H
#define GRID_NORMAL_EQUATIONS_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form an NE solver calling a Herm solver
@ -48,7 +48,7 @@ namespace Grid {
void operator() (const Field &in, Field &out){
Field src(in._grid);
Field src(in.Grid());
_Matrix.Mdag(in,src);
_HermitianSolver(src,out); // Mdag M out = Mdag in
@ -56,5 +56,5 @@ namespace Grid {
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -14,7 +14,7 @@ template<class Field> class PowerMethod
RealD operator()(LinearOperatorBase<Field> &HermOp, const Field &src)
{
GridBase *grid = src._grid;
GridBase *grid = src.Grid();
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
RealD evalMaxApprox = 0.0;

View File

@ -28,7 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_PREC_CONJUGATE_RESIDUAL_H
#define GRID_PREC_CONJUGATE_RESIDUAL_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
@ -56,7 +56,7 @@ namespace Grid {
RealD rAr, rAAr, rArp;
RealD pAp, pAAp;
GridBase *grid = src._grid;
GridBase *grid = src.Grid();
Field r(grid), p(grid), Ap(grid), Ar(grid), z(grid);
psi=zero;
@ -115,5 +115,5 @@ namespace Grid {
assert(0);
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -36,11 +36,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
//NB. Likely not original reference since they are focussing on a preconditioner variant.
// but VPGCR was nicely written up in their paper
///////////////////////////////////////////////////////////////////////////////////////////////////////
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class Field>
class PrecGeneralisedConjugateResidual : public OperatorFunction<Field> {
public:
using OperatorFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
int verbose;
@ -65,12 +67,12 @@ namespace Grid {
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
psi=zero;
psi=Zero();
RealD cp, ssq,rsq;
ssq=norm2(src);
rsq=Tolerance*Tolerance*ssq;
Field r(src._grid);
Field r(src.Grid());
PrecTimer.Reset();
MatTimer.Reset();
@ -113,11 +115,11 @@ namespace Grid {
RealD GCRnStep(LinearOperatorBase<Field> &Linop,const Field &src, Field &psi,RealD rsq){
RealD cp;
RealD a, b, c, d;
RealD a, b;
RealD zAz, zAAz;
RealD rAq, rq;
RealD rq;
GridBase *grid = src._grid;
GridBase *grid = src.Grid();
Field r(grid);
Field z(grid);
@ -132,6 +134,7 @@ namespace Grid {
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
//////////////////////////////////
// initial guess x0 is taken as nonzero.
// r0=src-A x0 = src
@ -232,10 +235,9 @@ namespace Grid {
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
LinalgTimer.Stop();
}
assert(0); // never reached
return cp;
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -297,9 +297,9 @@ namespace Grid {
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
}
@ -317,17 +317,17 @@ namespace Grid {
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.checkerboard ==Odd );
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
@ -366,13 +366,13 @@ namespace Grid {
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
// get the right MpcDag
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
@ -386,17 +386,17 @@ namespace Grid {
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e_i = src_e-tmp; assert( src_e_i.checkerboard ==Even);
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.checkerboard ==Even);
_Matrix.Meooe(sol_o,tmp); assert( tmp.Checkerboard() ==Even);
src_e_i = src_e-tmp; assert( src_e_i.Checkerboard() ==Even);
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.checkerboard ==Odd );
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.Checkerboard()==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
@ -437,12 +437,12 @@ namespace Grid {
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
_Matrix.MooeeInv(src_e,tmp); assert( tmp.Checkerboard() ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
@ -463,12 +463,12 @@ namespace Grid {
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.checkerboard ==Even);
tmp = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.checkerboard ==Even);
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.Checkerboard() ==Even);
tmp = src_e-tmp; assert( src_e.Checkerboard() ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_o_i); assert( sol_o_i.checkerboard ==Odd );
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
setCheckerboard(sol,sol_o_i); assert( sol_o_i.Checkerboard() ==Odd );
};
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)

View File

@ -1,11 +1,12 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
#ifdef POINTER_CACHE
int PointerCache::victim;
PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache];
@ -51,7 +52,7 @@ void *PointerCache::Lookup(size_t bytes) {
if (bytes < 4096 ) return NULL;
#ifdef _OPENMP
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
#endif
@ -63,7 +64,7 @@ void *PointerCache::Lookup(size_t bytes) {
}
return NULL;
}
#endif
void check_huge_pages(void *Buf,uint64_t BYTES)
{
@ -122,4 +123,5 @@ std::string sizeString(const size_t bytes)
return std::string(buf);
}
}
NAMESPACE_END(Grid);

View File

@ -40,8 +40,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <mm_malloc.h>
#endif
namespace Grid {
#define POINTER_CACHE
#define GRID_ALLOC_ALIGN (2*1024*1024)
NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
#ifdef POINTER_CACHE
class PointerCache {
private:
@ -63,6 +68,7 @@ namespace Grid {
static void *Lookup(size_t bytes) ;
};
#endif
std::string sizeString(size_t bytes);
@ -152,29 +158,45 @@ public:
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
// if ( ptr != NULL )
// std::cout << "alignedAllocator "<<__n << " cache hit "<< std::hex << ptr <<std::dec <<std::endl;
//////////////////
// Hack 2MB align; could make option probably doesn't need configurability
//////////////////
//define GRID_ALLOC_ALIGN (128)
#define GRID_ALLOC_ALIGN (2*1024*1024)
#ifdef POINTER_CACHE
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
#else
pointer ptr = nullptr;
#endif
#ifdef GRID_NVCC
////////////////////////////////////
// Unified (managed) memory
////////////////////////////////////
if ( ptr == (_Tp *) NULL ) {
auto err = cudaMallocManaged((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (_Tp *) NULL;
std::cerr << " cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
assert(0);
}
}
assert( ptr != (_Tp *)NULL);
#else
//////////////////////////////////////////////////////////////////////////////////////////
// 2MB align; could make option probably doesn't need configurability
//////////////////////////////////////////////////////////////////////////////////////////
#ifdef HAVE_MM_MALLOC_H
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
#else
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
#endif
// std::cout << "alignedAllocator " << std::hex << ptr <<std::dec <<std::endl;
assert( ptr != (_Tp *)NULL);
//////////////////////////////////////////////////
// First touch optimise in threaded loop
uint8_t *cp = (uint8_t *)ptr;
#ifdef GRID_OMP
#pragma omp parallel for
#endif
for(size_type n=0;n<bytes;n+=4096){
//////////////////////////////////////////////////
uint64_t *cp = (uint64_t *)ptr;
thread_for(n,bytes/sizeof(uint64_t), { // need only one touch per page
cp[n]=0;
}
});
#endif
return ptr;
}
@ -183,133 +205,40 @@ public:
profilerFree(bytes);
#ifdef POINTER_CACHE
pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
#else
pointer __freeme = __p;
#endif
#ifdef GRID_NVCC
if ( __freeme ) cudaFree((void *)__freeme);
#else
#ifdef HAVE_MM_MALLOC_H
if ( __freeme ) _mm_free((void *)__freeme);
#else
if ( __freeme ) free((void *)__freeme);
#endif
#endif
}
void construct(pointer __p, const _Tp& __val) { };
// FIXME: hack for the copy constructor, eventually it must be avoided
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
//void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
//////////////////////////////////////////////////////////////////////////////////////////
// MPI3 : comms must use shm region
// SHMEM: comms must use symmetric heap
//////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_COMMS_SHMEM
extern "C" {
#include <mpp/shmem.h>
extern void * shmem_align(size_t, size_t);
extern void shmem_free(void *);
}
#define PARANOID_SYMMETRIC_HEAP
#endif
template<typename _Tp>
class commAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef commAllocator<_Tp1> other; };
commAllocator() throw() { }
commAllocator(const commAllocator&) throw() { }
template<typename _Tp1> commAllocator(const commAllocator<_Tp1>&) throw() { }
~commAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
#ifdef GRID_COMMS_SHMEM
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
#ifdef CRAY
_Tp *ptr = (_Tp *) shmem_align(bytes,64);
#else
_Tp *ptr = (_Tp *) shmem_align(64,bytes);
#endif
#ifdef PARANOID_SYMMETRIC_HEAP
static void * bcast;
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
bcast = (void *) ptr;
shmem_broadcast32((void *)&bcast,(void *)&bcast,sizeof(void *)/4,0,0,0,shmem_n_pes(),psync);
if ( bcast != ptr ) {
std::printf("inconsistent alloc pe %d %lx %lx \n",shmem_my_pe(),bcast,ptr);std::fflush(stdout);
// BACKTRACEFILE();
exit(0);
}
assert( bcast == (void *) ptr);
#endif
return ptr;
}
void deallocate(pointer __p, size_type __n) {
size_type bytes = __n*sizeof(_Tp);
profilerFree(bytes);
shmem_free((void *)__p);
}
#else
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
profilerAllocate(bytes);
#ifdef HAVE_MM_MALLOC_H
_Tp * ptr = (_Tp *) _mm_malloc(bytes, GRID_ALLOC_ALIGN);
#else
_Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN, bytes);
#endif
uint8_t *cp = (uint8_t *)ptr;
if ( ptr ) {
// One touch per 4k page, static OMP loop to catch same loop order
#ifdef GRID_OMP
#pragma omp parallel for schedule(static)
#endif
for(size_type n=0;n<bytes;n+=4096){
cp[n]=0;
}
}
return ptr;
}
void deallocate(pointer __p, size_type __n) {
size_type bytes = __n*sizeof(_Tp);
profilerFree(bytes);
#ifdef HAVE_MM_MALLOC_H
_mm_free((void *)__p);
#else
free((void *)__p);
#endif
}
#endif
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using commAllocator = alignedAllocator<T>;
template<class T> using Vector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,commAllocator<T> >;
template<class T> using commVector = std::vector<T,alignedAllocator<T> >;
template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
}; // namespace Grid
NAMESPACE_END(Grid);
#endif

View File

@ -30,16 +30,15 @@
#ifndef GRID_CARTESIAN_BASE_H
#define GRID_CARTESIAN_BASE_H
namespace Grid{
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////
// Commicator provides information on the processor grid
//////////////////////////////////////////////////////////////////////
// unsigned long _ndimension;
// std::vector<int> _processors; // processor grid
// Coordinate _processors; // processor grid
// int _processor; // linear processor rank
// std::vector<int> _processor_coor; // linear processor rank
// Coordinate _processor_coor; // linear processor rank
//////////////////////////////////////////////////////////////////////
class GridBase : public CartesianCommunicator , public GridThread {
@ -48,12 +47,14 @@ public:
// Give Lattice access
template<class object> friend class Lattice;
GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
GridBase(const std::vector<int> & processor_grid,
GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) {};
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent,
int &split_rank)
: CartesianCommunicator(processor_grid,parent,split_rank) {};
GridBase(const std::vector<int> & processor_grid,
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent)
: CartesianCommunicator(processor_grid,parent,dummy) {};
@ -61,23 +62,23 @@ public:
// Physics Grid information.
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
std::vector<int> _fdimensions;// (full) Global dimensions of array prior to cb removal
std::vector<int> _gdimensions;// Global dimensions of array after cb removal
std::vector<int> _ldimensions;// local dimensions of array with processor images removed
std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
std::vector<int> _ostride; // Outer stride for each dimension
std::vector<int> _istride; // Inner stride i.e. within simd lane
Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes.
Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal
Coordinate _gdimensions;// Global dimensions of array after cb removal
Coordinate _ldimensions;// local dimensions of array with processor images removed
Coordinate _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
Coordinate _ostride; // Outer stride for each dimension
Coordinate _istride; // Inner stride i.e. within simd lane
int _osites; // _isites*_osites = product(dimensions).
int _isites;
int _fsites; // _isites*_osites = product(dimensions).
int _gsites;
std::vector<int> _slice_block;// subslice information
std::vector<int> _slice_stride;
std::vector<int> _slice_nblock;
Coordinate _slice_block;// subslice information
Coordinate _slice_stride;
Coordinate _slice_nblock;
std::vector<int> _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
std::vector<int> _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
Coordinate _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
Coordinate _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
bool _isCheckerBoarded;
@ -88,7 +89,7 @@ public:
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(const std::vector<int> &site)=0;
virtual int CheckerBoard(const Coordinate &site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
@ -107,20 +108,20 @@ public:
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
// lanes are operated upon simultaneously.
virtual int oIndex(std::vector<int> &coor)
virtual int oIndex(Coordinate &coor)
{
int idx=0;
// Works with either global or local coordinates
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
}
virtual int iIndex(std::vector<int> &lcoor)
virtual int iIndex(Coordinate &lcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
return idx;
}
inline int oIndexReduced(std::vector<int> &ocoor)
inline int oIndexReduced(Coordinate &ocoor)
{
int idx=0;
// ocoor is already reduced so can eliminate the modulo operation
@ -128,11 +129,11 @@ public:
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
return idx;
}
inline void oCoorFromOindex (std::vector<int>& coor,int Oindex){
inline void oCoorFromOindex (Coordinate& coor,int Oindex){
Lexicographic::CoorFromIndex(coor,Oindex,_rdimensions);
}
inline void InOutCoorToLocalCoor (std::vector<int> &ocoor, std::vector<int> &icoor, std::vector<int> &lcoor) {
inline void InOutCoorToLocalCoor (Coordinate &ocoor, Coordinate &icoor, Coordinate &lcoor) {
lcoor.resize(_ndimension);
for (int d = 0; d < _ndimension; d++)
lcoor[d] = ocoor[d] + _rdimensions[d] * icoor[d];
@ -141,7 +142,7 @@ public:
//////////////////////////////////////////////////////////
// SIMD lane addressing
//////////////////////////////////////////////////////////
inline void iCoorFromIindex(std::vector<int> &coor,int lane)
inline void iCoorFromIindex(Coordinate &coor,int lane)
{
Lexicographic::CoorFromIndex(coor,lane,_simd_layout);
}
@ -152,8 +153,6 @@ public:
inline int PermuteType(int dimension){
int permute_type=0;
//
// FIXME:
//
// Best way to encode this would be to present a mask
// for which simd dimensions are rotated, and the rotation
// size. If there is only one simd dimension rotated, this is just
@ -186,11 +185,11 @@ public:
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
inline const std::vector<int> LocalStarts(void) { return _lstart; };
inline const std::vector<int> &FullDimensions(void) { return _fdimensions;};
inline const std::vector<int> &GlobalDimensions(void) { return _gdimensions;};
inline const std::vector<int> &LocalDimensions(void) { return _ldimensions;};
inline const std::vector<int> &VirtualLocalDimensions(void) { return _ldimensions;};
inline const Coordinate LocalStarts(void) { return _lstart; };
inline const Coordinate &FullDimensions(void) { return _fdimensions;};
inline const Coordinate &GlobalDimensions(void) { return _gdimensions;};
inline const Coordinate &LocalDimensions(void) { return _ldimensions;};
inline const Coordinate &VirtualLocalDimensions(void) { return _ldimensions;};
////////////////////////////////////////////////////////////////
// Utility to print the full decomposition details
@ -214,15 +213,15 @@ public:
////////////////////////////////////////////////////////////////
// Global addressing
////////////////////////////////////////////////////////////////
void GlobalIndexToGlobalCoor(int gidx,std::vector<int> &gcoor){
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
assert(gidx< gSites());
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
}
void LocalIndexToLocalCoor(int lidx,std::vector<int> &lcoor){
void LocalIndexToLocalCoor(int lidx,Coordinate &lcoor){
assert(lidx<lSites());
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
}
void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
gidx=0;
int mult=1;
for(int mu=0;mu<_ndimension;mu++) {
@ -230,7 +229,7 @@ public:
mult*=_gdimensions[mu];
}
}
void GlobalCoorToProcessorCoorLocalCoor(std::vector<int> &pcoor,std::vector<int> &lcoor,const std::vector<int> &gcoor)
void GlobalCoorToProcessorCoorLocalCoor(Coordinate &pcoor,Coordinate &lcoor,const Coordinate &gcoor)
{
pcoor.resize(_ndimension);
lcoor.resize(_ndimension);
@ -240,14 +239,14 @@ public:
lcoor[mu] = gcoor[mu]%_fld;
}
}
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const std::vector<int> &gcoor)
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const Coordinate &gcoor)
{
std::vector<int> pcoor;
std::vector<int> lcoor;
Coordinate pcoor;
Coordinate lcoor;
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
rank = RankFromProcessorCoor(pcoor);
/*
std::vector<int> cblcoor(lcoor);
Coordinate cblcoor(lcoor);
for(int d=0;d<cblcoor.size();d++){
if( this->CheckerBoarded(d) ) {
cblcoor[d] = lcoor[d]/2;
@ -258,10 +257,10 @@ public:
o_idx= oIndex(lcoor);
}
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor)
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , Coordinate &gcoor)
{
gcoor.resize(_ndimension);
std::vector<int> coor(_ndimension);
Coordinate coor(_ndimension);
ProcessorCoorFromRank(rank,coor);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]*coor[mu];
@ -273,20 +272,19 @@ public:
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
}
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,std::vector<int> &fcoor)
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,Coordinate &fcoor)
{
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
if(CheckerBoarded(0)){
fcoor[0] = fcoor[0]*2+cb;
}
}
void ProcessorCoorLocalCoorToGlobalCoor(std::vector<int> &Pcoor,std::vector<int> &Lcoor,std::vector<int> &gcoor)
void ProcessorCoorLocalCoorToGlobalCoor(Coordinate &Pcoor,Coordinate &Lcoor,Coordinate &gcoor)
{
gcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -28,13 +28,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_CARTESIAN_FULL_H
#define GRID_CARTESIAN_FULL_H
namespace Grid{
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////
// Grid Support.
/////////////////////////////////////////////////////////////////////////////////////////
class GridCartesian: public GridBase {
public:
@ -49,7 +48,7 @@ public:
virtual int CheckerBoarded(int dim){
return 0;
}
virtual int CheckerBoard(const std::vector<int> &site){
virtual int CheckerBoard(const Coordinate &site){
return 0;
}
virtual int CheckerBoardDestination(int cb,int shift,int dim){
@ -64,16 +63,16 @@ public:
/////////////////////////////////////////////////////////////////////////
// Constructor takes a parent grid and possibly subdivides communicator.
/////////////////////////////////////////////////////////////////////////
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
{
Init(dimensions,simd_layout,processor_grid);
}
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
{
Init(dimensions,simd_layout,processor_grid);
@ -81,18 +80,18 @@ public:
/////////////////////////////////////////////////////////////////////////
// Construct from comm world
/////////////////////////////////////////////////////////////////////////
GridCartesian(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid) : GridBase(processor_grid)
GridCartesian(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid) : GridBase(processor_grid)
{
Init(dimensions,simd_layout,processor_grid);
}
virtual ~GridCartesian() = default;
void Init(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid)
void Init(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid)
{
///////////////////////
// Grid information
@ -170,5 +169,6 @@ public:
};
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -29,8 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_CARTESIAN_RED_BLACK_H
#define GRID_CARTESIAN_RED_BLACK_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
static const int CbRed =0;
static const int CbBlack=1;
@ -41,7 +40,7 @@ namespace Grid {
class GridRedBlackCartesian : public GridBase
{
public:
std::vector<int> _checker_dim_mask;
Coordinate _checker_dim_mask;
int _checker_dim;
std::vector<int> _checker_board;
@ -49,7 +48,7 @@ public:
if( dim==_checker_dim) return 1;
else return 0;
}
virtual int CheckerBoard(const std::vector<int> &site){
virtual int CheckerBoard(const Coordinate &site){
int linear=0;
assert(site.size()==_ndimension);
for(int d=0;d<_ndimension;d++){
@ -59,7 +58,6 @@ public:
return (linear&0x1);
}
// Depending on the cb of site, we toggle source cb.
// for block #b, element #e = (b, e)
// we need
@ -83,7 +81,7 @@ public:
}
virtual int CheckerBoardFromOindex (int Oindex)
{
std::vector<int> ocoor;
Coordinate ocoor;
oCoorFromOindex(ocoor,Oindex);
return CheckerBoard(ocoor);
}
@ -118,7 +116,7 @@ public:
GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
{
int dims = base->_ndimension;
std::vector<int> checker_dim_mask(dims,1);
Coordinate checker_dim_mask(dims,1);
int checker_dim = 0;
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
};
@ -127,7 +125,7 @@ public:
// Create redblack from original grid, with non-trivial checker dim mask
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const std::vector<int> &checker_dim_mask,
const Coordinate &checker_dim_mask,
int checker_dim
) : GridBase(base->_processors,*base)
{
@ -135,40 +133,11 @@ public:
}
virtual ~GridRedBlackCartesian() = default;
#if 0
////////////////////////////////////////////////////////////
// Create redblack grid ;; deprecate these. Should not
// need direct creation of redblack without a full grid to base on
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const std::vector<int> &checker_dim_mask,
int checker_dim
) : GridBase(processor_grid,*base)
{
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
}
////////////////////////////////////////////////////////////
// Create redblack grid
////////////////////////////////////////////////////////////
GridRedBlackCartesian(const GridBase *base,
const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid) : GridBase(processor_grid,*base)
{
std::vector<int> checker_dim_mask(dimensions.size(),1);
int checker_dim = 0;
Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
}
#endif
void Init(const std::vector<int> &dimensions,
const std::vector<int> &simd_layout,
const std::vector<int> &processor_grid,
const std::vector<int> &checker_dim_mask,
void Init(const Coordinate &dimensions,
const Coordinate &simd_layout,
const Coordinate &processor_grid,
const Coordinate &checker_dim_mask,
int checker_dim)
{
@ -282,7 +251,7 @@ public:
};
protected:
virtual int oIndex(std::vector<int> &coor)
virtual int oIndex(Coordinate &coor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
@ -299,7 +268,7 @@ public:
return idx;
};
virtual int iIndex(std::vector<int> &lcoor)
virtual int iIndex(Coordinate &lcoor)
{
int idx = 0;
for (int d = 0; d < _ndimension; d++)
@ -316,5 +285,5 @@ public:
return idx;
}
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -28,6 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_COMMUNICATOR_H
#define GRID_COMMUNICATOR_H
#include <Grid/util/Coordinate.h>
#include <Grid/communicator/SharedMemory.h>
#include <Grid/communicator/Communicator_base.h>

View File

@ -31,7 +31,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <limits.h>
#include <sys/mman.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
@ -47,8 +47,8 @@ int CartesianCommunicator::Dimensions(void) { return
int CartesianCommunicator::IsBoss(void) { return _processor==0; };
int CartesianCommunicator::BossRank(void) { return 0; };
int CartesianCommunicator::ThisRank(void) { return _processor; };
const std::vector<int> & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; };
const std::vector<int> & CartesianCommunicator::ProcessorGrid(void) { return _processors; };
const Coordinate & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; };
const Coordinate & CartesianCommunicator::ProcessorGrid(void) { return _processors; };
int CartesianCommunicator::ProcessorCount(void) { return _Nprocessors; };
////////////////////////////////////////////////////////////////////////////////
@ -72,5 +72,6 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
GlobalSumVector((double *)c,2*N);
}
}
NAMESPACE_END(Grid);

View File

@ -34,7 +34,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
///////////////////////////////////
#include <Grid/communicator/SharedMemory.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
class CartesianCommunicator : public SharedMemory {
@ -52,9 +52,9 @@ public:
// Communicator should know nothing of the physics grid, only processor grid.
////////////////////////////////////////////
int _Nprocessors; // How many in all
std::vector<int> _processors; // Which dimensions get relayed out over processors lanes.
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
int _processor; // linear processor rank
std::vector<int> _processor_coor; // linear processor coordinate
Coordinate _processor_coor; // linear processor coordinate
unsigned long _ndimension;
static Grid_MPI_Comm communicator_world;
Grid_MPI_Comm communicator;
@ -69,8 +69,8 @@ public:
// Constructors to sub-divide a parent communicator
// and default to comm world
////////////////////////////////////////////////
CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank);
CartesianCommunicator(const std::vector<int> &pdimensions_in);
CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank);
CartesianCommunicator(const Coordinate &pdimensions_in);
virtual ~CartesianCommunicator();
private:
@ -79,7 +79,7 @@ public:
// Private initialise from an MPI communicator
// Can use after an MPI_Comm_split, but hidden from user so private
////////////////////////////////////////////////
void InitFromMPICommunicator(const std::vector<int> &processors, Grid_MPI_Comm communicator_base);
void InitFromMPICommunicator(const Coordinate &processors, Grid_MPI_Comm communicator_base);
public:
@ -88,15 +88,15 @@ public:
// Wraps MPI_Cart routines, or implements equivalent on other impls
////////////////////////////////////////////////////////////////////////////////////////
void ShiftedRanks(int dim,int shift,int & source, int & dest);
int RankFromProcessorCoor(std::vector<int> &coor);
void ProcessorCoorFromRank(int rank,std::vector<int> &coor);
int RankFromProcessorCoor(Coordinate &coor);
void ProcessorCoorFromRank(int rank,Coordinate &coor);
int Dimensions(void) ;
int IsBoss(void) ;
int BossRank(void) ;
int ThisRank(void) ;
const std::vector<int> & ThisProcessorCoor(void) ;
const std::vector<int> & ProcessorGrid(void) ;
const Coordinate & ThisProcessorCoor(void) ;
const Coordinate & ProcessorGrid(void) ;
int ProcessorCount(void) ;
////////////////////////////////////////////////////////////////////////////////
@ -199,9 +199,10 @@ public:
template<class obj> void Broadcast(int root,obj &data)
{
Broadcast(root,(void *)&data,sizeof(data));
};
};
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -28,7 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
#include <Grid/communicator/SharedMemory.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
Grid_MPI_Comm CartesianCommunicator::communicator_world;
@ -44,12 +44,17 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
if( (nCommThreads == 1 && provided == MPI_THREAD_SINGLE) ||
(nCommThreads > 1 && provided != MPI_THREAD_MULTIPLE) )
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
assert(0);
}
if( (nCommThreads > 1) && (provided != MPI_THREAD_MULTIPLE) ) {
assert(0);
}
}
// Never clean up as done once.
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
@ -69,14 +74,14 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
assert(ierr==0);
}
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor)
{
int rank;
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
assert(ierr==0);
return rank;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
{
coor.resize(_ndimension);
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
@ -86,7 +91,7 @@ void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &c
////////////////////////////////////////////////////////////////////////////////////////////////////////
// Initialises from communicator_world
////////////////////////////////////////////////////////////////////////////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
MPI_Comm optimal_comm;
////////////////////////////////////////////////////
@ -105,12 +110,12 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
//////////////////////////////////
// Try to subdivide communicator
//////////////////////////////////
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
{
_ndimension = processors.size(); assert(_ndimension>=1);
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
std::vector<int> parent_processor_coor(_ndimension,0);
std::vector<int> parent_processors (_ndimension,1);
Coordinate parent_processor_coor(_ndimension,0);
Coordinate parent_processors (_ndimension,1);
// Can make 5d grid from 4d etc...
int pad = _ndimension-parent_ndimension;
@ -133,9 +138,9 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,
int Nchild = Nparent/childsize;
assert (childsize * Nchild == Nparent);
std::vector<int> ccoor(_ndimension); // coor within subcommunicator
std::vector<int> scoor(_ndimension); // coor of split within parent
std::vector<int> ssize(_ndimension); // coor of split within parent
Coordinate ccoor(_ndimension); // coor within subcommunicator
Coordinate scoor(_ndimension); // coor of split within parent
Coordinate ssize(_ndimension); // coor of split within parent
for(int d=0;d<_ndimension;d++){
ccoor[d] = parent_processor_coor[d] % processors[d];
@ -152,36 +157,6 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,
MPI_Comm comm_split;
if ( Nchild > 1 ) {
if(0){
std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
for(int d=0;d<parent._ndimension;d++) std::cout << parent._processors[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" old rank "<< parent._processor<<" coor ["<< parent._ndimension <<"] ";
for(int d=0;d<parent._ndimension;d++) std::cout << parent._processor_coor[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" new split "<< srank<<" scoor ["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << scoor[d] << " ";
std::cout<<std::endl;
std::cout << GridLogMessage<<" new rank "<< crank<<" coor ["<< _ndimension <<"] ";
for(int d=0;d<processors.size();d++) std::cout << ccoor[d] << " ";
std::cout<<std::endl;
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Declare victory
//////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
<< Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
std::cout << " Split communicator " <<comm_split <<std::endl;
}
////////////////////////////////////////////////////////////////
// Split the communicator
////////////////////////////////////////////////////////////////
@ -220,7 +195,7 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,
}
}
void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base)
void CartesianCommunicator::InitFromMPICommunicator(const Coordinate &processors, MPI_Comm communicator_base)
{
////////////////////////////////////////////////////
// Creates communicator, and the communicator_halo
@ -237,7 +212,7 @@ void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &proc
_Nprocessors*=_processors[i];
}
std::vector<int> periodic(_ndimension,1);
Coordinate periodic(_ndimension,1);
MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator);
MPI_Comm_rank(communicator,&_processor);
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
@ -474,7 +449,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
{
std::vector<int> row(_ndimension,1);
Coordinate row(_ndimension,1);
assert(dim>=0 && dim<_ndimension);
// Split the communicator
@ -503,7 +478,6 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
MPI_Type_free(&object);
}
NAMESPACE_END(Grid);
}

View File

@ -27,7 +27,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/GridCore.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
@ -42,14 +42,14 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
GlobalSharedMemory::Hugepages);
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
: CartesianCommunicator(processors)
{
srank=0;
SetCommunicator(communicator_world);
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
{
_processors = processors;
_ndimension = processors.size(); assert(_ndimension>=1);
@ -122,8 +122,8 @@ int CartesianCommunicator::RankWorld(void){return 0;}
void CartesianCommunicator::Barrier(void){}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor){ coor = _processor_coor; }
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
source =0;
@ -160,6 +160,6 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
void CartesianCommunicator::StencilBarrier(void){};
NAMESPACE_END(Grid);
}

View File

@ -28,10 +28,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
// static data
int GlobalSharedMemory::HPEhypercube = 1;
uint64_t GlobalSharedMemory::MAX_MPI_SHM_BYTES = 1024LL*1024LL*1024LL;
int GlobalSharedMemory::Hugepages = 0;
int GlobalSharedMemory::_ShmSetup;
@ -76,6 +77,7 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){
std::cout<< " Current value is " << (heap_size/(1024*1024)) <<std::endl;
assert(heap_bytes<heap_size);
}
//std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
return ptr;
}
void SharedMemory::ShmBufferFreeAll(void) {
@ -84,9 +86,9 @@ void SharedMemory::ShmBufferFreeAll(void) {
}
void *SharedMemory::ShmBufferSelf(void)
{
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
return ShmCommBufs[ShmRank];
}
NAMESPACE_END(Grid);
}

View File

@ -25,18 +25,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
// TODO
// 1) move includes into SharedMemory.cc
//
// 2) split shared memory into a) optimal communicator creation from comm world
//
// b) shared memory buffers container
// -- static globally shared; init once
// -- per instance set of buffers.
//
#pragma once
#include <Grid/GridCore.h>
@ -57,7 +45,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <numaif.h>
#endif
namespace Grid {
NAMESPACE_BEGIN(Grid);
#if defined (GRID_COMMS_MPI3)
typedef MPI_Comm Grid_MPI_Comm;
@ -71,12 +59,18 @@ class GlobalSharedMemory {
private:
static const int MAXLOG2RANKSPERNODE = 16;
// Init once lock on the buffer allocation
static int _ShmSetup;
static int _ShmAlloc;
static uint64_t _ShmAllocBytes;
public:
///////////////////////////////////////
// HPE 8600 hypercube optimisation
///////////////////////////////////////
static int HPEhypercube;
static int ShmSetup(void) { return _ShmSetup; }
static int ShmAlloc(void) { return _ShmAlloc; }
static uint64_t ShmAllocBytes(void) { return _ShmAllocBytes; }
@ -102,14 +96,16 @@ class GlobalSharedMemory {
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
//////////////////////////////////////////////////////////////////////////////////////
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
static void OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorHypercube(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorSharedMemory(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
///////////////////////////////////////////////////
// Provide shared memory facilities off comm world
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,const void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};
@ -150,6 +146,7 @@ class SharedMemory
// Call on any instance
///////////////////////////////////////////////////
void SharedMemoryTest(void);
void *ShmBufferSelf(void);
void *ShmBuffer (int rank);
void *ShmBufferTranslate(int rank,void * local_p);
@ -164,4 +161,5 @@ class SharedMemory
};
}
NAMESPACE_END(Grid);

View File

@ -29,8 +29,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
#include <pwd.h>
namespace Grid {
#ifdef GRID_NVCC
#include <cuda_runtime_api.h>
#endif
NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryMpi: "
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
{
@ -46,6 +50,11 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
if ( WorldRank == 0) {
std::cout << header " World communicator of size " <<WorldSize << std::endl;
std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
}
// WorldShmComm, WorldShmSize, WorldShmRank
// WorldNodes
@ -130,7 +139,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
}
return log2size;
}
void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
//////////////////////////////////////////////////////////////////////////////
// Look and see if it looks like an HPE 8600 based on hostname conventions
@ -143,11 +152,10 @@ void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,
gethostname(name,namelen);
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
// if(nscan==3) OptimalCommunicatorHypercube(processors,optimal_comm);
// else OptimalCommunicatorSharedMemory(processors,optimal_comm);
OptimalCommunicatorSharedMemory(processors,optimal_comm);
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
}
void GlobalSharedMemory::OptimalCommunicatorHypercube(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
@ -189,9 +197,9 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const std::vector<int> &pr
}
std::string hname(name);
std::cout << "hostname "<<hname<<std::endl;
std::cout << "R " << R << " I " << I << " N "<< N
<< " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl;
// std::cout << "hostname "<<hname<<std::endl;
// std::cout << "R " << R << " I " << I << " N "<< N
// << " hypercoor 0x"<<std::hex<<hypercoor<<std::dec<<std::endl;
//////////////////////////////////////////////////////////////////
// broadcast node 0's base coordinate for this partition.
@ -214,7 +222,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const std::vector<int> &pr
////////////////////////////////////////////////////////////////
int ndimension = processors.size();
std::vector<int> processor_coor(ndimension);
std::vector<int> WorldDims = processors; std::vector<int> ShmDims (ndimension,1); std::vector<int> NodeDims (ndimension);
std::vector<int> WorldDims = processors.toVector();
std::vector<int> ShmDims (ndimension,1); std::vector<int> NodeDims (ndimension);
std::vector<int> ShmCoor (ndimension); std::vector<int> NodeCoor (ndimension); std::vector<int> WorldCoor(ndimension);
std::vector<int> HyperCoor(ndimension);
int dim = 0;
@ -270,7 +279,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const std::vector<int> &pr
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
assert(ierr==0);
}
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
@ -283,9 +292,9 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const std::vector<int>
// in a maximally symmetrical way
////////////////////////////////////////////////////////////////
int ndimension = processors.size();
std::vector<int> processor_coor(ndimension);
std::vector<int> WorldDims = processors; std::vector<int> ShmDims (ndimension,1); std::vector<int> NodeDims (ndimension);
std::vector<int> ShmCoor (ndimension); std::vector<int> NodeCoor (ndimension); std::vector<int> WorldCoor(ndimension);
Coordinate processor_coor(ndimension);
Coordinate WorldDims = processors; Coordinate ShmDims(ndimension,1); Coordinate NodeDims (ndimension);
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
int dim = 0;
for(int l2=0;l2<log2size;l2++){
while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension;
@ -331,7 +340,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const std::vector<int>
#ifdef GRID_MPI3_SHMGET
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
@ -390,10 +399,97 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended
////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_NVCC
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the pointer array for shared windows for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Barrier(WorldShmComm);
WorldShmCommBufs.resize(WorldShmSize);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// TODO/FIXME : NOT ALL NVLINK BOARDS have full Peer to peer connectivity.
// The annoyance is that they have partial peer 2 peer. This occurs on the 8 GPU blades.
// e.g. DGX1, supermicro board,
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// cudaDeviceGetP2PAttribute(&perfRank, cudaDevP2PAttrPerformanceRank, device1, device2);
cudaSetDevice(WorldShmRank);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
auto err = cudaMalloc(&ShmCommBuf, bytes);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
for(int r=0;r<WorldShmSize;r++){
//////////////////////////////////////////////////
// If it is me, pass around the IPC access key
//////////////////////////////////////////////////
cudaIpcMemHandle_t handle;
if ( r==WorldShmRank ) {
err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
//////////////////////////////////////////////////
// Share this IPC handle across the Shm Comm
//////////////////////////////////////////////////
{
int ierr=MPI_Bcast(&handle,
sizeof(handle),
MPI_BYTE,
r,
WorldShmComm);
assert(ierr==0);
}
///////////////////////////////////////////////////////////////
// If I am not the source, overwrite thisBuf with remote buffer
///////////////////////////////////////////////////////////////
void * thisBuf = ShmCommBuf;
if ( r!=WorldShmRank ) {
err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
if ( err != cudaSuccess) {
std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
exit(EXIT_FAILURE);
}
}
///////////////////////////////////////////////////////////////
// Save a copy of the device buffers
///////////////////////////////////////////////////////////////
WorldShmCommBufs[r] = thisBuf;
}
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#else
#ifdef GRID_MPI3_SHMMMAP
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -430,7 +526,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
assert(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
// std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
}
_ShmAlloc=1;
_ShmAllocBytes = bytes;
@ -440,7 +536,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_MPI3_SHM_NONE
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -487,7 +583,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
////////////////////////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
MPI_Barrier(WorldShmComm);
@ -553,10 +649,27 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes = bytes;
}
#endif
#endif // End NVCC case for GPU device buffers
/////////////////////////////////////////////////////////////////////////
// Routines accessing shared memory should route through for GPU safety
/////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
#ifdef GRID_NVCC
cudaMemset(dest,0,bytes);
#else
bzero(dest,bytes);
#endif
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes)
{
#ifdef GRID_NVCC
cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
#else
bcopy(src,dest,bytes);
#endif
}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality
@ -588,7 +701,6 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
MPI_Allreduce(MPI_IN_PLACE,&wsr,1,MPI_UINT32_T,MPI_SUM,ShmComm);
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[wsr];
// std::cout << "SetCommunicator ShmCommBufs ["<< r<< "] = "<< ShmCommBufs[r]<< " wsr = "<<wsr<<std::endl;
}
ShmBufferFreeAll();
@ -601,6 +713,8 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r;
MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);
SharedMemoryTest();
}
//////////////////////////////////////////////////////////////////
// On node barrier
@ -615,25 +729,27 @@ void SharedMemory::ShmBarrier(void)
void SharedMemory::SharedMemoryTest(void)
{
ShmBarrier();
uint64_t check[3];
uint64_t magic = 0x5A5A5A;
if ( ShmRank == 0 ) {
for(int r=0;r<ShmSize;r++){
uint64_t * check = (uint64_t *) ShmCommBufs[r];
for(uint64_t r=0;r<ShmSize;r++){
check[0]=GlobalSharedMemory::WorldNode;
check[1]=r;
check[2] = 0x5A5A5A;
check[2]=magic;
GlobalSharedMemory::SharedMemoryCopy( ShmCommBufs[r], check, 3*sizeof(uint64_t));
}
}
ShmBarrier();
for(int r=0;r<ShmSize;r++){
uint64_t * check = (uint64_t *) ShmCommBufs[r];
for(uint64_t r=0;r<ShmSize;r++){
ShmBarrier();
GlobalSharedMemory::SharedMemoryCopy(check,ShmCommBufs[r], 3*sizeof(uint64_t));
ShmBarrier();
assert(check[0]==GlobalSharedMemory::WorldNode);
assert(check[1]==r);
assert(check[2]==0x5A5A5A);
}
assert(check[2]==magic);
ShmBarrier();
}
}
void *SharedMemory::ShmBuffer(int rank)
{
@ -646,7 +762,6 @@ void *SharedMemory::ShmBuffer(int rank)
}
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
{
static int count =0;
int gpeer = ShmRanks[rank];
assert(gpeer!=ShmRank); // never send to self
if (gpeer == MPI_UNDEFINED){
@ -665,4 +780,5 @@ SharedMemory::~SharedMemory()
}
};
}
NAMESPACE_END(Grid);

View File

@ -28,7 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
@ -47,7 +47,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
_ShmSetup=1;
}
void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
{
optimal_comm = WorldComm;
}
@ -125,4 +125,5 @@ void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
SharedMemory::~SharedMemory()
{};
}
NAMESPACE_END(Grid);

View File

@ -25,10 +25,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_CSHIFT_COMMON_H_
#define _GRID_CSHIFT_COMMON_H_
#pragma once
namespace Grid {
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
@ -36,20 +35,21 @@ namespace Grid {
template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{
int rd = rhs._grid->_rdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs._grid->CheckerBoarded(dimension) ) {
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask = 0x3;
}
int so=plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int so=plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int ent = 0;
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
static Vector<std::pair<int,int> > table; table.resize(e1*e2);
int stride=rhs.Grid()->_slice_stride[dimension];
int stride=rhs._grid->_slice_stride[dimension];
auto rhs_v = rhs.View();
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
@ -63,66 +63,68 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimen
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb &cbmask ) {
table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
}
}
}
}
parallel_for(int i=0;i<ent;i++){
buffer[table[i].first]=rhs._odata[table[i].second];
}
thread_for(i,ent,{
buffer[table[i].first]=rhs_v[table[i].second];
});
}
///////////////////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
Gather_plane_extract(const Lattice<vobj> &rhs,
ExtractPointerArray<typename vobj::scalar_object> pointers,
int dimension,int plane,int cbmask)
{
int rd = rhs._grid->_rdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs._grid->CheckerBoarded(dimension) ) {
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask = 0x3;
}
int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int n1=rhs._grid->_slice_stride[dimension];
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int n1=rhs.Grid()->_slice_stride[dimension];
auto rhs_v = rhs.View();
if ( cbmask ==0x3){
parallel_for_nest2(int n=0;n<e1;n++){
thread_for_collapse(2,n,e1,{
for(int b=0;b<e2;b++){
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs._odata[so+o+b];
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
}
});
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
std::cout << " Dense packed buffer WARNING " <<std::endl;
parallel_for_nest2(int n=0;n<e1;n++){
thread_for_collapse(2,n,e1,{
for(int b=0;b<e2;b++){
int o=n*n1;
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs._odata[so+o+b];
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
}
}
});
}
}
@ -131,17 +133,17 @@ Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename vobj::scalar_
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
int rd = rhs._grid->_rdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs._grid->CheckerBoarded(dimension) ) {
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int stride=rhs._grid->_slice_stride[dimension];
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
int stride=rhs.Grid()->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int ent =0;
@ -150,8 +152,8 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*rhs._grid->_slice_stride[dimension];
int bo =n*rhs._grid->_slice_block[dimension];
int o =n*rhs.Grid()->_slice_stride[dimension];
int bo =n*rhs.Grid()->_slice_block[dimension];
table[ent++] = std::pair<int,int>(so+o+b,bo+b);
}
}
@ -160,8 +162,8 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
int bo=0;
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*rhs._grid->_slice_stride[dimension];
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
int o =n*rhs.Grid()->_slice_stride[dimension];
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
if ( ocb & cbmask ) {
table[ent++]=std::pair<int,int> (so+o+b,bo++);
}
@ -169,48 +171,51 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
}
}
parallel_for(int i=0;i<ent;i++){
rhs._odata[table[i].first]=buffer[table[i].second];
}
auto rhs_v = rhs.View();
thread_for(i,ent,{
rhs_v[table[i].first]=buffer[table[i].second];
});
}
//////////////////////////////////////////////////////
// Scatter for when there *is* need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerArray<typename vobj::scalar_object> pointers,int dimension,int plane,int cbmask)
{
int rd = rhs._grid->_rdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs._grid->CheckerBoarded(dimension) ) {
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block[dimension];
if(cbmask ==0x3 ) {
parallel_for_nest2(int n=0;n<e1;n++){
auto rhs_v = rhs.View();
thread_for_collapse(2,n,e1,{
for(int b=0;b<e2;b++){
int o = n*rhs._grid->_slice_stride[dimension];
int offset = b+n*rhs._grid->_slice_block[dimension];
merge(rhs._odata[so+o+b],pointers,offset);
}
int o = n*rhs.Grid()->_slice_stride[dimension];
int offset = b+n*rhs.Grid()->_slice_block[dimension];
merge(rhs_v[so+o+b],pointers,offset);
}
});
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
// Test_cshift_red_black code.
// std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
auto rhs_v = rhs.View();
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*rhs._grid->_slice_stride[dimension];
int offset = b+n*rhs._grid->_slice_block[dimension];
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);
int o = n*rhs.Grid()->_slice_stride[dimension];
int offset = b+n*rhs.Grid()->_slice_block[dimension];
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) {
merge(rhs._odata[so+o+b],pointers,offset);
merge(rhs_v[so+o+b],pointers,offset);
}
}
}
@ -222,18 +227,18 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,std::vector<typ
//////////////////////////////////////////////////////
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
{
int rd = rhs._grid->_rdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs._grid->CheckerBoarded(dimension) ) {
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane
int ro = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension]; // clearly loop invariant for icpc
int e2=rhs._grid->_slice_block[dimension];
int stride = rhs._grid->_slice_stride[dimension];
int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc
int e2=rhs.Grid()->_slice_block[dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int ent=0;
@ -248,7 +253,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride+b;
int ocb=1<<lhs._grid->CheckerBoardFromOindex(o);
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o);
if ( ocb&cbmask ) {
table[ent++] = std::pair<int,int>(lo+o,ro+o);
}
@ -256,32 +261,33 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
}
}
parallel_for(int i=0;i<ent;i++){
lhs._odata[table[i].first]=rhs._odata[table[i].second];
}
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
}
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
{
int rd = rhs._grid->_rdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
if ( !rhs._grid->CheckerBoarded(dimension) ) {
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
cbmask=0x3;
}
int ro = rplane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs._grid->_ostride[dimension]; // base offset for start of plane
int ro = rplane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int lo = lplane*lhs.Grid()->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block [dimension];
int stride = rhs._grid->_slice_stride[dimension];
int e1=rhs.Grid()->_slice_nblock[dimension];
int e2=rhs.Grid()->_slice_block [dimension];
int stride = rhs.Grid()->_slice_stride[dimension];
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
int ent=0;
double t_tab,t_perm;
if ( cbmask == 0x3 ) {
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
@ -292,14 +298,16 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o =n*stride;
int ocb=1<<lhs._grid->CheckerBoardFromOindex(o+b);
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
}}
}
parallel_for(int i=0;i<ent;i++){
permute(lhs._odata[table[i].first],rhs._odata[table[i].second],permute_type);
}
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
}
//////////////////////////////////////////////////////
@ -309,10 +317,8 @@ template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &r
{
int sshift[2];
sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even);
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
double t_local;
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Cshift_local(ret,rhs,dimension,shift,0x3);
@ -324,7 +330,7 @@ template<class vobj> void Cshift_local(Lattice<vobj>& ret,const Lattice<vobj> &r
template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid = rhs._grid;
GridBase *grid = rhs.Grid();
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
@ -335,18 +341,18 @@ template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &r
shift = (shift+fd)%fd;
// the permute type
ret.checkerboard = grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
ret.Checkerboard() = grid->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
int permute_dim =grid->PermuteDim(dimension);
int permute_type=grid->PermuteType(dimension);
int permute_type_dist;
for(int x=0;x<rd;x++){
int o = 0;
// int o = 0;
int bo = x * grid->_ostride[dimension];
int cb= (cbmask==0x2)? Odd : Even;
int sshift = grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
int sshift = grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
int sx = (x+sshift)%rd;
// wrap is whether sshift > rd.
@ -387,5 +393,5 @@ template<class vobj> void Cshift_local(Lattice<vobj> &ret,const Lattice<vobj> &r
}
}
}
#endif
NAMESPACE_END(Grid);

View File

@ -30,27 +30,27 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define _GRID_CSHIFT_MPI_H_
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
Lattice<vobj> ret(rhs._grid);
Lattice<vobj> ret(rhs.Grid());
int fd = rhs._grid->_fdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
// Map to always positive shift modulo global full dimension.
shift = (shift+fd)%fd;
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
// the permute type
int simd_layout = rhs._grid->_simd_layout[dimension];
int comm_dim = rhs._grid->_processors[dimension] >1 ;
int splice_dim = rhs._grid->_simd_layout[dimension]>1 && (comm_dim);
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
if ( !comm_dim ) {
@ -70,10 +70,10 @@ template<class vobj> void Cshift_comms(Lattice<vobj>& ret,const Lattice<vobj> &r
{
int sshift[2];
sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even);
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
// std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
// std::cout << "Cshift_comms dim "<<dimension<<"cb "<<rhs.Checkerboard()<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
// std::cout << "Single pass Cshift_comms" <<std::endl;
Cshift_comms(ret,rhs,dimension,shift,0x3);
@ -88,8 +88,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
{
int sshift[2];
sshift[0] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Even);
sshift[1] = rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,Odd);
sshift[0] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Even);
sshift[1] = rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,Odd);
//std::cout << "Cshift_comms_simd dim "<<dimension<<"cb "<<rhs.checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if ( sshift[0] == sshift[1] ) {
@ -107,25 +107,25 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs._grid;
Lattice<vobj> temp(rhs._grid);
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs._grid->_fdimensions[dimension];
int rd = rhs._grid->_rdimensions[dimension];
int pd = rhs._grid->_processors[dimension];
int simd_layout = rhs._grid->_simd_layout[dimension];
int comm_dim = rhs._grid->_processors[dimension] >1 ;
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = rhs._grid->_slice_nblock[dimension]*rhs._grid->_slice_block[dimension];
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
commVector<vobj> send_buf(buffer_size);
commVector<vobj> recv_buf(buffer_size);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
@ -145,7 +145,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
int rank = grid->_processor;
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
@ -165,7 +165,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs._grid;
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
@ -193,21 +193,21 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
int words = sizeof(vobj)/sizeof(vector_type);
// int words = sizeof(vobj)/sizeof(vector_type);
std::vector<commVector<scalar_object> > send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
std::vector<commVector<scalar_object> > recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
int bytes = buffer_size*sizeof(scalar_object);
std::vector<scalar_object *> pointers(Nsimd); //
std::vector<scalar_object *> rpointers(Nsimd); // received pointers
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
@ -258,5 +258,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
}
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -27,13 +27,14 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#ifndef _GRID_CSHIFT_NONE_H_
#define _GRID_CSHIFT_NONE_H_
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension,int shift)
{
Lattice<vobj> ret(rhs._grid);
ret.checkerboard = rhs._grid->CheckerBoardDestination(rhs.checkerboard,shift,dimension);
Lattice<vobj> ret(rhs.Grid());
ret.Checkerboard() = rhs.Grid()->CheckerBoardDestination(rhs.Checkerboard(),shift,dimension);
Cshift_local(ret,rhs,dimension,shift);
return ret;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -1,3 +1,4 @@
#ifndef __NVCC__
/*
__ _____ _____ _____
__| | __| | | | JSON for Modern C++
@ -18918,3 +18919,4 @@ inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std
#endif
#endif

View File

@ -25,9 +25,22 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_H
#define GRID_LATTICE_H
#pragma once
#include <Grid/lattice/Lattice_base.h>
#include <Grid/lattice/Lattice_conformable.h>
#include <Grid/lattice/Lattice_ET.h>
#include <Grid/lattice/Lattice_arith.h>
#include <Grid/lattice/Lattice_trace.h>
#include <Grid/lattice/Lattice_transpose.h>
#include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_peekpoke.h>
#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_comparison_utils.h>
#include <Grid/lattice/Lattice_comparison.h>
#include <Grid/lattice/Lattice_coordinate.h>
//#include <Grid/lattice/Lattice_where.h>
#include <Grid/lattice/Lattice_rng.h>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#endif

View File

@ -36,13 +36,13 @@ directory
#include <typeinfo>
#include <vector>
namespace Grid {
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
template <class iobj, class vobj, class robj>
inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
const robj &iffalse) {
typename std::remove_const<vobj>::type ret;
@ -51,11 +51,10 @@ inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
const int words = sizeof(vobj) / sizeof(vector_type);
std::vector<Integer> mask(Nsimd);
std::vector<scalar_object> truevals(Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
@ -69,149 +68,139 @@ inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
return ret;
}
////////////////////////////////////////////
// recursive evaluation of expressions; Could
// switch to generic approach with variadics, a la
// Antonin's Lat Sim but the repack to variadic with popped
// from tuple is hideous; C++14 introduces std::make_index_sequence for this
////////////////////////////////////////////
// leaf eval of lattice ; should enable if protect using traits
template <typename T>
using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T>
using is_lattice_expr = std::is_base_of<LatticeExpressionBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
/////////////////////////////////////////////////////
//Specialization of getVectorType for lattices
/////////////////////////////////////////////////////
template<typename T>
struct getVectorType<Lattice<T> >{
typedef typename Lattice<T>::vector_object type;
};
template<class sobj>
inline sobj eval(const unsigned int ss, const sobj &arg)
////////////////////////////////////////////
//-- recursive evaluation of expressions; --
// handle leaves of syntax tree
///////////////////////////////////////////////////
template<class sobj> accelerator_inline
sobj eval(const uint64_t ss, const sobj &arg)
{
return arg;
}
template <class lobj>
inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg) {
return arg._odata[ss];
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
{
return arg[ss];
}
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
{
auto view = arg.View();
return view[ss];
}
// handle nodes in syntax tree
template <typename Op, typename T1>
auto inline eval(
const unsigned int ss,
const LatticeUnaryExpression<Op, T1> &expr) // eval one operand
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)));
///////////////////////////////////////////////////
// handle nodes in syntax tree- eval one operand
///////////////////////////////////////////////////
template <typename Op, typename T1> accelerator_inline
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
-> decltype(expr.op.func( eval(ss, expr.arg1)))
{
return expr.op.func( eval(ss, expr.arg1) );
}
template <typename Op, typename T1, typename T2>
auto inline eval(
const unsigned int ss,
const LatticeBinaryExpression<Op, T1, T2> &expr) // eval two operands
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)));
///////////////////////
// eval two operands
///////////////////////
template <typename Op, typename T1, typename T2> accelerator_inline
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
{
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
}
template <typename Op, typename T1, typename T2, typename T3>
auto inline eval(const unsigned int ss,
const LatticeTrinaryExpression<Op, T1, T2, T3>
&expr) // eval three operands
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)),
eval(ss, std::get<2>(expr.second)))) {
return expr.first.func(eval(ss, std::get<0>(expr.second)),
eval(ss, std::get<1>(expr.second)),
eval(ss, std::get<2>(expr.second)));
///////////////////////
// eval three operands
///////////////////////
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
{
return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
}
//////////////////////////////////////////////////////////////////////////
// Obtain the grid from an expression, ensuring conformable. This must follow a
// tree recursion
// tree recursion; must retain grid pointer in the LatticeView class which sucks
// Use a different method, and make it void *.
// Perhaps a conformable method.
//////////////////////////////////////////////////////////////////////////
template <class T1,
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
{
if (grid) {
conformable(grid, lat._grid);
lat.Conformable(grid);
}
grid = lat._grid;
}
template <class T1,
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void GridFromExpression(GridBase *&grid,
const T1 &notlat) // non-lattice leaf
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
accelerator_inline
void GridFromExpression(GridBase *&grid,const T1 &notlat) // non-lattice leaf
{}
template <typename Op, typename T1>
inline void GridFromExpression(GridBase *&grid,
const LatticeUnaryExpression<Op, T1> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
accelerator_inline
void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
}
template <typename Op, typename T1, typename T2>
inline void GridFromExpression(
GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
GridFromExpression(grid, std::get<1>(expr.second));
accelerator_inline
void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
GridFromExpression(grid, expr.arg2);
}
template <typename Op, typename T1, typename T2, typename T3>
inline void GridFromExpression(
GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
GridFromExpression(grid, std::get<1>(expr.second));
GridFromExpression(grid, std::get<2>(expr.second));
accelerator_inline
void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
GridFromExpression(grid, expr.arg1); // recurse
GridFromExpression(grid, expr.arg2); // recurse
GridFromExpression(grid, expr.arg3); // recurse
}
//////////////////////////////////////////////////////////////////////////
// Obtain the CB from an expression, ensuring conformable. This must follow a
// tree recursion
//////////////////////////////////////////////////////////////////////////
template <class T1,
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
{
if ((cb == Odd) || (cb == Even)) {
assert(cb == lat.checkerboard);
assert(cb == lat.Checkerboard());
}
cb = lat.checkerboard;
// std::cout<<GridLogMessage<<"Lattice leaf cb "<<cb<<std::endl;
cb = lat.Checkerboard();
}
template <class T1,
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
inline void CBFromExpression(int &cb, const T1 &notlat) // non-lattice leaf
{
// std::cout<<GridLogMessage<<"Non lattice leaf cb"<<cb<<std::endl;
}
template <typename Op, typename T1>
inline void CBFromExpression(int &cb,
const LatticeUnaryExpression<Op, T1> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
// std::cout<<GridLogMessage<<"Unary node cb "<<cb<<std::endl;
}
template <typename Op, typename T1, typename T2>
inline void CBFromExpression(int &cb,
const LatticeBinaryExpression<Op, T1, T2> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
CBFromExpression(cb, std::get<1>(expr.second));
// std::cout<<GridLogMessage<<"Binary node cb "<<cb<<std::endl;
template <typename Op, typename T1> inline
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
}
template <typename Op, typename T1, typename T2> inline
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
CBFromExpression(cb, expr.arg2); // recurse AST
}
template <typename Op, typename T1, typename T2, typename T3>
inline void CBFromExpression(
int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
CBFromExpression(cb, std::get<1>(expr.second));
CBFromExpression(cb, std::get<2>(expr.second));
// std::cout<<GridLogMessage<<"Trinary node cb "<<cb<<std::endl;
inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
{
CBFromExpression(cb, expr.arg1); // recurse AST
CBFromExpression(cb, expr.arg2); // recurse AST
CBFromExpression(cb, expr.arg3); // recurse AST
}
////////////////////////////////////////////
@ -220,7 +209,7 @@ inline void CBFromExpression(
#define GridUnopClass(name, ret) \
template <class arg> \
struct name { \
static auto inline func(const arg a) -> decltype(ret) { return ret; } \
static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
};
GridUnopClass(UnarySub, -a);
@ -253,16 +242,18 @@ GridUnopClass(UnaryExp, exp(a));
#define GridBinOpClass(name, combination) \
template <class left, class right> \
struct name { \
static auto inline func(const left &lhs, const right &rhs) \
-> decltype(combination) const { \
static auto accelerator_inline \
func(const left &lhs, const right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
} \
}
};
GridBinOpClass(BinaryAdd, lhs + rhs);
GridBinOpClass(BinarySub, lhs - rhs);
GridBinOpClass(BinaryMul, lhs *rhs);
GridBinOpClass(BinaryDiv, lhs /rhs);
GridBinOpClass(BinaryAnd, lhs &rhs);
GridBinOpClass(BinaryOr, lhs | rhs);
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
@ -274,17 +265,18 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
#define GridTrinOpClass(name, combination) \
template <class predicate, class left, class right> \
struct name { \
static auto inline func(const predicate &pred, const left &lhs, \
const right &rhs) -> decltype(combination) const { \
static auto accelerator_inline \
func(const predicate &pred, const left &lhs, const right &rhs) \
-> decltype(combination) const \
{ \
return combination; \
} \
}
};
GridTrinOpClass(
TrinaryWhere,
(predicatedWhere<predicate, typename std::remove_reference<left>::type,
typename std::remove_reference<right>::type>(pred, lhs,
rhs)));
GridTrinOpClass(TrinaryWhere,
(predicatedWhere<predicate,
typename std::remove_reference<left>::type,
typename std::remove_reference<right>::type>(pred, lhs,rhs)));
////////////////////////////////////////////
// Operator syntactical glue
@ -292,50 +284,32 @@ GridTrinOpClass(
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) \
name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
#define GRID_DEF_UNOP(op, name) \
template <typename T1, \
typename std::enable_if<is_lattice<T1>::value || \
is_lattice_expr<T1>::value, \
T1>::type * = nullptr> \
inline auto op(const T1 &arg) \
->decltype(LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)))) { \
return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg))); \
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \
{ \
return LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \
}
#define GRID_BINOP_LEFT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<is_lattice<T1>::value || \
is_lattice_expr<T1>::value, \
T1>::type * = nullptr> \
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype( \
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), \
std::forward_as_tuple(lhs, rhs)))) { \
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \
{ \
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\
}
#define GRID_BINOP_RIGHT(op, name) \
template <typename T1, typename T2, \
typename std::enable_if<!is_lattice<T1>::value && \
!is_lattice_expr<T1>::value, \
T1>::type * = nullptr, \
typename std::enable_if<is_lattice<T2>::value || \
is_lattice_expr<T2>::value, \
T2>::type * = nullptr> \
typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \
typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \
inline auto op(const T1 &lhs, const T2 &rhs) \
->decltype( \
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), \
std::forward_as_tuple(lhs, rhs)))) { \
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \
{ \
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \
}
#define GRID_DEF_BINOP(op, name) \
@ -345,18 +319,14 @@ GridTrinOpClass(
#define GRID_DEF_TRINOP(op, name) \
template <typename T1, typename T2, typename T3> \
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
->decltype( \
LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
const T3 &>(std::make_pair( \
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)))) { \
return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
const T3 &>(std::make_pair( \
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs))); \
->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \
{ \
return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \
}
////////////////////////
// Operator definitions
////////////////////////
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
@ -400,29 +370,27 @@ GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> ret(
expr);
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second))))>
ret(expr);
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second)),
eval(0, std::get<2>(expr.second))))> {
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
eval(0, std::get<1>(expr.second)),
eval(0, std::get<2>(expr.second))))>
ret(expr);
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))>
{
Lattice<decltype(expr.op.func(eval(0, expr.arg1),
eval(0, expr.arg2),
eval(0, expr.arg3)))> ret(expr);
return ret;
}
@ -433,34 +401,7 @@ auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
#undef GRID_DEF_UNOP
#undef GRID_DEF_BINOP
#undef GRID_DEF_TRINOP
}
#if 0
using namespace Grid;
int main(int argc,char **argv){
Lattice<double> v1(16);
Lattice<double> v2(16);
Lattice<double> v3(16);
BinaryAdd<double,double> tmp;
LatticeBinaryExpression<BinaryAdd<double,double>,Lattice<double> &,Lattice<double> &>
expr(std::make_pair(tmp,
std::forward_as_tuple(v1,v2)));
tmp.func(eval(0,v1),eval(0,v2));
auto var = v1+v2;
std::cout<<GridLogMessage<<typeid(var).name()<<std::endl;
v3=v1+v2;
v3=v1+v2+v1*v2;
};
void testit(Lattice<double> &v1,Lattice<double> &v2,Lattice<double> &v3)
{
v3=v1+v2+v1*v2;
}
#endif
NAMESPACE_END(Grid);
#endif

View File

@ -28,228 +28,230 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_LATTICE_ARITH_H
#define GRID_LATTICE_ARITH_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
ret.Checkerboard() = lhs.Checkerboard();
auto ret_v = ret.View();
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mult(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mult(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t = lhs_v(ss);
auto rhs_t = rhs_v(ss);
mult(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mac(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mac(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
auto ret_v = ret.View();
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
sub(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
auto ret_v = ret.View();
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
sub(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
}
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = lhs.checkerboard;
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,rhs);
conformable(lhs,rhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs._odata[ss],&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
add(&ret._odata[ss],&lhs._odata[ss],&rhs._odata[ss]);
#endif
}
auto ret_v = ret.View();
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
auto rhs_t=rhs_v(ss);
add(&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
obj1 tmp;
mult(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
}
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
mult(&tmp,&lhs_v(ss),&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
obj1 tmp;
mac(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
}
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
mac(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
ret.Checkerboard() = lhs.Checkerboard();
conformable(ret,lhs);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
#else
sub(&ret._odata[ss],&lhs._odata[ss],&rhs);
#endif
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
sub(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
}
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
ret.checkerboard = lhs.checkerboard;
ret.Checkerboard() = lhs.Checkerboard();
conformable(lhs,ret);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs._odata[ss],&rhs);
vstream(ret._odata[ss],tmp);
#else
add(&ret._odata[ss],&lhs._odata[ss],&rhs);
#endif
}
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto lhs_t=lhs_v(ss);
add(&tmp,&lhs_t,&rhs);
coalescedWrite(ret_v[ss],tmp);
});
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mult(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mult(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
auto ret_v = ret.View();
auto rhs_v = lhs.View();
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
mult(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
mac(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
mac(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
auto ret_v = ret.View();
auto rhs_v = lhs.View();
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
mac(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
sub(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
sub(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
auto ret_v = ret.View();
auto rhs_v = lhs.View();
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
sub(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
}
template<class obj1,class obj2,class obj3> strong_inline
template<class obj1,class obj2,class obj3> inline
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
ret.checkerboard = rhs.checkerboard;
ret.Checkerboard() = rhs.Checkerboard();
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
#ifdef STREAMING_STORES
obj1 tmp;
add(&tmp,&lhs,&rhs._odata[ss]);
vstream(ret._odata[ss],tmp);
#else
add(&ret._odata[ss],&lhs,&rhs._odata[ss]);
#endif
}
auto ret_v = ret.View();
auto rhs_v = lhs.View();
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
decltype(coalescedRead(obj1())) tmp;
auto rhs_t=rhs_v(ss);
add(&tmp,&lhs,&rhs_t);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> strong_inline
template<class sobj,class vobj> inline
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.checkerboard = x.checkerboard;
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
parallel_for(int ss=0;ss<x._grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = a*x._odata[ss]+y._odata[ss];
vstream(ret._odata[ss],tmp);
#else
ret._odata[ss]=a*x._odata[ss]+y._odata[ss];
#endif
auto ret_v = ret.View();
auto x_v = x.View();
auto y_v = y.View();
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+y_v(ss);
coalescedWrite(ret_v[ss],tmp);
});
}
}
template<class sobj,class vobj> strong_inline
template<class sobj,class vobj> inline
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.checkerboard = x.checkerboard;
ret.Checkerboard() = x.Checkerboard();
conformable(ret,x);
conformable(x,y);
parallel_for(int ss=0;ss<x._grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = a*x._odata[ss]+b*y._odata[ss];
vstream(ret._odata[ss],tmp);
#else
ret._odata[ss]=a*x._odata[ss]+b*y._odata[ss];
#endif
}
auto ret_v = ret.View();
auto x_v = x.View();
auto y_v = y.View();
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(ret_v[ss],tmp);
});
}
template<class sobj,class vobj> strong_inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
template<class sobj,class vobj> inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
return axpy_norm_fast(ret,a,x,y);
}
template<class sobj,class vobj> strong_inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
template<class sobj,class vobj> inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
return axpby_norm_fast(ret,a,b,x,y);
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -28,311 +28,428 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_BASE_H
#define GRID_LATTICE_BASE_H
#pragma once
#define STREAMING_STORES
namespace Grid {
// TODO:
// mac,real,imag
// Functionality:
// -=,+=,*=,()
// add,+,sub,-,mult,mac,*
// adj,conjugate
// real,imag
// transpose,transposeIndex
// trace,traceIndex
// peekIndex
// innerProduct,outerProduct,
// localNorm2
// localInnerProduct
NAMESPACE_BEGIN(Grid);
extern int GridCshiftPermuteMap[4][16];
////////////////////////////////////////////////
// Basic expressions used in Expression Template
////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// Base class which can be used by traits to pick up behaviour
///////////////////////////////////////////////////////////////////
class LatticeBase {};
class LatticeBase
/////////////////////////////////////////////////////////////////////////////////////////
// Conformable checks; same instance of Grid required
/////////////////////////////////////////////////////////////////////////////////////////
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
{
assert(lhs == rhs);
}
////////////////////////////////////////////////////////////////////////////
// Minimal base class containing only data valid to access from accelerator
// _odata will be a managed pointer in CUDA
////////////////////////////////////////////////////////////////////////////
// Force access to lattice through a view object.
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
// strict since host could could in principle direct access through the lattice object
// Need to decide programming model.
#define LATTICE_VIEW_STRICT
template<class vobj> class LatticeAccelerator : public LatticeBase
{
protected:
GridBase *_grid;
int checkerboard;
vobj *_odata; // A managed pointer
uint64_t _odata_size;
public:
accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr) { };
accelerator_inline uint64_t oSites(void) const { return _odata_size; };
accelerator_inline int Checkerboard(void) const { return checkerboard; };
accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
accelerator_inline void Conformable(GridBase * &grid) const
{
if (grid) conformable(grid, _grid);
else grid = _grid;
};
};
/////////////////////////////////////////////////////////////////////////////////////////
// A View class which provides accessor to the data.
// This will be safe to call from accelerator_for and is trivially copy constructible
// The copy constructor for this will need to be used by device lambda functions
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class LatticeView : public LatticeAccelerator<vobj>
{
public:
virtual ~LatticeBase(void) = default;
GridBase *_grid;
// Rvalue
#ifdef __CUDA_ARCH__
accelerator_inline const typename vobj::scalar_object operator()(size_t i) const { return coalescedRead(this->_odata[i]); }
#else
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
#endif
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
accelerator_inline uint64_t begin(void) const { return 0;};
accelerator_inline uint64_t end(void) const { return this->_odata_size; };
accelerator_inline uint64_t size(void) const { return this->_odata_size; };
LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me)
{
}
};
/////////////////////////////////////////////////////////////////////////////////////////
// Lattice expression types used by ET to assemble the AST
//
// Need to be able to detect code paths according to the whether a lattice object or not
// so introduce some trait type things
/////////////////////////////////////////////////////////////////////////////////////////
class LatticeExpressionBase {};
template <typename Op, typename T1>
class LatticeUnaryExpression : public std::pair<Op,std::tuple<T1> > , public LatticeExpressionBase {
public:
LatticeUnaryExpression(const std::pair<Op,std::tuple<T1> > &arg): std::pair<Op,std::tuple<T1> >(arg) {};
};
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
template <typename Op, typename T1, typename T2>
class LatticeBinaryExpression : public std::pair<Op,std::tuple<T1,T2> > , public LatticeExpressionBase {
public:
LatticeBinaryExpression(const std::pair<Op,std::tuple<T1,T2> > &arg): std::pair<Op,std::tuple<T1,T2> >(arg) {};
};
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
template<class T> struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
template <typename Op, typename T1, typename T2, typename T3>
class LatticeTrinaryExpression :public std::pair<Op,std::tuple<T1,T2,T3> >, public LatticeExpressionBase {
public:
LatticeTrinaryExpression(const std::pair<Op,std::tuple<T1,T2,T3> > &arg): std::pair<Op,std::tuple<T1,T2,T3> >(arg) {};
};
void inline conformable(GridBase *lhs,GridBase *rhs)
template <typename Op, typename _T1>
class LatticeUnaryExpression : public LatticeExpressionBase
{
assert((lhs == rhs) && " conformable check pointers mismatch ");
}
public:
typedef typename ViewMap<_T1>::Type T1;
Op op;
T1 arg1;
LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
};
template <typename Op, typename _T1, typename _T2>
class LatticeBinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
Op op;
T1 arg1;
T2 arg2;
LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
};
template <typename Op, typename _T1, typename _T2, typename _T3>
class LatticeTrinaryExpression : public LatticeExpressionBase
{
public:
typedef typename ViewMap<_T1>::Type T1;
typedef typename ViewMap<_T2>::Type T2;
typedef typename ViewMap<_T3>::Type T3;
Op op;
T1 arg1;
T2 arg2;
T3 arg3;
LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
};
/////////////////////////////////////////////////////////////////////////////////////////
// The real lattice class, with normal copy and assignment semantics.
// This contains extra (host resident) grid pointer data that may be accessed by host code
/////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
class Lattice : public LatticeBase
class Lattice : public LatticeAccelerator<vobj>
{
public:
int checkerboard;
Vector<vobj> _odata;
// to pthread need a computable loop where loop induction is not required
int begin(void) { return 0;};
int end(void) { return _odata.size(); }
vobj & operator[](int i) { return _odata[i]; };
const vobj & operator[](int i) const { return _odata[i]; };
public:
GridBase *Grid(void) const { return this->_grid; }
///////////////////////////////////////////////////
// Member types
///////////////////////////////////////////////////
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef vobj vector_object;
private:
void dealloc(void)
{
alignedAllocator<vobj> alloc;
if( this->_odata_size ) {
alloc.deallocate(this->_odata,this->_odata_size);
this->_odata=nullptr;
this->_odata_size=0;
}
}
void resize(uint64_t size)
{
alignedAllocator<vobj> alloc;
if ( this->_odata_size != size ) {
dealloc();
}
this->_odata_size = size;
if ( size )
this->_odata = alloc.allocate(this->_odata_size);
else
this->_odata = nullptr;
}
public:
/////////////////////////////////////////////////////////////////////////////////
// Return a view object that may be dereferenced in site loops.
// The view is trivially copy constructible and may be copied to an accelerator device
// in device lambdas
/////////////////////////////////////////////////////////////////////////////////
LatticeView<vobj> View (void) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
return accessor;
}
~Lattice() {
if ( this->_odata_size ) {
dealloc();
}
}
////////////////////////////////////////////////////////////////////////////////
// Expression Template closure support
////////////////////////////////////////////////////////////////////////////////
template <typename Op, typename T1> strong_inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(_grid,egrid);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
this->checkerboard=cb;
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
auto me = View();
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,expr);
vstream(me[ss],tmp);
});
return *this;
}
template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(_grid,egrid);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
this->checkerboard=cb;
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
auto me = View();
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,expr);
vstream(me[ss],tmp);
});
return *this;
}
template <typename Op, typename T1,typename T2,typename T3> strong_inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
assert(egrid!=nullptr);
conformable(_grid,egrid);
conformable(this->_grid,egrid);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
//vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,eval(ss,expr));
#else
_odata[ss] = eval(ss,expr);
#endif
}
this->checkerboard=cb;
auto me = View();
accelerator_for(ss,me.size(),1,{
auto tmp = eval(ss,expr);
vstream(me[ss],tmp);
});
return *this;
}
//GridFromExpression is tricky to do
template<class Op,class T1>
Lattice(const LatticeUnaryExpression<Op,T1> & expr) {
_grid = nullptr;
GridFromExpression(_grid,expr);
assert(_grid!=nullptr);
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
this->checkerboard=cb;
_odata.resize(_grid->oSites());
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
resize(this->_grid->oSites());
*this = expr;
}
};
template<class Op,class T1, class T2>
Lattice(const LatticeBinaryExpression<Op,T1,T2> & expr) {
_grid = nullptr;
GridFromExpression(_grid,expr);
assert(_grid!=nullptr);
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
this->checkerboard=cb;
_odata.resize(_grid->oSites());
parallel_for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
resize(this->_grid->oSites());
*this = expr;
}
};
template<class Op,class T1, class T2, class T3>
Lattice(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) {
_grid = nullptr;
GridFromExpression(_grid,expr);
assert(_grid!=nullptr);
this->_grid = nullptr;
GridFromExpression(this->_grid,expr);
assert(this->_grid!=nullptr);
int cb=-1;
CBFromExpression(cb,expr);
assert( (cb==Odd) || (cb==Even));
checkerboard=cb;
this->checkerboard=cb;
_odata.resize(_grid->oSites());
parallel_for(int ss=0;ss<_grid->oSites();ss++){
vstream(_odata[ss] ,eval(ss,expr));
resize(this->_grid->oSites());
*this = expr;
}
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
auto me = View();
thread_for(ss,me.size(),{
me[ss] = r;
});
return *this;
}
};
//////////////////////////////////////////////////////////////////
// Constructor requires "grid" passed.
// what about a default grid?
//////////////////////////////////////////////////////////////////
Lattice(GridBase *grid) : _odata(grid->oSites()) {
_grid = grid;
// _odata.reserve(_grid->oSites());
// _odata.resize(_grid->oSites());
// std::cout << "Constructing lattice object with Grid pointer "<<_grid<<std::endl;
assert((((uint64_t)&_odata[0])&0xF) ==0);
checkerboard=0;
// Follow rule of five, with Constructor requires "grid" passed
// to user defined constructor
///////////////////////////////////////////
// user defined constructor
///////////////////////////////////////////
Lattice(GridBase *grid) {
this->_grid = grid;
resize(this->_grid->oSites());
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
this->checkerboard=0;
}
Lattice(const Lattice& r){ // copy constructor
_grid = r._grid;
checkerboard = r.checkerboard;
_odata.resize(_grid->oSites());// essential
parallel_for(int ss=0;ss<_grid->oSites();ss++){
_odata[ss]=r._odata[ss];
}
}
Lattice(Lattice&& r){ // move constructor
_grid = r._grid;
checkerboard = r.checkerboard;
_odata=std::move(r._odata);
}
inline Lattice<vobj> & operator = (Lattice<vobj> && r)
{
_grid = r._grid;
checkerboard = r.checkerboard;
_odata =std::move(r._odata);
return *this;
}
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
_grid = r._grid;
checkerboard = r.checkerboard;
_odata.resize(_grid->oSites());// essential
parallel_for(int ss=0;ss<_grid->oSites();ss++){
_odata[ss]=r._odata[ss];
}
return *this;
}
template<class robj> strong_inline Lattice<vobj> & operator = (const Lattice<robj> & r){
this->checkerboard = r.checkerboard;
conformable(*this,r);
parallel_for(int ss=0;ss<_grid->oSites();ss++){
this->_odata[ss]=r._odata[ss];
}
return *this;
}
virtual ~Lattice(void) = default;
// virtual ~Lattice(void) = default;
void reset(GridBase* grid) {
if (_grid != grid) {
_grid = grid;
_odata.resize(grid->oSites());
checkerboard = 0;
if (this->_grid != grid) {
this->_grid = grid;
this->_odata.resize(grid->oSites());
this->checkerboard = 0;
}
}
template<class sobj> strong_inline Lattice<vobj> & operator = (const sobj & r){
parallel_for(int ss=0;ss<_grid->oSites();ss++){
this->_odata[ss]=r;
///////////////////////////////////////////
// copy constructor
///////////////////////////////////////////
Lattice(const Lattice& r){
// std::cout << "Lattice constructor(const Lattice &) "<<this<<std::endl;
this->_grid = r.Grid();
resize(this->_grid->oSites());
*this = r;
}
///////////////////////////////////////////
// move constructor
///////////////////////////////////////////
Lattice(Lattice && r){
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
}
///////////////////////////////////////////
// assignment template
///////////////////////////////////////////
template<class robj> inline Lattice<vobj> & operator = (const Lattice<robj> & r){
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r);
this->checkerboard = r.Checkerboard();
auto me = View();
auto him= r.View();
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
return *this;
}
///////////////////////////////////////////
// Copy assignment
///////////////////////////////////////////
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
this->checkerboard = r.Checkerboard();
conformable(*this,r);
auto me = View();
auto him= r.View();
accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss));
});
return *this;
}
///////////////////////////////////////////
// Move assignment possible if same type
///////////////////////////////////////////
inline Lattice<vobj> & operator = (Lattice<vobj> && r){
resize(0); // deletes if appropriate
this->_grid = r.Grid();
this->_odata = r._odata;
this->_odata_size = r._odata_size;
this->checkerboard= r.Checkerboard();
r._odata = nullptr;
r._odata_size = 0;
return *this;
}
/////////////////////////////////////////////////////////////////////////////
// *=,+=,-= operators inherit behvour from correspond */+/- operation
template<class T> strong_inline Lattice<vobj> &operator *=(const T &r) {
/////////////////////////////////////////////////////////////////////////////
template<class T> inline Lattice<vobj> &operator *=(const T &r) {
*this = (*this)*r;
return *this;
}
template<class T> strong_inline Lattice<vobj> &operator -=(const T &r) {
template<class T> inline Lattice<vobj> &operator -=(const T &r) {
*this = (*this)-r;
return *this;
}
template<class T> strong_inline Lattice<vobj> &operator +=(const T &r) {
template<class T> inline Lattice<vobj> &operator +=(const T &r) {
*this = (*this)+r;
return *this;
}
friend inline void swap(Lattice &l, Lattice &r) {
conformable(l,r);
LatticeAccelerator<vobj> tmp;
LatticeAccelerator<vobj> *lp = (LatticeAccelerator<vobj> *)&l;
LatticeAccelerator<vobj> *rp = (LatticeAccelerator<vobj> *)&r;
tmp = *lp; *lp=*rp; *rp=tmp;
}
}; // class Lattice
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
std::vector<int> gcoor;
typedef typename vobj::scalar_object sobj;
for(int g=0;g<o.Grid()->_gsites;g++){
Coordinate gcoor;
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
sobj ss;
for(int g=0;g<o._grid->_gsites;g++){
o._grid->GlobalIndexToGlobalCoor(g,gcoor);
peekSite(ss,o,gcoor);
stream<<"[";
for(int d=0;d<gcoor.size();d++){
@ -345,31 +462,5 @@ public:
return stream;
}
}
NAMESPACE_END(Grid);
#include "Lattice_conformable.h"
#define GRID_LATTICE_EXPRESSION_TEMPLATES
#ifdef GRID_LATTICE_EXPRESSION_TEMPLATES
#include "Lattice_ET.h"
#else
#include "Lattice_overload.h"
#endif
#include "Lattice_arith.h"
#include "Lattice_trace.h"
#include "Lattice_transpose.h"
#include "Lattice_local.h"
#include "Lattice_reduction.h"
#include "Lattice_peekpoke.h"
#include "Lattice_reality.h"
#include "Lattice_comparison_utils.h"
#include "Lattice_comparison.h"
#include "Lattice_coordinate.h"
#include "Lattice_where.h"
#include "Lattice_rng.h"
#include "Lattice_unary.h"
#include "Lattice_transfer.h"
#endif

View File

@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_LATTICE_COMPARISON_H
#define GRID_LATTICE_COMPARISON_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////////
// relational operators
@ -40,40 +40,78 @@ namespace Grid {
//Query supporting logical &&, ||,
//////////////////////////////////////////////////////////////////////////
typedef iScalar<vInteger> vPredicate ;
/*
template <class iobj, class vobj, class robj> accelerator_inline
vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)
{
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
ExtractBuffer<Integer> mask(Nsimd);
ExtractBuffer<scalar_object> truevals(Nsimd);
ExtractBuffer<scalar_object> falsevals(Nsimd);
extract(iftrue, truevals);
extract(iffalse, falsevals);
extract<vInteger, Integer>(TensorRemove(predicate), mask);
for (int s = 0; s < Nsimd; s++) {
if (mask[s]) falsevals[s] = truevals[s];
}
merge(ret, falsevals);
return ret;
}
*/
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vInteger> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs._odata[ss]);
}
Lattice<vPredicate> ret(rhs.Grid());
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
auto ret_v = ret.View();
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare lattice to scalar
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
Lattice<vInteger> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
Lattice<vPredicate> ret(lhs.Grid());
auto lhs_v = lhs.View();
auto ret_v = ret.View();
thread_for( ss, lhs_v.size(), {
ret_v[ss]=op(lhs_v[ss],rhs);
});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare scalar to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
Lattice<vInteger> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=op(lhs._odata[ss],rhs);
}
Lattice<vPredicate> ret(rhs.Grid());
auto rhs_v = rhs.View();
auto ret_v = ret.View();
thread_for( ss, rhs_v.size(), {
ret_v[ss]=op(lhs,rhs_v[ss]);
});
return ret;
}
@ -82,88 +120,88 @@ namespace Grid {
//////////////////////////////////////////////////////////////////////////
// Less than
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
inline Lattice<vPredicate> operator < (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vlt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator < (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vlt<lobj,robj>(),lhs,rhs);
}
// Less than equal
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
inline Lattice<vPredicate> operator <= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vle<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator <= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vle<lobj,robj>(),lhs,rhs);
}
// Greater than
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
inline Lattice<vPredicate> operator > (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vgt<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator > (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vgt<lobj,robj>(),lhs,rhs);
}
// Greater than equal
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
inline Lattice<vPredicate> operator >= (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vge<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator >= (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vge<lobj,robj>(),lhs,rhs);
}
// equal
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
inline Lattice<vPredicate> operator == (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(veq<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator == (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(veq<lobj,robj>(),lhs,rhs);
}
// not equal
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
return LLComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
inline Lattice<vPredicate> operator != (const Lattice<lobj> & lhs, const robj & rhs) {
return LSComparison(vne<lobj,robj>(),lhs,rhs);
}
template<class lobj,class robj>
inline Lattice<vInteger> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
inline Lattice<vPredicate> operator != (const lobj & lhs, const Lattice<robj> & rhs) {
return SLComparison(vne<lobj,robj>(),lhs,rhs);
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -26,10 +26,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_COMPARISON_H
#define GRID_COMPARISON_H
namespace Grid {
#pragma once
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////
// This implementation is a bit poor.
@ -44,42 +44,42 @@ namespace Grid {
//
template<class lobj,class robj> class veq {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class vne {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class vlt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class vle {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class vgt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class vge {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
accelerator vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
@ -88,42 +88,42 @@ namespace Grid {
// Generic list of functors
template<class lobj,class robj> class seq {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class sne {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class slt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class sle {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class sgt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class sge {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
accelerator Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
@ -133,12 +133,12 @@ namespace Grid {
// Integer and real get extra relational functions.
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<scalar> vrhs(vsimd::Nsimd());
std::vector<Integer> vpred(vsimd::Nsimd());
ExtractBuffer<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<scalar> vrhs(vsimd::Nsimd());
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
extract<vsimd,scalar>(rhs,vrhs);
@ -150,11 +150,11 @@ namespace Grid {
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
accelerator_inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
{
typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vpred(vsimd::Nsimd());
ExtractBuffer<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
for(int s=0;s<vsimd::Nsimd();s++){
@ -165,11 +165,11 @@ namespace Grid {
}
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
accelerator_inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
{
typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vpred(vsimd::Nsimd());
ExtractBuffer<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
ExtractBuffer<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
@ -181,30 +181,30 @@ namespace Grid {
#define DECLARE_RELATIONAL_EQ(op,functor) \
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\
accelerator_inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
accelerator_inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
accelerator_inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
{ \
return lhs._internal op rhs; \
} \
template<class vsimd>\
inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
accelerator_inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
{ \
return lhs op rhs._internal; \
} \
@ -212,7 +212,7 @@ namespace Grid {
#define DECLARE_RELATIONAL(op,functor) \
DECLARE_RELATIONAL_EQ(op,functor) \
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
accelerator_inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
{ \
return lhs._internal op rhs._internal; \
}
@ -226,7 +226,7 @@ DECLARE_RELATIONAL(!=,sne);
#undef DECLARE_RELATIONAL
}
NAMESPACE_END(Grid);
#endif

View File

@ -28,13 +28,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_LATTICE_CONFORMABLE_H
#define GRID_LATTICE_CONFORMABLE_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class obj1,class obj2> void conformable(const Lattice<obj1> &lhs,const Lattice<obj2> &rhs)
{
assert(lhs._grid == rhs._grid);
assert(lhs.checkerboard == rhs.checkerboard);
assert(lhs.Grid() == rhs.Grid());
assert(lhs.Checkerboard() == rhs.Checkerboard());
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -25,32 +25,50 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_COORDINATE_H
#define GRID_LATTICE_COORDINATE_H
#pragma once
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
{
typedef typename iobj::scalar_type scalar_type;
typedef typename iobj::vector_type vector_type;
GridBase *grid = l._grid;
GridBase *grid = l.Grid();
int Nsimd = grid->iSites();
std::vector<int> gcoor;
std::vector<scalar_type> mergebuf(Nsimd);
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
vector_type vI;
auto l_v = l.View();
for(int o=0;o<grid->oSites();o++){
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
}
merge<vector_type,scalar_type>(vI,mergebuf);
l._odata[o]=vI;
l_v[o]=vI;
}
};
// LatticeCoordinate();
// FIXME for debug; deprecate this; made obscelete by
template<class vobj> void lex_sites(Lattice<vobj> &l){
auto l_v = l.View();
Real *v_ptr = (Real *)&l_v[0];
size_t o_len = l.Grid()->oSites();
size_t v_len = sizeof(vobj)/sizeof(vRealF);
size_t vec_len = vRealF::Nsimd();
for(int i=0;i<o_len;i++){
for(int j=0;j<v_len;j++){
for(int vv=0;vv<vec_len;vv+=2){
v_ptr[i*v_len*vec_len+j*vec_len+vv ]= i+vv*500;
v_ptr[i*v_len*vec_len+j*vec_len+vv+1]= i+vv*500;
}
#endif
}}
}
NAMESPACE_END(Grid);

View File

@ -32,7 +32,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
// localInner, localNorm, outerProduct
///////////////////////////////////////////////
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////
// Non site, reduced locally reduced routines
@ -42,10 +42,12 @@ namespace Grid {
template<class vobj>
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=innerProduct(rhs._odata[ss],rhs._odata[ss]);
}
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
auto rhs_v = rhs.View();
auto ret_v = ret.View();
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
});
return ret;
}
@ -53,23 +55,33 @@ namespace Grid {
template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=innerProduct(lhs._odata[ss],rhs._odata[ss]);
}
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
auto ret_v = ret.View();
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
});
return ret;
}
// outerProduct Scalar x Scalar -> Scalar
// Vector x Vector -> Matrix
template<class ll,class rr>
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))>
inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Lattice<decltype(outerProduct(ll(),rr()))>
{
Lattice<decltype(outerProduct(lhs._odata[0],rhs._odata[0]))> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=outerProduct(lhs._odata[ss],rhs._odata[ss]);
}
typedef decltype(coalescedRead(ll())) sll;
typedef decltype(coalescedRead(rr())) srr;
Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
auto ret_v = ret.View();
accelerator_for(ss,rhs_v.size(),1,{
// FIXME had issues with scalar version of outer
// Use vector [] operator and don't read coalesce this loop
ret_v[ss]=outerProduct(lhs_v[ss],rhs_v[ss]);
});
return ret;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,202 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reduction.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/Grid_Eigen_Dense.h>
#ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert all these reduction loops are NOT threaded "
#endif
NAMESPACE_BEGIN(Grid);
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
auto X_v = X.View();
auto Y_v = Y.View();
auto R_v = R.View();
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_loop_collapse2( (int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
assert( FullGrid->_simd_layout[Orthog]==1);
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
auto X_v = X.View();
auto R_v = R.View();
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_loop_collapse2( (int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
// Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
auto lhs_v = lhs.View();
auto rhs_v = rhs.View();
thread_region {
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
thread_loop_collapse2((int n=0;n<nblock;n++),{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
ComplexD z = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(z),imag(z));
}}
}});
thread_critical {
mat += mat_thread;
}
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
}
NAMESPACE_END(Grid);

View File

@ -1,138 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_overload.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_OVERLOAD_H
#define GRID_LATTICE_OVERLOAD_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////////////////
// unary negation
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline Lattice<vobj> operator -(const Lattice<vobj> &r)
{
Lattice<vobj> ret(r._grid);
parallel_for(int ss=0;ss<r._grid->oSites();ss++){
vstream(ret._odata[ss], -r._odata[ss]);
}
return ret;
}
/////////////////////////////////////////////////////////////////////////////////////
// Lattice BinOp Lattice,
//NB mult performs conformable check. Do not reapply here for performance.
/////////////////////////////////////////////////////////////////////////////////////
template<class left,class right>
inline auto operator * (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]*rhs._odata[0])>
{
Lattice<decltype(lhs._odata[0]*rhs._odata[0])> ret(rhs._grid);
mult(ret,lhs,rhs);
return ret;
}
template<class left,class right>
inline auto operator + (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]+rhs._odata[0])>
{
Lattice<decltype(lhs._odata[0]+rhs._odata[0])> ret(rhs._grid);
add(ret,lhs,rhs);
return ret;
}
template<class left,class right>
inline auto operator - (const Lattice<left> &lhs,const Lattice<right> &rhs)-> Lattice<decltype(lhs._odata[0]-rhs._odata[0])>
{
Lattice<decltype(lhs._odata[0]-rhs._odata[0])> ret(rhs._grid);
sub(ret,lhs,rhs);
return ret;
}
// Scalar BinOp Lattice ;generate return type
template<class left,class right>
inline auto operator * (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs*rhs._odata[0])>
{
Lattice<decltype(lhs*rhs._odata[0])> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs*rhs._odata[0]) tmp=lhs*rhs._odata[ss];
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs*rhs._odata[ss];
}
return ret;
}
template<class left,class right>
inline auto operator + (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs+rhs._odata[0])>
{
Lattice<decltype(lhs+rhs._odata[0])> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs+rhs._odata[0]) tmp =lhs-rhs._odata[ss];
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs+rhs._odata[ss];
}
return ret;
}
template<class left,class right>
inline auto operator - (const left &lhs,const Lattice<right> &rhs) -> Lattice<decltype(lhs-rhs._odata[0])>
{
Lattice<decltype(lhs-rhs._odata[0])> ret(rhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs-rhs._odata[0]) tmp=lhs-rhs._odata[ss];
vstream(ret._odata[ss],tmp);
}
return ret;
}
template<class left,class right>
inline auto operator * (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]*rhs)>
{
Lattice<decltype(lhs._odata[0]*rhs)> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites(); ss++){
decltype(lhs._odata[0]*rhs) tmp =lhs._odata[ss]*rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]*rhs;
}
return ret;
}
template<class left,class right>
inline auto operator + (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]+rhs)>
{
Lattice<decltype(lhs._odata[0]+rhs)> ret(lhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs._odata[0]+rhs) tmp=lhs._odata[ss]+rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]+rhs;
}
return ret;
}
template<class left,class right>
inline auto operator - (const Lattice<left> &lhs,const right &rhs) -> Lattice<decltype(lhs._odata[0]-rhs)>
{
Lattice<decltype(lhs._odata[0]-rhs)> ret(lhs._grid);
parallel_for(int ss=0;ss<rhs._grid->oSites(); ss++){
decltype(lhs._odata[0]-rhs) tmp=lhs._odata[ss]-rhs;
vstream(ret._odata[ss],tmp);
// ret._odata[ss]=lhs._odata[ss]-rhs;
}
return ret;
}
}
#endif

View File

@ -34,29 +34,35 @@ Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
// Peeking and poking around
///////////////////////////////////////////////
namespace Grid {
NAMESPACE_BEGIN(Grid);
// FIXME accelerator_loop and accelerator_inline these
////////////////////////////////////////////////////////////////////////////////////////////////////
// Peek internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i))>
auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Index>(vobj(),i))>
{
Lattice<decltype(peekIndex<Index>(lhs._odata[0],i))> ret(lhs._grid);
ret.checkerboard=lhs.checkerboard;
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i);
}
Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
auto ret_v = ret.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
});
return ret;
};
template<int Index,class vobj>
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))>
auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekIndex<Index>(vobj(),i,j))>
{
Lattice<decltype(peekIndex<Index>(lhs._odata[0],i,j))> ret(lhs._grid);
ret.checkerboard=lhs.checkerboard;
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = peekIndex<Index>(lhs._odata[ss],i,j);
}
Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
ret.Checkerboard()=lhs.Checkerboard();
auto ret_v = ret.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
});
return ret;
};
@ -64,34 +70,38 @@ namespace Grid {
// Poke internal indices of a Lattice object
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0))> & rhs,int i)
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
{
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i);
}
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
});
}
template<int Index,class vobj>
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(lhs._odata[0],0,0))> & rhs,int i,int j)
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
{
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
pokeIndex<Index>(lhs._odata[ss],rhs._odata[ss],i,j);
}
auto rhs_v = rhs.View();
auto lhs_v = lhs.View();
thread_for( ss, lhs_v.size(), {
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
});
}
//////////////////////////////////////////////////////
// Poke a scalar object into the SIMD array
//////////////////////////////////////////////////////
template<class vobj,class sobj>
void pokeSite(const sobj &s,Lattice<vobj> &l,const std::vector<int> &site){
void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l._grid;
GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.checkerboard== l._grid->CheckerBoard(site));
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx;
@ -99,13 +109,13 @@ namespace Grid {
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
grid->Broadcast(grid->BossRank(),s);
std::vector<sobj> buf(Nsimd);
// extract-modify-merge cycle is easiest way and this is not perf critical
ExtractBuffer<sobj> buf(Nsimd);
auto l_v = l.View();
if ( rank == grid->ThisRank() ) {
extract(l._odata[odx],buf);
extract(l_v[odx],buf);
buf[idx] = s;
merge(l._odata[odx],buf);
merge(l_v[odx],buf);
}
return;
@ -116,22 +126,23 @@ namespace Grid {
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekSite(sobj &s,const Lattice<vobj> &l,const std::vector<int> &site){
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l._grid;
GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.checkerboard == l._grid->CheckerBoard(site));
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
std::vector<sobj> buf(Nsimd);
extract(l._odata[odx],buf);
ExtractBuffer<sobj> buf(Nsimd);
auto l_v = l.View();
extract(l_v[odx],buf);
s = buf[idx];
@ -145,16 +156,16 @@ namespace Grid {
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekLocalSite(sobj &s,const Lattice<vobj> &l,std::vector<int> &site){
void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
GridBase *grid = l._grid;
GridBase *grid = l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.checkerboard== l._grid->CheckerBoard(site));
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
@ -162,7 +173,8 @@ namespace Grid {
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l._odata[odx];
auto l_v = l.View();
scalar_type * vp = (scalar_type *)&l_v[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
@ -173,16 +185,16 @@ namespace Grid {
};
template<class vobj,class sobj>
void pokeLocalSite(const sobj &s,Lattice<vobj> &l,std::vector<int> &site){
void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate &site){
GridBase *grid=l._grid;
GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd();
assert( l.checkerboard== l._grid->CheckerBoard(site));
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
static const int words=sizeof(vobj)/sizeof(vector_type);
@ -190,9 +202,9 @@ namespace Grid {
idx= grid->iIndex(site);
odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l._odata[odx];
auto l_v = l.View();
scalar_type * vp = (scalar_type *)&l_v[odx];
scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){
vp[idx+w*Nsimd] = pt[w];
}
@ -200,6 +212,6 @@ namespace Grid {
return;
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -36,22 +36,28 @@ Author: neo <cossu@post.kek.jp>
// The choice of burying complex in the SIMD
// is making the use of "real" and "imag" very cumbersome
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = adj(lhs._odata[ss]);
}
Lattice<vobj> ret(lhs.Grid());
auto lhs_v = lhs.View();
auto ret_v = ret.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], adj(lhs_v(ss)));
});
return ret;
};
template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = conjugate(lhs._odata[ss]);
}
Lattice<vobj> ret(lhs.Grid());
auto lhs_v = lhs.View();
auto ret_v = ret.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite( ret_v[ss] , conjugate(lhs_v(ss)));
});
return ret;
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -19,22 +19,76 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REDUCTION_H
#define GRID_LATTICE_REDUCTION_H
#pragma once
#include <Grid/Grid_Eigen_Dense.h>
namespace Grid {
#ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert all these reduction loops are NOT threaded "
#ifdef GRID_NVCC
#include <Grid/lattice/Lattice_reduction_gpu.h>
#endif
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////
// FIXME this should promote to double and accumulate
//////////////////////////////////////////////////////
template<class vobj>
inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_object sobj;
const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
vobj vvsum=Zero();
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg[ss];
}
sumarray[thr]=Reduce(vvsum);
});
sobj ssum=Zero(); // sum across threads
for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i];
}
return ssum;
}
template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{
#ifdef GRID_NVCC
return sum_gpu(arg,osites);
#else
return sum_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
auto arg_v = arg.View();
Integer osites = arg.Grid()->oSites();
auto ssum= sum(&arg_v[0],osites);
arg.Grid()->GlobalSum(ssum);
return ssum;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
auto nrm = innerProduct(arg,arg);
return std::real(nrm);
ComplexD nrm = innerProduct(arg,arg);
return real(nrm);
}
// Double inner product
@ -43,32 +97,49 @@ inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &righ
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
GridBase *grid = left._grid;
const int pad = 8;
ComplexD nrm;
ComplexD inner;
Vector<ComplexD> sumarray(grid->SumArraySize()*pad);
GridBase *grid = left.Grid();
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(left._grid->oSites(),thr,mywork,myoff);
// Might make all code paths go this way.
auto left_v = left.View();
auto right_v=right.View();
decltype(innerProductD(left._odata[0],right._odata[0])) vinner=zero; // private to thread; sub summation
for(int ss=myoff;ss<mywork+myoff; ss++){
vinner = vinner + innerProductD(left._odata[ss],right._odata[ss]);
}
// All threads sum across SIMD; reduce serial work at end
// one write per cacheline with streaming store
ComplexD tmp = Reduce(TensorRemove(vinner)) ;
vstream(sumarray[thr*pad],tmp);
}
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
inner=0.0;
for(int i=0;i<grid->SumArraySize();i++){
inner = inner+sumarray[i*pad];
}
right._grid->GlobalSum(inner);
return inner;
#ifdef GRID_NVCC
// GPU - SIMT lane compliance...
typedef decltype(innerProduct(left_v[0],right_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
})
// This is in single precision and fails some tests
// Need a sumD that sums in double
nrm = TensorRemove(sumD_gpu(inner_tmp_v,sites));
#else
// CPU
typedef decltype(innerProductD(left_v[0],right_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v[ss];
auto y_l = right_v[ss];
inner_tmp_v[ss]=innerProductD(x_l,y_l);
})
nrm = TensorRemove(sum(inner_tmp_v,sites));
#endif
grid->GlobalSum(nrm);
return nrm;
}
/////////////////////////
@ -86,8 +157,7 @@ axpy_norm_fast(Lattice<vobj> &z,sobj a,const Lattice<vobj> &x,const Lattice<vobj
template<class sobj,class vobj> strong_inline RealD
axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
const int pad = 8;
z.checkerboard = x.checkerboard;
z.Checkerboard() = x.Checkerboard();
conformable(z,x);
conformable(x,y);
@ -95,43 +165,57 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
typedef typename vobj::vector_typeD vector_type;
RealD nrm;
GridBase *grid = x._grid;
GridBase *grid = x.Grid();
Vector<RealD> sumarray(grid->SumArraySize()*pad);
auto x_v=x.View();
auto y_v=y.View();
auto z_v=z.View();
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(x._grid->oSites(),thr,mywork,myoff);
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
// private to thread; sub summation
decltype(innerProductD(z._odata[0],z._odata[0])) vnrm=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vobj tmp = a*x._odata[ss]+b*y._odata[ss];
vnrm = vnrm + innerProductD(tmp,tmp);
vstream(z._odata[ss],tmp);
}
vstream(sumarray[thr*pad],real(Reduce(TensorRemove(vnrm)))) ;
}
#ifdef GRID_NVCC
// GPU
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
nrm = 0.0; // sum across threads; linear in thread count but fast
for(int i=0;i<grid->SumArraySize();i++){
nrm = nrm+sumarray[i*pad];
}
z._grid->GlobalSum(nrm);
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sumD_gpu(inner_tmp_v,sites)));
#else
// CPU
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
inner_tmp_v[ss]=innerProductD(tmp,tmp);
z_v[ss]=tmp;
});
// Already promoted to double
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#endif
grid->GlobalSum(nrm);
return nrm;
}
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object
->typename decltype(expr.op.func(eval(0,expr.arg1)))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
->typename decltype(expr.op.func(eval(0,expr.arg1),eval(0,expr.arg2)))::scalar_object
{
return sum(closure(expr));
}
@ -139,54 +223,14 @@ inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))
->typename decltype(expr.op.func(eval(0,expr.arg1),
eval(0,expr.arg2),
eval(0,expr.arg3)
))::scalar_object
{
return sum(closure(expr));
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
GridBase *grid=arg._grid;
int Nsimd = grid->Nsimd();
std::vector<vobj,alignedAllocator<vobj> > sumarray(grid->SumArraySize());
for(int i=0;i<grid->SumArraySize();i++){
sumarray[i]=zero;
}
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
vobj vvsum=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg._odata[ss];
}
sumarray[thr]=vvsum;
}
vobj vsum=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vsum = vsum+sumarray[i];
}
typedef typename vobj::scalar_object sobj;
sobj ssum=zero;
std::vector<sobj> buf(Nsimd);
extract(vsum,buf);
for(int i=0;i<Nsimd;i++) ssum = ssum + buf[i];
arg._grid->GlobalSum(ssum);
return ssum;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -199,7 +243,7 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
// But easily avoided by using double precision fields
///////////////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
GridBase *grid = Data._grid;
GridBase *grid = Data.Grid();
assert(grid!=NULL);
const int Nd = grid->_ndimension;
@ -212,13 +256,13 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vobj,alignedAllocator<vobj> > lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,zero); // sum across these down to scalars
std::vector<sobj> extracted(Nsimd); // splitting the SIMD
Vector<vobj> lvSum(rd); // will locally sum vectors first
Vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node
for(int r=0;r<rd;r++){
lvSum[r]=zero;
lvSum[r]=Zero();
}
int e1= grid->_slice_nblock[orthogdim];
@ -227,20 +271,19 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
parallel_for(int r=0;r<rd;r++){
auto Data_v=Data.View();
thread_for( r,rd, {
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data._odata[ss];
}
lvSum[r]=lvSum[r]+Data_v[ss];
}
}
});
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
Coordinate icoor(Nd);
for(int rt=0;rt<rd;rt++){
@ -265,7 +308,7 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=zero;
gsum=Zero();
}
grid->GlobalSum(gsum);
@ -292,9 +335,9 @@ static void localSliceInnerProductVector(std::vector<ComplexD> &result, const La
// std::cout << GridLogMessage << "Start prep" << std::endl;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
GridBase *grid = lhs.Grid();
assert(grid!=NULL);
conformable(grid,rhs._grid);
conformable(grid,rhs.Grid());
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
@ -307,14 +350,14 @@ static void localSliceInnerProductVector(std::vector<ComplexD> &result, const La
int rd=grid->_rdimensions[orthogdim];
// std::cout << GridLogMessage << "Start alloc" << std::endl;
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
Vector<vector_type> lvSum(rd); // will locally sum vectors first
lsSum.resize(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type>> extracted(Nsimd); // splitting the SIMD
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
// std::cout << GridLogMessage << "End alloc" << std::endl;
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
lvSum[r]=Zero();
}
int e1= grid->_slice_nblock[orthogdim];
@ -323,23 +366,24 @@ static void localSliceInnerProductVector(std::vector<ComplexD> &result, const La
// std::cout << GridLogMessage << "End prep" << std::endl;
// std::cout << GridLogMessage << "Start parallel inner product, _rd = " << rd << std::endl;
vector_type vv;
parallel_for(int r=0;r<rd;r++)
{
auto l_v=lhs.View();
auto r_v=rhs.View();
thread_for( r,rd,{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss = so + n * stride + b;
vv = TensorRemove(innerProduct(lhs._odata[ss], rhs._odata[ss]));
vv = TensorRemove(innerProduct(l_v[ss], r_v[ss]));
lvSum[r] = lvSum[r] + vv;
}
}
}
});
// std::cout << GridLogMessage << "End parallel inner product" << std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
Coordinate icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
@ -362,7 +406,7 @@ template <class vobj>
static void globalSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim)
{
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
GridBase *grid = lhs.Grid();
int fd = result.size();
int ld = lsSum.size();
// sum over nodes.
@ -388,9 +432,9 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
GridBase *grid = lhs.Grid();
assert(grid!=NULL);
conformable(grid,rhs._grid);
conformable(grid,rhs.Grid());
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
@ -402,34 +446,36 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
Vector<vector_type> lvSum(rd); // will locally sum vectors first
Vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
lvSum[r]=Zero();
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
parallel_for(int r=0;r<rd;r++){
auto lhv=lhs.View();
auto rhv=rhs.View();
thread_for( r,rd,{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
vector_type vv = TensorRemove(innerProduct(lhs._odata[ss],rhs._odata[ss]));
vector_type vv = TensorRemove(innerProduct(lhv[ss],rhv[ss]));
lvSum[r]=lvSum[r]+vv;
}
}
}
});
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
Coordinate icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
@ -470,7 +516,7 @@ static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Ortho
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = rhs._grid->GlobalDimensions()[Orthog];
int Nblock = rhs.Grid()->GlobalDimensions()[Orthog];
std::vector<ComplexD> ip(Nblock);
sn.resize(Nblock);
@ -492,7 +538,7 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
scalar_type zscale(scale);
GridBase *grid = X._grid;
GridBase *grid = X.Grid();
int Nsimd =grid->Nsimd();
int Nblock =grid->GlobalDimensions()[orthogdim];
@ -505,8 +551,7 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
int e2 =grid->_slice_block [orthogdim];
int stride =grid->_slice_stride[orthogdim];
std::vector<int> icoor;
Coordinate icoor;
for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
@ -522,12 +567,15 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
tensor_reduced at; at=av;
parallel_for_nest2(int n=0;n<e1;n++){
auto Rv=R.View();
auto Xv=X.View();
auto Yv=Y.View();
thread_for_collapse(2, n, e1, {
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
R._odata[ss] = at*X._odata[ss]+Y._odata[ss];
}
Rv[ss] = at*Xv[ss]+Yv[ss];
}
});
}
};
@ -559,18 +607,18 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
int nl = nh-1;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@ -578,28 +626,31 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
#pragma omp parallel
{
std::vector<vobj> s_x(Nblock);
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
auto X_v=X.View();
auto Y_v=Y.View();
auto R_v=R.View();
thread_region
{
Vector<vobj> s_x(Nblock);
thread_for_collapse_in_region(2, n,nblock, {
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X[o+i*ostride];
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y[o+i*ostride];
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R[o+i*ostride]=dot;
R_v[o+i*ostride]=dot;
}
}}
}});
}
};
@ -610,17 +661,17 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
int nl=1;
// int nl=1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@ -628,17 +679,19 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
#pragma omp parallel
auto R_v = R.View();
auto X_v = X.View();
thread_region
{
std::vector<vobj> s_x(Nblock);
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
thread_for_collapse_in_region( 2 ,n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X[o+i*ostride];
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
@ -647,11 +700,10 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R[o+i*ostride]=dot;
R_v[o+i*ostride]=dot;
}
}}
}});
}
};
@ -662,7 +714,7 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs._grid;
GridBase *FullGrid = lhs.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
@ -673,9 +725,9 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
int nl = nh-1;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
@ -686,31 +738,33 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
typedef typename vobj::vector_typeD vector_typeD;
#pragma omp parallel
auto lhs_v=lhs.View();
auto rhs_v=rhs.View();
thread_region
{
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
thread_for_collapse_in_region( 2, n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs[o+i*ostride];
Right[i] = rhs[o+i*ostride];
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
mat_thread(i,j) += Reduce(rtmp);
auto red = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(red),imag(red));
}}
}}
#pragma omp critical
}});
thread_critical
{
mat += mat_thread;
}
@ -726,8 +780,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
return;
}
} /*END NAMESPACE GRID*/
#endif
NAMESPACE_END(Grid);

View File

@ -0,0 +1,226 @@
NAMESPACE_BEGIN(Grid);
#define WARP_SIZE 32
extern cudaDeviceProp *gpu_props;
__device__ unsigned int retirementCount = 0;
template <class Iterator>
unsigned int nextPow2(Iterator x) {
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
template <class Iterator>
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device;
cudaGetDevice(&device);
Iterator warpSize = gpu_props[device].warpSize;
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE);
}
// let the number of threads in a block be a multiple of 2, starting from warpSize
threads = warpSize;
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount);
}
template <class sobj, class Iterator>
__device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid) {
Iterator blockSize = blockDim.x;
// cannot use overloaded operators for sobj as they are not volatile-qualified
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
__syncwarp();
const Iterator VEC = WARP_SIZE;
const Iterator vid = tid & (VEC-1);
sobj beta, temp;
memcpy((void *)&beta, (void *)&mySum, sizeof(sobj));
for (int i = VEC/2; i > 0; i>>=1) {
if (vid < i) {
memcpy((void *)&temp, (void *)&sdata[tid+i], sizeof(sobj));
beta += temp;
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
}
__syncwarp();
}
__syncthreads();
if (threadIdx.x == 0) {
beta = Zero();
for (Iterator i = 0; i < blockSize; i += VEC) {
memcpy((void *)&temp, (void *)&sdata[i], sizeof(sobj));
beta += temp;
}
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
}
__syncthreads();
}
template <class vobj, class sobj, class Iterator>
__device__ void reduceBlocks(const vobj *g_idata, sobj *g_odata, Iterator n)
{
constexpr Iterator nsimd = vobj::Nsimd();
Iterator blockSize = blockDim.x;
// force shared memory alignment
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
// it's not possible to have two extern __shared__ arrays with same name
// but different types in different scopes -- need to cast each time
sobj *sdata = (sobj *)shmem_pointer;
// first level of reduction,
// each thread writes result in mySum
Iterator tid = threadIdx.x;
Iterator i = blockIdx.x*(blockSize*2) + threadIdx.x;
Iterator gridSize = blockSize*2*gridDim.x;
sobj mySum = Zero();
while (i < n) {
Iterator lane = i % nsimd;
Iterator ss = i / nsimd;
auto tmp = extractLane(lane,g_idata[ss]);
sobj tmpD;
tmpD=tmp;
mySum +=tmpD;
if (i + blockSize < n) {
lane = (i+blockSize) % nsimd;
ss = (i+blockSize) / nsimd;
tmp = extractLane(lane,g_idata[ss]);
tmpD = tmp;
mySum += tmpD;
}
i += gridSize;
}
// copy mySum to shared memory and perform
// reduction for all threads in this block
reduceBlock(sdata, mySum, tid);
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
template <class vobj, class sobj,class Iterator>
__global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
Iterator blockSize = blockDim.x;
// perform reduction for this block and
// write result to global memory buffer
reduceBlocks(lat, buffer, n);
if (gridDim.x > 1) {
const Iterator tid = threadIdx.x;
__shared__ bool amLast;
// force shared memory alignment
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
// it's not possible to have two extern __shared__ arrays with same name
// but different types in different scopes -- need to cast each time
sobj *smem = (sobj *)shmem_pointer;
// wait until all outstanding memory instructions in this thread are finished
__threadfence();
if (tid==0) {
unsigned int ticket = atomicInc(&retirementCount, gridDim.x);
// true if this block is the last block to be done
amLast = (ticket == gridDim.x-1);
}
// each thread must read the correct value of amLast
__syncthreads();
if (amLast) {
// reduce buffer[0], ..., buffer[gridDim.x-1]
Iterator i = tid;
sobj mySum = Zero();
while (i < gridDim.x) {
mySum += buffer[i];
i += blockSize;
}
reduceBlock(smem, mySum, tid);
if (tid==0) {
buffer[0] = smem[0];
// reset count variable
retirementCount = 0;
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
typedef decltype(lat) Iterator;
Integer nsimd= vobj::Nsimd();
Integer size = osites*nsimd;
Integer numThreads, numBlocks;
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
Integer smemSize = numThreads * sizeof(sobj);
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
cudaDeviceSynchronize();
cudaError err = cudaGetLastError();
if ( cudaSuccess != err ) {
printf("Cuda error %s\n",cudaGetErrorString( err ));
exit(0);
}
auto result = buffer_v[0];
return result;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu(lat,osites);
return result;
}
NAMESPACE_END(Grid);

View File

@ -41,7 +41,7 @@
#undef RNG_FAST_DISCARD
#endif
namespace Grid {
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////
// Allow the RNG state to be less dense than the fine grid
@ -108,12 +108,16 @@ namespace Grid {
template<class distribution,class generator>
void fillScalar(ComplexF &s,distribution &dist, generator &gen)
{
s=ComplexF(dist(gen),dist(gen));
// s=ComplexF(dist(gen),dist(gen));
s.real(dist(gen));
s.imag(dist(gen));
}
template<class distribution,class generator>
void fillScalar(ComplexD &s,distribution &dist,generator &gen)
{
s=ComplexD(dist(gen),dist(gen));
// s=ComplexD(dist(gen),dist(gen));
s.real(dist(gen));
s.imag(dist(gen));
}
class GridRNGbase {
@ -165,7 +169,10 @@ namespace Grid {
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
const int shift = 30;
uint64_t skip = site;
////////////////////////////////////////////////////////////////////
// Weird compiler bug in Intel 2018.1 under O3 was generating 32bit and not 64 bit left shift.
////////////////////////////////////////////////////////////////////
volatile uint64_t skip = site;
skip = skip<<shift;
@ -256,7 +263,7 @@ namespace Grid {
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
};
}
template <class distribution> inline void fill(ComplexF &l,std::vector<distribution> &dist){
dist[0].reset();
@ -333,13 +340,13 @@ namespace Grid {
};
class GridParallelRNG : public GridRNGbase {
private:
double _time_counter;
public:
GridBase *_grid;
unsigned int _vol;
public:
GridBase *Grid(void) const { return _grid; }
int generator_idx(int os,int is) {
return is*_grid->oSites()+os;
}
@ -363,13 +370,14 @@ namespace Grid {
double inner_time_counter = usecond();
int multiplicity = RNGfillable_general(_grid, l._grid); // l has finer or same grid
int Nsimd = _grid->Nsimd(); // guaranteed to be the same for l._grid too
int osites = _grid->oSites(); // guaranteed to be <= l._grid->oSites() by a factor multiplicity
int multiplicity = RNGfillable_general(_grid, l.Grid()); // l has finer or same grid
int Nsimd = _grid->Nsimd(); // guaranteed to be the same for l.Grid() too
int osites = _grid->oSites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
int words = sizeof(scalar_object) / sizeof(scalar_type);
parallel_for(int ss=0;ss<osites;ss++){
std::vector<scalar_object> buf(Nsimd);
auto l_v = l.View();
thread_for( ss, osites, {
ExtractBuffer<scalar_object> buf(Nsimd);
for (int m = 0; m < multiplicity; m++) { // Draw from same generator multiplicity times
int sm = multiplicity * ss + m; // Maps the generator site to the fine site
@ -383,12 +391,13 @@ namespace Grid {
fillScalar(pointer[idx], dist[gdx], _generators[gdx]);
}
// merge into SIMD lanes, FIXME suboptimal implementation
merge(l._odata[sm], buf);
}
merge(l_v[sm], buf);
}
});
// });
_time_counter += usecond()- inner_time_counter;
};
}
void SeedUniqueString(const std::string &s){
std::vector<int> seeds;
@ -417,12 +426,13 @@ namespace Grid {
////////////////////////////////////////////////
// Everybody loops over global volume.
parallel_for(int gidx=0;gidx<_grid->_gsites;gidx++){
thread_for( gidx, _grid->_gsites, {
// Where is it?
int rank,o_idx,i_idx;
std::vector<int> gcoor;
int rank;
int o_idx;
int i_idx;
Coordinate gcoor;
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
@ -432,8 +442,7 @@ namespace Grid {
_generators[l_idx] = master_engine;
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
}
}
});
#else
////////////////////////////////////////////////////////////////
// Machine and thread decomposition dependent seeding is efficient
@ -459,7 +468,7 @@ namespace Grid {
seeders[t] = Reseed(master_engine);
}
parallel_for(int t=0;t<Nthread;t++) {
thread_for( t, Nthread, {
// set up one per local site in threaded fashion
std::vector<uint32_t> newseeds;
std::uniform_int_distribution<uint32_t> uid;
@ -468,7 +477,7 @@ namespace Grid {
_generators[l] = Reseed(seeders[t],newseeds,uid);
}
}
}
});
}
#endif
}
@ -486,8 +495,8 @@ namespace Grid {
uint32_t the_number;
// who
std::vector<int> gcoor;
int rank,o_idx,i_idx;
Coordinate gcoor;
_grid->GlobalIndexToGlobalCoor(gsite,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
@ -512,5 +521,5 @@ namespace Grid {
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l) { rng.fill(l,rng._gaussian ); }
template <class sobj> inline void bernoulli(GridSerialRNG &rng,sobj &l){ rng.fill(l,rng._bernoulli); }
}
NAMESPACE_END(Grid);
#endif

View File

@ -32,19 +32,20 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
// Tracing, transposing, peeking, poking
///////////////////////////////////////////////
namespace Grid {
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Trace
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline auto trace(const Lattice<vobj> &lhs)
-> Lattice<decltype(trace(lhs._odata[0]))>
inline auto trace(const Lattice<vobj> &lhs) -> Lattice<decltype(trace(vobj()))>
{
Lattice<decltype(trace(lhs._odata[0]))> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = trace(lhs._odata[ss]);
}
Lattice<decltype(trace(vobj()))> ret(lhs.Grid());
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], trace(lhs_v(ss)));
});
return ret;
};
@ -52,16 +53,17 @@ namespace Grid {
// Trace Index level dependent operation
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(lhs._odata[0]))>
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(vobj()))>
{
Lattice<decltype(traceIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = traceIndex<Index>(lhs._odata[ss]);
}
Lattice<decltype(traceIndex<Index>(vobj()))> ret(lhs.Grid());
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], traceIndex<Index>(lhs_v(ss)));
});
return ret;
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -25,10 +25,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_TRANSFER_H
#define GRID_LATTICE_TRANSFER_H
#pragma once
namespace Grid {
NAMESPACE_BEGIN(Grid);
inline void subdivides(GridBase *coarse,GridBase *fine)
{
@ -49,34 +48,39 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
// remove and insert a half checkerboard
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full){
half.checkerboard = cb;
half.Checkerboard() = cb;
parallel_for(int ss=0;ss<full._grid->oSites();ss++){
auto half_v = half.View();
auto full_v = full.View();
thread_for(ss, full.Grid()->oSites(),{
int cbos;
std::vector<int> coor;
full._grid->oCoorFromOindex(coor,ss);
cbos=half._grid->CheckerBoard(coor);
Coordinate coor;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half._grid->oIndex(coor);
half._odata[ssh] = full._odata[ss];
}
int ssh=half.Grid()->oIndex(coor);
half_v[ssh] = full_v[ss];
}
});
}
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half){
int cb = half.checkerboard;
parallel_for(int ss=0;ss<full._grid->oSites();ss++){
std::vector<int> coor;
int cb = half.Checkerboard();
auto half_v = half.View();
auto full_v = full.View();
thread_for(ss,full.Grid()->oSites(),{
Coordinate coor;
int cbos;
full._grid->oCoorFromOindex(coor,ss);
cbos=half._grid->CheckerBoard(coor);
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half._grid->oIndex(coor);
full._odata[ss]=half._odata[ssh];
}
int ssh=half.Grid()->oIndex(coor);
full_v[ss]=half_v[ssh];
}
});
}
@ -85,8 +89,8 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
GridBase * fine = fineData._grid;
GridBase * coarse= coarseData._grid;
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
int _ndimension = coarse->_ndimension;
// checks
@ -96,33 +100,33 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
conformable(Basis[i],fineData);
}
std::vector<int> block_r (_ndimension);
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d] == fine->_rdimensions[d]);
}
coarseData=zero;
coarseData=Zero();
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
// Loop over coars parallel, and then loop over fine associated with coarse.
parallel_for(int sf=0;sf<fine->oSites();sf++){
thread_for( sf, fine->oSites(), {
int sc;
std::vector<int> coor_c(_ndimension);
std::vector<int> coor_f(_ndimension);
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
PARALLEL_CRITICAL
thread_critical {
for(int i=0;i<nbasis;i++) {
coarseData._odata[sc](i)=coarseData._odata[sc](i)
+ innerProduct(Basis[i]._odata[sf],fineData._odata[sf]);
auto Basis_ = Basis[i].View();
coarseData_[sc](i)=coarseData_[sc](i) + innerProduct(Basis_[sf],fineData_[sf]);
}
}
});
return;
}
@ -132,18 +136,18 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
GridBase * fine = fineZ._grid;
GridBase * coarse= coarseA._grid;
GridBase * fine = fineZ.Grid();
GridBase * coarse= coarseA.Grid();
fineZ.checkerboard=fineX.checkerboard;
assert(fineX.checkerboard==fineY.checkerboard);
fineZ.Checkerboard()=fineX.Checkerboard();
assert(fineX.Checkerboard()==fineY.Checkerboard());
subdivides(coarse,fine); // require they map
conformable(fineX,fineY);
conformable(fineX,fineZ);
int _ndimension = coarse->_ndimension;
std::vector<int> block_r (_ndimension);
Coordinate block_r (_ndimension);
// FIXME merge with subdivide checking routine as this is redundant
for(int d=0 ; d<_ndimension;d++){
@ -151,20 +155,25 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
parallel_for(int sf=0;sf<fine->oSites();sf++){
auto fineZ_ = fineZ.View();
auto fineX_ = fineX.View();
auto fineY_ = fineY.View();
auto coarseA_= coarseA.View();
thread_for(sf, fine->oSites(), {
int sc;
std::vector<int> coor_c(_ndimension);
std::vector<int> coor_f(_ndimension);
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
// z = A x + y
fineZ._odata[sf]=coarseA._odata[sc]*fineX._odata[sf]+fineY._odata[sf];
fineZ_[sf]=coarseA_[sc]*fineX_[sf]+fineY_[sf];
}
});
return;
}
@ -173,26 +182,29 @@ template<class vobj,class CComplex>
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef decltype(innerProduct(fineX._odata[0],fineY._odata[0])) dotp;
typedef decltype(innerProduct(vobj(),vobj())) dotp;
GridBase *coarse(CoarseInner._grid);
GridBase *fine (fineX._grid);
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.checkerboard = fineX.checkerboard;
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> coarse_inner(coarse);
// Precision promotion?
auto CoarseInner_ = CoarseInner.View();
auto coarse_inner_ = coarse_inner.View();
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
parallel_for(int ss=0;ss<coarse->oSites();ss++){
CoarseInner._odata[ss] = coarse_inner._odata[ss];
}
thread_for(ss, coarse->oSites(),{
CoarseInner_[ss] = coarse_inner_[ss];
});
}
template<class vobj,class CComplex>
inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
{
GridBase *coarse = ip._grid;
Lattice<vobj> zz(fineX._grid); zz=zero; zz.checkerboard=fineX.checkerboard;
GridBase *coarse = ip.Grid();
Lattice<vobj> zz(fineX.Grid()); zz=Zero(); zz.Checkerboard()=fineX.Checkerboard();
blockInnerProduct(ip,fineX,fineX);
ip = pow(ip,-0.5);
blockZAXPY(fineX,ip,fineX,zz);
@ -202,14 +214,14 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
template<class vobj>
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
{
GridBase * fine = fineData._grid;
GridBase * coarse= coarseData._grid;
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
subdivides(coarse,fine); // require they map
int _ndimension = coarse->_ndimension;
std::vector<int> block_r (_ndimension);
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
@ -217,36 +229,36 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
// Turn this around to loop threaded over sc and interior loop
// over sf would thread better
coarseData=zero;
parallel_region {
coarseData=Zero();
auto coarseData_ = coarseData.View();
auto fineData_ = fineData.View();
thread_for(sf,fine->oSites(),{
int sc;
std::vector<int> coor_c(_ndimension);
std::vector<int> coor_f(_ndimension);
parallel_for_internal(int sf=0;sf<fine->oSites();sf++){
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
PARALLEL_CRITICAL
coarseData._odata[sc]=coarseData._odata[sc]+fineData._odata[sf];
thread_critical {
coarseData_[sc]=coarseData_[sc]+fineData_[sf];
}
}
}
});
return;
}
template<class vobj>
inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vobj> &picked,std::vector<int> coor)
inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vobj> &picked,Coordinate coor)
{
GridBase * fine = unpicked._grid;
GridBase * fine = unpicked.Grid();
Lattice<vobj> zz(fine); zz.checkerboard = unpicked.checkerboard;
Lattice<vobj> zz(fine); zz.Checkerboard() = unpicked.Checkerboard();
Lattice<iScalar<vInteger> > fcoor(fine);
zz = zero;
zz = Zero();
picked = unpicked;
for(int d=0;d<fine->_ndimension;d++){
@ -262,16 +274,15 @@ inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vob
template<class vobj,class CComplex>
inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > &Basis)
{
GridBase *coarse = ip._grid;
GridBase *fine = Basis[0]._grid;
GridBase *coarse = ip.Grid();
GridBase *fine = Basis[0].Grid();
int nbasis = Basis.size() ;
int _ndimension = coarse->_ndimension;
// checks
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i]._grid,fine);
conformable(Basis[i].Grid(),fine);
}
for(int v=0;v<nbasis;v++) {
@ -290,41 +301,41 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
GridBase * fine = fineData._grid;
GridBase * coarse= coarseData._grid;
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
int _ndimension = coarse->_ndimension;
// checks
assert( nbasis == Basis.size() );
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i]._grid,fine);
conformable(Basis[i].Grid(),fine);
}
std::vector<int> block_r (_ndimension);
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
// Loop with a cache friendly loop ordering
parallel_region {
thread_for(sf,fine->oSites(),{
int sc;
std::vector<int> coor_c(_ndimension);
std::vector<int> coor_f(_ndimension);
parallel_for_internal(int sf=0;sf<fine->oSites();sf++){
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
for(int i=0;i<nbasis;i++) {
if(i==0) fineData._odata[sf]=coarseData._odata[sc](i) * Basis[i]._odata[sf];
else fineData._odata[sf]=fineData._odata[sf]+coarseData._odata[sc](i)*Basis[i]._odata[sf];
}
}
auto basis_ = Basis[i].View();
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf];
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf];
}
});
return;
}
@ -337,8 +348,8 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
typedef typename vobj::scalar_object sobj;
typedef typename vvobj::scalar_object ssobj;
GridBase *ig = in._grid;
GridBase *og = out._grid;
GridBase *ig = in.Grid();
GridBase *og = out.Grid();
int ni = ig->_ndimension;
int no = og->_ndimension;
@ -351,16 +362,16 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
assert(ig->lSites() == og->lSites());
}
parallel_for(int idx=0;idx<ig->lSites();idx++){
thread_for(idx, ig->lSites(),{
sobj s;
ssobj ss;
std::vector<int> lcoor(ni);
Coordinate lcoor(ni);
ig->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(s,in,lcoor);
ss=s;
pokeLocalSite(ss,out,lcoor);
}
});
}
@ -369,8 +380,8 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
@ -389,10 +400,10 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
}
// the above should guarantee that the operations are local
parallel_for(int idx=0;idx<lg->lSites();idx++){
thread_for(idx,lg->lSites(),{
sobj s;
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
int ddl=0;
hcoor[orthog] = slice;
@ -403,7 +414,7 @@ void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice
}
peekLocalSite(s,lowDim,lcoor);
pokeLocalSite(s,higherDim,hcoor);
}
});
}
template<class vobj>
@ -411,8 +422,8 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
@ -430,10 +441,10 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
}
}
// the above should guarantee that the operations are local
parallel_for(int idx=0;idx<lg->lSites();idx++){
thread_for(idx,lg->lSites(),{
sobj s;
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
int ddl=0;
hcoor[orthog] = slice;
@ -444,7 +455,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
}
peekLocalSite(s,higherDim,hcoor);
pokeLocalSite(s,lowDim,lcoor);
}
});
}
@ -454,8 +465,8 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
@ -471,10 +482,10 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
}
// the above should guarantee that the operations are local
parallel_for(int idx=0;idx<lg->lSites();idx++){
thread_for(idx,lg->lSites(),{
sobj s;
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
@ -482,7 +493,7 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
peekLocalSite(s,lowDim,lcoor);
pokeLocalSite(s,higherDim,hcoor);
}
}
});
}
@ -491,8 +502,8 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
@ -508,10 +519,10 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
}
// the above should guarantee that the operations are local
parallel_for(int idx=0;idx<lg->lSites();idx++){
thread_for(idx,lg->lSites(),{
sobj s;
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
@ -519,7 +530,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
peekLocalSite(s,higherDim,hcoor);
pokeLocalSite(s,lowDim,lcoor);
}
}
});
}
@ -528,8 +539,8 @@ void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
{
typedef typename vobj::scalar_object sobj;
GridBase *cg = coarse._grid;
GridBase *fg = fine._grid;
GridBase *cg = coarse.Grid();
GridBase *fg = fine.Grid();
int nd = cg->_ndimension;
@ -537,14 +548,14 @@ void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
assert(cg->_ndimension==fg->_ndimension);
std::vector<int> ratio(cg->_ndimension);
Coordinate ratio(cg->_ndimension);
for(int d=0;d<cg->_ndimension;d++){
ratio[d] = fg->_fdimensions[d]/cg->_fdimensions[d];
}
std::vector<int> fcoor(nd);
std::vector<int> ccoor(nd);
Coordinate fcoor(nd);
Coordinate ccoor(nd);
for(int g=0;g<fg->gSites();g++){
fg->GlobalIndexToGlobalCoor(g,fcoor);
@ -567,41 +578,46 @@ unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
typedef typename vobj::vector_type vtype;
GridBase* in_grid = in._grid;
GridBase* in_grid = in.Grid();
out.resize(in_grid->lSites());
int ndim = in_grid->Nd();
int in_nsimd = vtype::Nsimd();
std::vector<std::vector<int> > in_icoor(in_nsimd);
std::vector<Coordinate > in_icoor(in_nsimd);
for(int lane=0; lane < in_nsimd; lane++){
in_icoor[lane].resize(ndim);
in_grid->iCoorFromIindex(in_icoor[lane], lane);
}
parallel_for(int in_oidx = 0; in_oidx < in_grid->oSites(); in_oidx++){ //loop over outer index
//loop over outer index
auto in_v = in.View();
thread_for(in_oidx,in_grid->oSites(),{
//Assemble vector of pointers to output elements
std::vector<sobj*> out_ptrs(in_nsimd);
ExtractPointerArray<sobj> out_ptrs(in_nsimd);
std::vector<int> in_ocoor(ndim);
Coordinate in_ocoor(ndim);
in_grid->oCoorFromOindex(in_ocoor, in_oidx);
std::vector<int> lcoor(in_grid->Nd());
Coordinate lcoor(in_grid->Nd());
for(int lane=0; lane < in_nsimd; lane++){
for(int mu=0;mu<ndim;mu++)
for(int mu=0;mu<ndim;mu++){
lcoor[mu] = in_ocoor[mu] + in_grid->_rdimensions[mu]*in_icoor[lane][mu];
}
int lex;
Lexicographic::IndexFromCoor(lcoor, lex, in_grid->_ldimensions);
assert(lex < out.size());
out_ptrs[lane] = &out[lex];
}
//Unpack into those ptrs
const vobj & in_vobj = in._odata[in_oidx];
extract1(in_vobj, out_ptrs, 0);
}
const vobj & in_vobj = in_v[in_oidx];
extract(in_vobj, out_ptrs, 0);
});
}
template<typename vobj, typename sobj>
@ -617,21 +633,21 @@ unvectorizeToRevLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
int ndim = in_grid->Nd();
int in_nsimd = vtype::Nsimd();
std::vector<std::vector<int> > in_icoor(in_nsimd);
std::vector<Coordinate > in_icoor(in_nsimd);
for(int lane=0; lane < in_nsimd; lane++){
in_icoor[lane].resize(ndim);
in_grid->iCoorFromIindex(in_icoor[lane], lane);
}
parallel_for(int in_oidx = 0; in_oidx < in_grid->oSites(); in_oidx++){ //loop over outer index
thread_for(in_oidx, in_grid->oSites(),{
//Assemble vector of pointers to output elements
std::vector<sobj*> out_ptrs(in_nsimd);
std::vector<int> in_ocoor(ndim);
Coordinate in_ocoor(ndim);
in_grid->oCoorFromOindex(in_ocoor, in_oidx);
std::vector<int> lcoor(in_grid->Nd());
Coordinate lcoor(in_grid->Nd());
for(int lane=0; lane < in_nsimd; lane++){
for(int mu=0;mu<ndim;mu++)
@ -645,7 +661,7 @@ unvectorizeToRevLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
//Unpack into those ptrs
const vobj & in_vobj = in._odata[in_oidx];
extract1(in_vobj, out_ptrs, 0);
}
});
}
//Copy SIMD-vectorized lattice to array of scalar objects in lexicographic order
@ -657,28 +673,27 @@ vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
typedef typename vobj::vector_type vtype;
GridBase* grid = out._grid;
GridBase* grid = out.Grid();
assert(in.size()==grid->lSites());
int ndim = grid->Nd();
int nsimd = vtype::Nsimd();
const int ndim = grid->Nd();
constexpr int nsimd = vtype::Nsimd();
std::vector<std::vector<int> > icoor(nsimd);
std::vector<Coordinate > icoor(nsimd);
for(int lane=0; lane < nsimd; lane++){
icoor[lane].resize(ndim);
grid->iCoorFromIindex(icoor[lane],lane);
}
parallel_for(uint64_t oidx = 0; oidx < grid->oSites(); oidx++){ //loop over outer index
auto out_v = out.View();
thread_for(oidx, grid->oSites(),{
//Assemble vector of pointers to output elements
std::vector<sobj*> ptrs(nsimd);
ExtractPointerArray<sobj> ptrs(nsimd);
std::vector<int> ocoor(ndim);
Coordinate ocoor(ndim);
Coordinate lcoor(ndim);
grid->oCoorFromOindex(ocoor, oidx);
std::vector<int> lcoor(grid->Nd());
for(int lane=0; lane < nsimd; lane++){
for(int mu=0;mu<ndim;mu++){
@ -692,9 +707,9 @@ vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
//pack from those ptrs
vobj vecobj;
merge1(vecobj, ptrs, 0);
out._odata[oidx] = vecobj;
}
merge(vecobj, ptrs, 0);
out_v[oidx] = vecobj;
});
}
template<typename vobj, typename sobj>
@ -711,21 +726,21 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
int ndim = grid->Nd();
int nsimd = vtype::Nsimd();
std::vector<std::vector<int> > icoor(nsimd);
std::vector<Coordinate > icoor(nsimd);
for(int lane=0; lane < nsimd; lane++){
icoor[lane].resize(ndim);
grid->iCoorFromIindex(icoor[lane],lane);
}
parallel_for(uint64_t oidx = 0; oidx < grid->oSites(); oidx++){ //loop over outer index
thread_for(oidx, grid->oSites(), {
//Assemble vector of pointers to output elements
std::vector<sobj*> ptrs(nsimd);
std::vector<int> ocoor(ndim);
Coordinate ocoor(ndim);
grid->oCoorFromOindex(ocoor, oidx);
std::vector<int> lcoor(grid->Nd());
Coordinate lcoor(grid->Nd());
for(int lane=0; lane < nsimd; lane++){
@ -742,25 +757,28 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
vobj vecobj;
merge1(vecobj, ptrs, 0);
out._odata[oidx] = vecobj;
}
});
}
//Convert a Lattice from one precision to another
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
assert(out._grid->Nd() == in._grid->Nd());
assert(out._grid->FullDimensions() == in._grid->FullDimensions());
out.checkerboard = in.checkerboard;
GridBase *in_grid=in._grid;
GridBase *out_grid = out._grid;
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
{
assert(out.Grid()->Nd() == in.Grid()->Nd());
for(int d=0;d<out.Grid()->Nd();d++){
assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
}
out.Checkerboard() = in.Checkerboard();
GridBase *in_grid=in.Grid();
GridBase *out_grid = out.Grid();
typedef typename VobjOut::scalar_object SobjOut;
typedef typename VobjIn::scalar_object SobjIn;
int ndim = out._grid->Nd();
int ndim = out.Grid()->Nd();
int out_nsimd = out_grid->Nsimd();
std::vector<std::vector<int> > out_icoor(out_nsimd);
std::vector<Coordinate > out_icoor(out_nsimd);
for(int lane=0; lane < out_nsimd; lane++){
out_icoor[lane].resize(ndim);
@ -770,13 +788,14 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
parallel_for(uint64_t out_oidx=0;out_oidx<out_grid->oSites();out_oidx++){
std::vector<int> out_ocoor(ndim);
auto out_v = out.View();
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);
std::vector<SobjOut*> ptrs(out_nsimd);
ExtractPointerArray<SobjOut> ptrs(out_nsimd);
std::vector<int> lcoor(out_grid->Nd());
Coordinate lcoor(out_grid->Nd());
for(int lane=0; lane < out_nsimd; lane++){
for(int mu=0;mu<ndim;mu++)
@ -785,8 +804,8 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
int llex; Lexicographic::IndexFromCoor(lcoor, llex, out_grid->_ldimensions);
ptrs[lane] = &in_slex_conv[llex];
}
merge(out._odata[out_oidx], ptrs, 0);
}
merge(out_v[out_oidx], ptrs, 0);
});
}
////////////////////////////////////////////////////////////////////////////////
@ -845,8 +864,8 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
assert(full_vecs>=1);
GridBase * full_grid = full[0]._grid;
GridBase *split_grid = split._grid;
GridBase * full_grid = full[0].Grid();
GridBase *split_grid = split.Grid();
int ndim = full_grid->_ndimension;
int full_nproc = full_grid->_Nprocessors;
@ -855,18 +874,18 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
////////////////////////////////
// Checkerboard management
////////////////////////////////
int cb = full[0].checkerboard;
split.checkerboard = cb;
int cb = full[0].Checkerboard();
split.Checkerboard() = cb;
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].checkerboard == cb);
assert(full[n].Checkerboard() == cb);
for(int d=0;d<ndim;d++){
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
}
}
@ -874,7 +893,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
std::vector<int> ratio(ndim);
Coordinate ratio(ndim);
for(int d=0;d<ndim;d++){
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
}
@ -887,13 +906,13 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
for(int v=0;v<nvector;v++){
unvectorizeToLexOrdArray(scalardata,full[v]);
parallel_for(int site=0;site<lsites;site++){
thread_for(site,lsites,{
alldata[v*lsites+site] = scalardata[site];
}
});
}
int nvec = nvector; // Counts down to 1 as we collapse dims
std::vector<int> ldims = full_grid->_ldimensions;
Coordinate ldims = full_grid->_ldimensions;
for(int d=ndim-1;d>=0;d--){
@ -919,8 +938,8 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
int chunk = (nvec*fvol)/sP; assert(chunk*sP == nvec*fvol);
// Loop over reordered data post A2A
parallel_for(int c=0;c<chunk;c++){
std::vector<int> coor(ndim);
thread_for(c, chunk, {
Coordinate coor(ndim);
for(int m=0;m<M;m++){
for(int s=0;s<sP;s++){
@ -942,7 +961,7 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
}
}
}
});
ldims[d]*= ratio[d];
lsites *= ratio[d];
@ -954,8 +973,8 @@ void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
template<class Vobj>
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj> & split)
{
int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors;
std::vector<Lattice<Vobj> > full_v(nvector,full._grid);
int nvector = full.Grid()->_Nprocessors / split.Grid()->_Nprocessors;
std::vector<Lattice<Vobj> > full_v(nvector,full.Grid());
for(int n=0;n<nvector;n++){
full_v[n] = full;
}
@ -971,8 +990,8 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
assert(full_vecs>=1);
GridBase * full_grid = full[0]._grid;
GridBase *split_grid = split._grid;
GridBase * full_grid = full[0].Grid();
GridBase *split_grid = split.Grid();
int ndim = full_grid->_ndimension;
int full_nproc = full_grid->_Nprocessors;
@ -981,18 +1000,18 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
////////////////////////////////
// Checkerboard management
////////////////////////////////
int cb = full[0].checkerboard;
split.checkerboard = cb;
int cb = full[0].Checkerboard();
split.Checkerboard() = cb;
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].checkerboard == cb);
assert(full[n].Checkerboard() == cb);
for(int d=0;d<ndim;d++){
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
}
}
@ -1000,7 +1019,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
std::vector<int> ratio(ndim);
Coordinate ratio(ndim);
for(int d=0;d<ndim;d++){
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
}
@ -1019,7 +1038,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
int nvec = 1;
uint64_t rsites = split_grid->lSites();
std::vector<int> rdims = split_grid->_ldimensions;
Coordinate rdims = split_grid->_ldimensions;
for(int d=0;d<ndim;d++){
@ -1038,8 +1057,8 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
{
// Loop over reordered data post A2A
parallel_for(int c=0;c<chunk;c++){
std::vector<int> coor(ndim);
thread_for(c, chunk,{
Coordinate coor(ndim);
for(int m=0;m<M;m++){
for(int s=0;s<sP;s++){
@ -1060,7 +1079,7 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
tmpdata[lex_c] = alldata[lex_r];
}
}
}
});
}
if ( split_grid->_processors[d] > 1 ) {
@ -1076,14 +1095,12 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
lsites = full_grid->lSites();
for(int v=0;v<nvector;v++){
// assert(v<full.size());
parallel_for(int site=0;site<lsites;site++){
// assert(v*lsites+site < alldata.size());
thread_for(site, lsites,{
scalardata[site] = alldata[v*lsites+site];
}
});
vectorizeFromLexOrdArray(scalardata,full[v]);
}
}
}
#endif
NAMESPACE_END(Grid);

View File

@ -33,17 +33,19 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
// Transpose
///////////////////////////////////////////////
namespace Grid {
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = transpose(lhs._odata[ss]);
}
Lattice<vobj> ret(lhs.Grid());
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss], transpose(lhs_v(ss)));
});
return ret;
};
@ -51,13 +53,16 @@ namespace Grid {
// Index level dependent transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))>
inline auto TransposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(vobj()))>
{
Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
parallel_for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = transposeIndex<Index>(lhs._odata[ss]);
}
Lattice<decltype(transposeIndex<Index>(vobj()))> ret(lhs.Grid());
auto ret_v = ret.View();
auto lhs_v = lhs.View();
accelerator_for(ss,lhs_v.size(),vobj::Nsimd(),{
coalescedWrite(ret_v[ss] , transposeIndex<Index>(lhs_v(ss)));
});
return ret;
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -31,54 +31,50 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_LATTICE_UNARY_H
#define GRID_LATTICE_UNARY_H
namespace Grid {
NAMESPACE_BEGIN(Grid);
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs,RealD y){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=pow(rhs._odata[ss],y);
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs_i,RealD y){
Lattice<obj> ret_i(rhs_i.Grid());
auto rhs = rhs_i.View();
auto ret = ret_i.View();
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),1,{
ret[ss]=pow(rhs[ss],y);
});
return ret_i;
}
return ret;
}
template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs,Integer y){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=mod(rhs._odata[ss],y);
}
return ret;
template<class obj> Lattice<obj> mod(const Lattice<obj> &rhs_i,Integer y){
Lattice<obj> ret_i(rhs_i.Grid());
auto rhs = rhs_i.View();
auto ret = ret_i.View();
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],mod(rhs(ss),y));
});
return ret_i;
}
template<class obj> Lattice<obj> div(const Lattice<obj> &rhs,Integer y){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=div(rhs._odata[ss],y);
}
return ret;
template<class obj> Lattice<obj> div(const Lattice<obj> &rhs_i,Integer y){
Lattice<obj> ret_i(rhs_i.Grid());
auto ret = ret_i.View();
auto rhs = rhs_i.View();
ret.Checkerboard() = rhs_i.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],div(rhs(ss),y));
});
return ret_i;
}
template<class obj> Lattice<obj> expMat(const Lattice<obj> &rhs, RealD alpha, Integer Nexp = DEFAULT_MAT_EXP){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
parallel_for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=Exponentiate(rhs._odata[ss],alpha, Nexp);
template<class obj> Lattice<obj> expMat(const Lattice<obj> &rhs_i, RealD alpha, Integer Nexp = DEFAULT_MAT_EXP){
Lattice<obj> ret_i(rhs_i.Grid());
auto rhs = rhs_i.View();
auto ret = ret_i.View();
ret.Checkerboard() = rhs.Checkerboard();
accelerator_for(ss,rhs.size(),obj::Nsimd(),{
coalescedWrite(ret[ss],Exponentiate(rhs(ss),alpha, Nexp));
});
return ret_i;
}
return ret;
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -35,7 +35,7 @@ directory
#include <cxxabi.h>
#include <memory>
namespace Grid {
NAMESPACE_BEGIN(Grid);
std::string demangle(const char* name) {
@ -109,8 +109,9 @@ void Grid_quiesce_nodes(void) {
}
void Grid_unquiesce_nodes(void) {
#ifdef GRID_COMMS_MPI
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3) || defined(GRID_COMMS_MPIT)
std::cout.clear();
#endif
}
}
NAMESPACE_END(Grid);

View File

@ -37,13 +37,12 @@
#include <execinfo.h>
#endif
namespace Grid {
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////////////////////////////////////////
// Dress the output; use std::chrono for time stamping via the StopWatch class
//////////////////////////////////////////////////////////////////////////////////////////////////
class Colours{
protected:
bool is_active;
@ -214,6 +213,6 @@ std::fprintf (fp,"BT %d %lx\n",3, __builtin_return_address(3)); std::fflush(fp);
#define BACKTRACE() BACKTRACEFP(stdout)
NAMESPACE_END(Grid);
}
#endif

View File

@ -26,8 +26,7 @@
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BINARY_IO_H
#define GRID_BINARY_IO_H
#pragma once
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3) || defined(GRID_COMMS_MPIT)
#define USE_MPI_IO
@ -42,8 +41,7 @@
#include <arpa/inet.h>
#include <algorithm>
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////
// Byte reversal garbage
@ -91,7 +89,7 @@ class BinaryIO {
{
typedef typename vobj::scalar_object sobj;
GridBase *grid = lat._grid;
GridBase *grid = lat.Grid();
uint64_t lsites = grid->lSites();
std::vector<sobj> scalardata(lsites);
@ -111,21 +109,20 @@ class BinaryIO {
lsites = 1;
}
PARALLEL_REGION
thread_region
{
uint32_t nersc_csum_thr = 0;
PARALLEL_FOR_LOOP_INTERN
for (uint64_t local_site = 0; local_site < lsites; local_site++)
thread_for_in_region( local_site, lsites,
{
uint32_t *site_buf = (uint32_t *)&fbuf[local_site];
for (uint64_t j = 0; j < size32; j++)
{
nersc_csum_thr = nersc_csum_thr + site_buf[j];
}
}
});
PARALLEL_CRITICAL
thread_critical
{
nersc_csum += nersc_csum_thr;
}
@ -134,28 +131,25 @@ PARALLEL_CRITICAL
template<class fobj> static inline void ScidacChecksum(GridBase *grid,std::vector<fobj> &fbuf,uint32_t &scidac_csuma,uint32_t &scidac_csumb)
{
const uint64_t size32 = sizeof(fobj)/sizeof(uint32_t);
int nd = grid->_ndimension;
uint64_t lsites =grid->lSites();
if (fbuf.size()==1) {
lsites=1;
}
std::vector<int> local_vol =grid->LocalDimensions();
std::vector<int> local_start =grid->LocalStarts();
std::vector<int> global_vol =grid->FullDimensions();
Coordinate local_vol =grid->LocalDimensions();
Coordinate local_start =grid->LocalStarts();
Coordinate global_vol =grid->FullDimensions();
PARALLEL_REGION
thread_region
{
std::vector<int> coor(nd);
Coordinate coor(nd);
uint32_t scidac_csuma_thr=0;
uint32_t scidac_csumb_thr=0;
uint32_t site_crc=0;
PARALLEL_FOR_LOOP_INTERN
for(uint64_t local_site=0;local_site<lsites;local_site++){
thread_for_in_region( local_site, lsites,
{
uint32_t * site_buf = (uint32_t *)&fbuf[local_site];
@ -182,9 +176,9 @@ PARALLEL_FOR_LOOP_INTERN
// std::cout << "Site "<<local_site << std::hex<<site_buf[0] <<site_buf[1]<<std::dec <<std::endl;
scidac_csuma_thr ^= site_crc<<gsite29 | site_crc>>(32-gsite29);
scidac_csumb_thr ^= site_crc<<gsite31 | site_crc>>(32-gsite31);
}
});
PARALLEL_CRITICAL
thread_critical
{
scidac_csuma^= scidac_csuma_thr;
scidac_csumb^= scidac_csumb_thr;
@ -202,9 +196,9 @@ PARALLEL_CRITICAL
{
uint32_t * f = (uint32_t *)file_object;
uint64_t count = bytes/sizeof(uint32_t);
parallel_for(uint64_t i=0;i<count;i++){
thread_for( i, count, {
f[i] = ntohl(f[i]);
}
});
}
// LE must Swap and switch to host
static inline void le32toh_v(void *file_object,uint64_t bytes)
@ -212,13 +206,13 @@ PARALLEL_CRITICAL
uint32_t *fp = (uint32_t *)file_object;
uint64_t count = bytes/sizeof(uint32_t);
parallel_for(uint64_t i=0;i<count;i++){
thread_for(i,count,{
uint32_t f;
f = fp[i];
// got network order and the network to host
f = ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
fp[i] = ntohl(f);
}
});
}
// BE is same as network
@ -226,9 +220,9 @@ PARALLEL_CRITICAL
{
uint64_t * f = (uint64_t *)file_object;
uint64_t count = bytes/sizeof(uint64_t);
parallel_for(uint64_t i=0;i<count;i++){
thread_for( i, count, {
f[i] = Grid_ntohll(f[i]);
}
});
}
// LE must swap and switch;
@ -236,7 +230,7 @@ PARALLEL_CRITICAL
{
uint64_t *fp = (uint64_t *)file_object;
uint64_t count = bytes/sizeof(uint64_t);
parallel_for(uint64_t i=0;i<count;i++){
thread_for( i, count, {
uint64_t f,g;
f = fp[i];
// got network order and the network to host
@ -245,7 +239,7 @@ PARALLEL_CRITICAL
f = f >> 32;
g|= ((f&0xFF)<<24) | ((f&0xFF00)<<8) | ((f&0xFF0000)>>8) | ((f&0xFF000000UL)>>24) ;
fp[i] = Grid_ntohll(g);
}
});
}
/////////////////////////////////////////////////////////////////////////////
// Real action:
@ -281,13 +275,13 @@ PARALLEL_CRITICAL
int nrank = grid->ProcessorCount();
int myrank = grid->ThisRank();
std::vector<int> psizes = grid->ProcessorGrid();
std::vector<int> pcoor = grid->ThisProcessorCoor();
std::vector<int> gLattice= grid->GlobalDimensions();
std::vector<int> lLattice= grid->LocalDimensions();
Coordinate psizes = grid->ProcessorGrid();
Coordinate pcoor = grid->ThisProcessorCoor();
Coordinate gLattice= grid->GlobalDimensions();
Coordinate lLattice= grid->LocalDimensions();
std::vector<int> lStart(ndim);
std::vector<int> gStart(ndim);
Coordinate lStart(ndim);
Coordinate gStart(ndim);
// Flatten the file
uint64_t lsites = grid->lSites();
@ -546,7 +540,7 @@ PARALLEL_CRITICAL
typedef typename vobj::scalar_object sobj;
typedef typename vobj::Realified::scalar_type word; word w=0;
GridBase *grid = Umu._grid;
GridBase *grid = Umu.Grid();
uint64_t lsites = grid->lSites();
std::vector<sobj> scalardata(lsites);
@ -558,7 +552,7 @@ PARALLEL_CRITICAL
GridStopWatch timer;
timer.Start();
parallel_for(uint64_t x=0;x<lsites;x++) munge(iodata[x], scalardata[x]);
thread_for(x,lsites, { munge(iodata[x], scalardata[x]); });
vectorizeFromLexOrdArray(scalardata,Umu);
grid->Barrier();
@ -582,7 +576,7 @@ PARALLEL_CRITICAL
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::Realified::scalar_type word; word w=0;
GridBase *grid = Umu._grid;
GridBase *grid = Umu.Grid();
uint64_t lsites = grid->lSites(), offsetCopy = offset;
int attemptsLeft = std::max(0, BinaryIO::latticeWriteMaxRetry);
bool checkWrite = (BinaryIO::latticeWriteMaxRetry >= 0);
@ -596,7 +590,7 @@ PARALLEL_CRITICAL
GridStopWatch timer; timer.Start();
unvectorizeToLexOrdArray(scalardata,Umu);
parallel_for(uint64_t x=0;x<lsites;x++) munge(scalardata[x],iodata[x]);
thread_for(x, lsites, { munge(scalardata[x],iodata[x]); });
grid->Barrier();
timer.Stop();
@ -619,7 +613,7 @@ PARALLEL_CRITICAL
{
std::cout << GridLogMessage << "writeLatticeObject: read test checksum failure, re-writing (" << attemptsLeft << " attempt(s) remaining)" << std::endl;
offset = offsetCopy;
parallel_for(uint64_t x=0;x<lsites;x++) munge(scalardata[x],iodata[x]);
thread_for(x,lsites, { munge(scalardata[x],iodata[x]); });
}
else
{
@ -637,8 +631,8 @@ PARALLEL_CRITICAL
/////////////////////////////////////////////////////////////////////////////
// Read a RNG; use IOobject and lexico map to an array of state
//////////////////////////////////////////////////////////////////////////////////////
static inline void readRNG(GridSerialRNG &serial,
GridParallelRNG &parallel,
static inline void readRNG(GridSerialRNG &serial_rng,
GridParallelRNG &parallel_rng,
std::string file,
uint64_t offset,
uint32_t &nersc_csum,
@ -652,7 +646,7 @@ PARALLEL_CRITICAL
std::string format = "IEEE32BIG";
GridBase *grid = parallel._grid;
GridBase *grid = parallel_rng.Grid();
uint64_t gsites = grid->gSites();
uint64_t lsites = grid->lSites();
@ -669,11 +663,11 @@ PARALLEL_CRITICAL
nersc_csum,scidac_csuma,scidac_csumb);
timer.Start();
parallel_for(uint64_t lidx=0;lidx<lsites;lidx++){
thread_for(lidx,lsites,{
std::vector<RngStateType> tmp(RngStateCount);
std::copy(iodata[lidx].begin(),iodata[lidx].end(),tmp.begin());
parallel.SetState(tmp,lidx);
}
parallel_rng.SetState(tmp,lidx);
});
timer.Stop();
iodata.resize(1);
@ -683,7 +677,7 @@ PARALLEL_CRITICAL
{
std::vector<RngStateType> tmp(RngStateCount);
std::copy(iodata[0].begin(),iodata[0].end(),tmp.begin());
serial.SetState(tmp,0);
serial_rng.SetState(tmp,0);
}
nersc_csum = nersc_csum + nersc_csum_tmp;
@ -699,8 +693,8 @@ PARALLEL_CRITICAL
/////////////////////////////////////////////////////////////////////////////
// Write a RNG; lexico map to an array of state and use IOobject
//////////////////////////////////////////////////////////////////////////////////////
static inline void writeRNG(GridSerialRNG &serial,
GridParallelRNG &parallel,
static inline void writeRNG(GridSerialRNG &serial_rng,
GridParallelRNG &parallel_rng,
std::string file,
uint64_t offset,
uint32_t &nersc_csum,
@ -712,7 +706,7 @@ PARALLEL_CRITICAL
const int RngStateCount = GridSerialRNG::RngStateCount;
typedef std::array<RngStateType,RngStateCount> RNGstate;
GridBase *grid = parallel._grid;
GridBase *grid = parallel_rng.Grid();
uint64_t gsites = grid->gSites();
uint64_t lsites = grid->lSites();
@ -727,11 +721,11 @@ PARALLEL_CRITICAL
timer.Start();
std::vector<RNGstate> iodata(lsites);
parallel_for(uint64_t lidx=0;lidx<lsites;lidx++){
thread_for(lidx,lsites,{
std::vector<RngStateType> tmp(RngStateCount);
parallel.GetState(tmp,lidx);
parallel_rng.GetState(tmp,lidx);
std::copy(tmp.begin(),tmp.end(),iodata[lidx].begin());
}
});
timer.Stop();
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
@ -739,7 +733,7 @@ PARALLEL_CRITICAL
iodata.resize(1);
{
std::vector<RngStateType> tmp(RngStateCount);
serial.GetState(tmp,0);
serial_rng.GetState(tmp,0);
std::copy(tmp.begin(),tmp.end(),iodata[0].begin());
}
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_MASTER_APPEND,
@ -756,5 +750,4 @@ PARALLEL_CRITICAL
}
};
}
#endif
NAMESPACE_END(Grid);

View File

@ -24,8 +24,7 @@ See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ILDG_IO_H
#define GRID_ILDG_IO_H
#pragma once
#ifdef HAVE_LIME
#include <algorithm>
@ -43,8 +42,7 @@ extern "C" {
#include "lime.h"
}
namespace Grid {
namespace QCD {
NAMESPACE_BEGIN(Grid);
#define GRID_FIELD_NORM "FieldNormMetaData"
#define GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) \
@ -140,7 +138,7 @@ assert(GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) < 1.0e-5);
/////////////////////////////////////
// Scidac Private File structure
/////////////////////////////////////
_scidacFile = scidacFile(field._grid);
_scidacFile = scidacFile(field.Grid());
/////////////////////////////////////
// Scidac Private Record structure
@ -227,10 +225,10 @@ class GridLimeReader : public BinaryIO {
// std::cout << GridLogMessage<< " readLimeLatticeBinaryObject matches ! " <<std::endl;
uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
uint64_t PayloadSize = sizeof(sobj) * field.Grid()->_gsites;
// std::cout << "R sizeof(sobj)= " <<sizeof(sobj)<<std::endl;
// std::cout << "R Gsites " <<field._grid->_gsites<<std::endl;
// std::cout << "R Gsites " <<field.Grid()->_gsites<<std::endl;
// std::cout << "R Payload expected " <<PayloadSize<<std::endl;
// std::cout << "R file size " <<file_bytes <<std::endl;
@ -406,7 +404,7 @@ class GridLimeWriter : public BinaryIO
////////////////////////////////////////////////////
// Write a generic lattice field and csum
// This routine is Collectively called by all nodes
// in communicator used by the field._grid
// in communicator used by the field.Grid()
////////////////////////////////////////////////////
template<class vobj>
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
@ -425,8 +423,8 @@ class GridLimeWriter : public BinaryIO
// v) Continue writing scidac record.
////////////////////////////////////////////////////////////////////
GridBase *grid = field._grid;
assert(boss_node == field._grid->IsBoss() );
GridBase *grid = field.Grid();
assert(boss_node == field.Grid()->IsBoss() );
FieldNormMetaData FNMD; FNMD.norm2 = norm2(field);
@ -443,7 +441,7 @@ class GridLimeWriter : public BinaryIO
}
// std::cout << "W sizeof(sobj)" <<sizeof(sobj)<<std::endl;
// std::cout << "W Gsites " <<field._grid->_gsites<<std::endl;
// std::cout << "W Gsites " <<field.Grid()->_gsites<<std::endl;
// std::cout << "W Payload expected " <<PayloadSize<<std::endl;
////////////////////////////////////////////////
@ -515,7 +513,7 @@ class ScidacWriter : public GridLimeWriter {
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
const unsigned int recordScientificPrec = 0)
{
GridBase * grid = field._grid;
GridBase * grid = field.Grid();
////////////////////////////////////////
// fill the Grid header
@ -557,7 +555,7 @@ class ScidacReader : public GridLimeReader {
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)
{
typedef typename vobj::scalar_object sobj;
GridBase * grid = field._grid;
GridBase * grid = field.Grid();
////////////////////////////////////////
// fill the Grid header
@ -624,7 +622,7 @@ class IldgWriter : public ScidacWriter {
template <class vsimd>
void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,int sequence,std::string LFN,std::string description)
{
GridBase * grid = Umu._grid;
GridBase * grid = Umu.Grid();
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj;
@ -717,9 +715,9 @@ class IldgReader : public GridLimeReader {
typedef LorentzColourMatrixF fobj;
typedef LorentzColourMatrixD dobj;
GridBase *grid = Umu._grid;
GridBase *grid = Umu.Grid();
std::vector<int> dims = Umu._grid->FullDimensions();
Coordinate dims = Umu.Grid()->FullDimensions();
assert(dims.size()==4);
@ -853,6 +851,7 @@ class IldgReader : public GridLimeReader {
// Minimally must find binary segment and checksum
// Since this is an ILDG reader require ILDG format
//////////////////////////////////////////////////////
assert(found_ildgLFN);
assert(found_ildgBinary);
assert(found_ildgFormat);
assert(found_scidacChecksum);
@ -930,9 +929,9 @@ class IldgReader : public GridLimeReader {
}
};
}}
NAMESPACE_END(Grid);
//HAVE_LIME
#endif
#endif

View File

@ -32,7 +32,7 @@ extern "C" { // for linkage
#include "lime.h"
}
namespace Grid {
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////
// Data representation of records that enter ILDG and SciDac formats
@ -91,7 +91,7 @@ struct scidacFile : Serializable {
return dimensions;
}
void setDimensions(std::vector<int> dimensions) {
void setDimensions(Coordinate dimensions) {
char delimiter = ' ';
std::stringstream stream;
for(int i=0;i<dimensions.size();i++){
@ -232,6 +232,6 @@ struct usqcdPropInfo : Serializable {
};
#endif
}
NAMESPACE_END(Grid);
#endif
#endif

View File

@ -36,7 +36,7 @@
#include <sys/utsname.h>
#include <pwd.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////
// Precision mapping
@ -52,7 +52,8 @@ namespace Grid {
format = std::string("IEEE64BIG");
}
return format;
}
};
////////////////////////////////////////////////////////////////////////////////
// header specification/interpretation
////////////////////////////////////////////////////////////////////////////////
@ -95,10 +96,9 @@ namespace Grid {
{}
};
namespace QCD {
using namespace Grid;
// PB disable using namespace - this is a header and forces namesapce visibility for all
// including files
//using namespace Grid;
//////////////////////////////////////////////////////////////////////
// Bit and Physical Checksumming and QA of data
@ -169,7 +169,7 @@ namespace Grid {
template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMetaData &header)
{
GridBase *grid = field._grid;
GridBase *grid = field.Grid();
std::string format = getFormatString<vobj>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
@ -179,19 +179,19 @@ template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMet
inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header)
{
// How to convert data precision etc...
header.link_trace=Grid::QCD::WilsonLoops<PeriodicGimplF>::linkTrace(data);
header.plaquette =Grid::QCD::WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
header.link_trace=WilsonLoops<PeriodicGimplF>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
// How to convert data precision etc...
header.link_trace=Grid::QCD::WilsonLoops<PeriodicGimplD>::linkTrace(data);
header.plaquette =Grid::QCD::WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
header.link_trace=WilsonLoops<PeriodicGimplD>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header)
{
GridBase *grid = field._grid;
GridBase *grid = field.Grid();
std::string format = getFormatString<vLorentzColourMatrixF>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
@ -201,7 +201,7 @@ template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMet
}
template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header)
{
GridBase *grid = field._grid;
GridBase *grid = field.Grid();
std::string format = getFormatString<vLorentzColourMatrixD>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
@ -325,7 +325,6 @@ struct BinarySimpleMunger {
}
}
};
}
NAMESPACE_END(Grid);
}

View File

@ -30,8 +30,7 @@
#ifndef GRID_NERSC_IO_H
#define GRID_NERSC_IO_H
namespace Grid {
namespace QCD {
NAMESPACE_BEGIN(Grid);
using namespace Grid;
@ -57,7 +56,6 @@ namespace Grid {
// for the header-reader
static inline int readHeader(std::string file,GridBase *grid, FieldMetaData &field)
{
uint64_t offset=0;
std::map<std::string,std::string> header;
std::string line;
@ -138,8 +136,8 @@ namespace Grid {
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
GridBase *grid = Umu._grid;
uint64_t offset = readHeader(file,Umu._grid,header);
GridBase *grid = Umu.Grid();
uint64_t offset = readHeader(file,Umu.Grid(),header);
FieldMetaData clone(header);
@ -190,8 +188,6 @@ namespace Grid {
if ( fabs(clone.plaquette -header.plaquette ) >= 1.0e-5 ) {
std::cout << " Plaquette mismatch "<<std::endl;
std::cout << Umu[0]<<std::endl;
std::cout << Umu[1]<<std::endl;
}
if ( nersc_csum != header.checksum ) {
std::cerr << " checksum mismatch " << std::endl;
@ -229,7 +225,7 @@ namespace Grid {
typedef LorentzColourMatrixD fobj3D;
typedef LorentzColour2x3D fobj2D;
GridBase *grid = Umu._grid;
GridBase *grid = Umu.Grid();
GridMetaData(grid,header);
assert(header.nd==4);
@ -274,7 +270,7 @@ namespace Grid {
header.ensemble_id = "UKQCD";
header.ensemble_label = "DWF";
GridBase *grid = parallel._grid;
GridBase *grid = parallel.Grid();
GridMetaData(grid,header);
assert(header.nd==4);
@ -321,7 +317,7 @@ namespace Grid {
{
typedef typename GridParallelRNG::RngStateType RngStateType;
GridBase *grid = parallel._grid;
GridBase *grid = parallel.Grid();
uint64_t offset = readHeader(file,grid,header);
@ -356,8 +352,8 @@ namespace Grid {
std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl;
}
};
}}
NAMESPACE_END(QCD);
#endif

View File

@ -29,7 +29,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
#include <Grid/perfmon/PerfCount.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
#define CacheControl(L,O,R) ((PERF_COUNT_HW_CACHE_##L)|(PERF_COUNT_HW_CACHE_OP_##O<<8)| (PERF_COUNT_HW_CACHE_RESULT_##R<<16))
#define RawConfig(A,B) (A<<8|B)
@ -72,4 +72,5 @@ const PerformanceCounter::PerformanceCounterConfig PerformanceCounter::Performan
// { PERF_TYPE_HARDWARE, PERF_COUNT_HW_STALLED_CYCLES_FRONTEND, "STALL_CYCLES" },
#endif
};
}
NAMESPACE_END(Grid);

View File

@ -47,7 +47,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <x86intrin.h>
#endif
namespace Grid {
NAMESPACE_BEGIN(Grid);
#ifdef __linux__
static long perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
@ -89,6 +89,9 @@ inline uint64_t cyclecount(void){
return tmp;
}
#elif defined __x86_64__
#ifdef GRID_NVCC
accelerator_inline uint64_t __rdtsc(void) { return 0; }
#endif
inline uint64_t cyclecount(void){
return __rdtsc();
// unsigned int dummy;
@ -212,7 +215,7 @@ public:
::ioctl(cyclefd, PERF_EVENT_IOC_DISABLE, 0);
ign=::read(fd, &count, sizeof(long long));
ign+=::read(cyclefd, &cycles, sizeof(long long));
assert(ign=2*sizeof(long long));
assert(ign==2*sizeof(long long));
}
elapsed = cyclecount() - begin;
#else
@ -241,5 +244,6 @@ public:
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -2,7 +2,7 @@
#include <Grid/perfmon/PerfCount.h>
#include <Grid/perfmon/Stat.h>
namespace Grid {
NAMESPACE_BEGIN(Grid);
bool PmuStat::pmu_initialized=false;
@ -242,4 +242,5 @@ void PmuStat::KNLreadctrs(ctrs &c)
}
#endif
}
NAMESPACE_END(Grid);

View File

@ -5,7 +5,7 @@
#define _KNIGHTS_LANDING_ROOTONLY
#endif
namespace Grid {
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////
// Extra KNL counters from MCDRAM
@ -98,7 +98,8 @@ public:
};
}
NAMESPACE_END(Grid);
#endif

View File

@ -33,11 +33,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <ctime>
#include <chrono>
namespace Grid {
NAMESPACE_BEGIN(Grid)
// Dress the output; use std::chrono
// C++11 time facilities better?
inline double usecond(void) {
struct timeval tv;
@ -125,5 +123,6 @@ public:
}
};
}
NAMESPACE_END(Grid)
#endif

View File

@ -14,7 +14,12 @@
#ifndef SOURCE_PUGIXML_CPP
#define SOURCE_PUGIXML_CPP
#include <Grid/pugixml/pugixml.h>
#ifdef __NVCC__
#pragma push
#pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
#endif
#include "pugixml.h"
#include <stdlib.h>
#include <stdio.h>
@ -202,7 +207,7 @@ PUGI__NS_BEGIN
// Without a template<> we'll get multiple definitions of the same static
template <typename T> allocation_function xml_memory_management_function_storage<T>::allocate = default_allocate;
template <typename T> deallocation_function xml_memory_management_function_storage<T>::deallocate = default_deallocate;
template struct xml_memory_management_function_storage<int>;
typedef xml_memory_management_function_storage<int> xml_memory;
PUGI__NS_END
@ -12768,6 +12773,10 @@ namespace pugi
#undef PUGI__THROW_ERROR
#undef PUGI__CHECK_ERROR
#ifdef GRID_NVCC
#pragma pop
#endif
#endif
/**

View File

@ -29,55 +29,53 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_BASE_H
#define GRID_QCD_BASE_H
namespace Grid{
namespace QCD {
#pragma once
static const int Xdir = 0;
static const int Ydir = 1;
static const int Zdir = 2;
static const int Tdir = 3;
NAMESPACE_BEGIN(Grid);
static constexpr int Xdir = 0;
static constexpr int Ydir = 1;
static constexpr int Zdir = 2;
static constexpr int Tdir = 3;
static const int Xp = 0;
static const int Yp = 1;
static const int Zp = 2;
static const int Tp = 3;
static const int Xm = 4;
static const int Ym = 5;
static const int Zm = 6;
static const int Tm = 7;
static constexpr int Xp = 0;
static constexpr int Yp = 1;
static constexpr int Zp = 2;
static constexpr int Tp = 3;
static constexpr int Xm = 4;
static constexpr int Ym = 5;
static constexpr int Zm = 6;
static constexpr int Tm = 7;
static const int Nc=3;
static const int Ns=4;
static const int Nd=4;
static const int Nhs=2; // half spinor
static const int Nds=8; // double stored gauge field
static const int Ngp=2; // gparity index range
static constexpr int Nc=3;
static constexpr int Ns=4;
static constexpr int Nd=4;
static constexpr int Nhs=2; // half spinor
static constexpr int Nds=8; // double stored gauge field
static constexpr int Ngp=2; // gparity index range
//////////////////////////////////////////////////////////////////////////////
// QCD iMatrix types
// Index conventions: Lorentz x Spin x Colour
// note: static const int or constexpr will work for type deductions
// note: static constexpr int or constexpr will work for type deductions
// with the intel compiler (up to version 17)
//////////////////////////////////////////////////////////////////////////////
#define ColourIndex 2
#define SpinIndex 1
#define LorentzIndex 0
#define ColourIndex (2)
#define SpinIndex (1)
#define LorentzIndex (0)
// Also should make these a named enum type
static const int DaggerNo=0;
static const int DaggerYes=1;
static const int InverseNo=0;
static const int InverseYes=1;
static constexpr int DaggerNo=0;
static constexpr int DaggerYes=1;
static constexpr int InverseNo=0;
static constexpr int InverseYes=1;
// Useful traits is this a spin index
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
const int SpinorIndex = 2;
template<typename T> struct isSpinor {
static const bool value = (SpinorIndex==T::TensorLevel);
static constexpr bool value = (SpinorIndex==T::TensorLevel);
};
template <typename T> using IfSpinor = Invoke<std::enable_if< isSpinor<T>::value,int> > ;
template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ;
@ -382,35 +380,35 @@ namespace QCD {
//////////////////////////////////////////////
template<class vobj>
void pokeColour(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<ColourIndex>(lhs._odata[0],0))> & rhs,
const Lattice<decltype(peekIndex<ColourIndex>(vobj(),0))> & rhs,
int i)
{
PokeIndex<ColourIndex>(lhs,rhs,i);
}
template<class vobj>
void pokeColour(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<ColourIndex>(lhs._odata[0],0,0))> & rhs,
const Lattice<decltype(peekIndex<ColourIndex>(vobj(),0,0))> & rhs,
int i,int j)
{
PokeIndex<ColourIndex>(lhs,rhs,i,j);
}
template<class vobj>
void pokeSpin(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<SpinIndex>(lhs._odata[0],0))> & rhs,
const Lattice<decltype(peekIndex<SpinIndex>(vobj(),0))> & rhs,
int i)
{
PokeIndex<SpinIndex>(lhs,rhs,i);
}
template<class vobj>
void pokeSpin(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<SpinIndex>(lhs._odata[0],0,0))> & rhs,
const Lattice<decltype(peekIndex<SpinIndex>(vobj(),0,0))> & rhs,
int i,int j)
{
PokeIndex<SpinIndex>(lhs,rhs,i,j);
}
template<class vobj>
void pokeLorentz(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<LorentzIndex>(lhs._odata[0],0))> & rhs,
const Lattice<decltype(peekIndex<LorentzIndex>(vobj(),0))> & rhs,
int i)
{
PokeIndex<LorentzIndex>(lhs,rhs,i);
@ -499,12 +497,12 @@ namespace QCD {
// Trace lattice and non-lattice
//////////////////////////////////////////
template<int Index,class vobj>
inline auto traceSpin(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs._odata[0]))>
inline auto traceSpin(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(vobj()))>
{
return traceIndex<SpinIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceColour(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs._odata[0]))>
inline auto traceColour(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(vobj()))>
{
return traceIndex<ColourIndex>(lhs);
}
@ -527,9 +525,5 @@ namespace QCD {
Axial, 1,
Tadpole, 2);
} //namespace QCD
} // Grid
NAMESPACE_END(Grid);
#endif

View File

@ -37,14 +37,18 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
// Abstract base interface
////////////////////////////////////////////
#include <Grid/qcd/action/ActionCore.h>
NAMESPACE_CHECK(ActionCore);
////////////////////////////////////////////////////////////////////////
// Fermion actions; prevent coupling fermion.cc files to other headers
////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_CHECK(FermionCore);
#include <Grid/qcd/action/fermion/Fermion.h>
NAMESPACE_CHECK(Fermion);
////////////////////////////////////////
// Pseudo fermion combinations for HMC
////////////////////////////////////////
#include <Grid/qcd/action/pseudofermion/PseudoFermion.h>
NAMESPACE_CHECK(PseudoFermion);
#endif

View File

@ -32,8 +32,7 @@ directory
#ifndef ACTION_BASE_H
#define ACTION_BASE_H
namespace Grid {
namespace QCD {
NAMESPACE_BEGIN(Grid);
template <class GaugeField >
class Action
@ -50,7 +49,6 @@ class Action
virtual ~Action(){}
};
}
}
NAMESPACE_END(Grid);
#endif // ACTION_BASE_H

View File

@ -31,29 +31,37 @@ directory
#define QCD_ACTION_CORE
#include <Grid/qcd/action/ActionBase.h>
NAMESPACE_CHECK(ActionBase);
#include <Grid/qcd/action/ActionSet.h>
NAMESPACE_CHECK(ActionSet);
#include <Grid/qcd/action/ActionParams.h>
NAMESPACE_CHECK(ActionParams);
////////////////////////////////////////////
// Gauge Actions
////////////////////////////////////////////
#include <Grid/qcd/action/gauge/Gauge.h>
NAMESPACE_CHECK(Gauge);
////////////////////////////////////////////
// Fermion prereqs
////////////////////////////////////////////
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_CHECK(ActionFermionCore);
////////////////////////////////////////////
// Scalar Actions
////////////////////////////////////////////
#include <Grid/qcd/action/scalar/Scalar.h>
NAMESPACE_CHECK(Scalar);
////////////////////////////////////////////
// Utility functions
////////////////////////////////////////////
#include <Grid/qcd/utils/Metric.h>
NAMESPACE_CHECK(Metric);
#include <Grid/qcd/utils/CovariantLaplacian.h>
NAMESPACE_CHECK(CovariantLaplacian);

View File

@ -32,25 +32,23 @@ directory
#ifndef GRID_QCD_ACTION_PARAMS_H
#define GRID_QCD_ACTION_PARAMS_H
namespace Grid {
namespace QCD {
NAMESPACE_BEGIN(Grid);
// These can move into a params header and be given MacroMagic serialisation
struct GparityWilsonImplParams {
bool overlapCommsCompute;
std::vector<int> twists;
GparityWilsonImplParams() : twists(Nd, 0), overlapCommsCompute(false){};
Coordinate twists;
GparityWilsonImplParams() : twists(Nd, 0) {};
};
struct WilsonImplParams {
bool overlapCommsCompute;
std::vector<Real> twist_n_2pi_L;
std::vector<Complex> boundary_phases;
WilsonImplParams() : overlapCommsCompute(false) {
AcceleratorVector<Real,Nd> twist_n_2pi_L;
AcceleratorVector<Complex,Nd> boundary_phases;
WilsonImplParams() {
boundary_phases.resize(Nd, 1.0);
twist_n_2pi_L.resize(Nd, 0.0);
};
WilsonImplParams(const std::vector<Complex> phi) : boundary_phases(phi), overlapCommsCompute(false) {
WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
twist_n_2pi_L.resize(Nd, 0.0);
}
};
@ -88,11 +86,6 @@ namespace QCD {
BoundsCheckFreq(_BoundsCheckFreq){};
};
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -30,10 +30,7 @@ directory
#ifndef ACTION_SET_H
#define ACTION_SET_H
namespace Grid {
// Should drop this namespace here
namespace QCD {
NAMESPACE_BEGIN(Grid);
//////////////////////////////////
// Indexing of tuple types
@ -87,7 +84,7 @@ struct ActionLevel {
void push_back(Action<GenField>* ptr) {
// insert only in the correct vector
std::get< Index < GenField, action_hirep_types>::value >(actions_hirep).push_back(ptr);
};
}
template <class ActPtr>
static void resize(ActPtr ap, unsigned int n) {
@ -110,7 +107,6 @@ struct ActionLevel {
template <class GaugeField, class R>
using ActionSet = std::vector<ActionLevel<GaugeField, R> >;
} // QCD
} // Grid
NAMESPACE_END(Grid);
#endif // ACTION_SET_H

View File

@ -32,8 +32,7 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
namespace Grid {
namespace QCD {
NAMESPACE_BEGIN(Grid);
// DJM: Abstract base class for EOFA fermion types.
// Defines layout of additional EOFA-specific parameters and operators.
@ -95,6 +94,7 @@ namespace QCD {
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
};
};
}}
NAMESPACE_END(Grid);
#endif

View File

@ -26,39 +26,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_CAYLEY_FERMION_H
#define GRID_QCD_CAYLEY_FERMION_H
#pragma once
#include <Grid/qcd/action/fermion/WilsonFermion5D.h>
namespace Grid {
namespace QCD {
template<typename T> struct switcheroo {
static inline int iscomplex() { return 0; }
template<class vec>
static inline vec mult(vec a, vec b) {
return real_mult(a,b);
}
};
template<> struct switcheroo<ComplexD> {
static inline int iscomplex() { return 1; }
template<class vec>
static inline vec mult(vec a, vec b) {
return a*b;
}
};
template<> struct switcheroo<ComplexF> {
static inline int iscomplex() { return 1; }
template<class vec>
static inline vec mult(vec a, vec b) {
return a*b;
}
};
NAMESPACE_BEGIN(Grid);
template<class Impl>
class CayleyFermion5D : public WilsonFermion5D<Impl>
@ -110,29 +82,16 @@ namespace Grid {
void M5D(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper);
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper);
void M5Ddag(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper);
void MooeeInternal(const FermionField &in, FermionField &out,int dag,int inv);
void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd> > & Matp, Vector<iSinglet<Simd> > & Matm);
void MooeeInternalAsm(const FermionField &in, FermionField &out,
int LLs, int site,
Vector<iSinglet<Simd> > &Matp,
Vector<iSinglet<Simd> > &Matm);
void MooeeInternalZAsm(const FermionField &in, FermionField &out,
int LLs, int site,
Vector<iSinglet<Simd> > &Matp,
Vector<iSinglet<Simd> > &Matm);
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper);
virtual void Instantiatable(void)=0;
@ -151,29 +110,29 @@ namespace Grid {
RealD mass;
// Save arguments to SetCoefficientsInternal
std::vector<Coeff_t> _gamma;
Vector<Coeff_t> _gamma;
RealD _zolo_hi;
RealD _b;
RealD _c;
// Cayley form Moebius (tanh and zolotarev)
std::vector<Coeff_t> omega;
std::vector<Coeff_t> bs; // S dependent coeffs
std::vector<Coeff_t> cs;
std::vector<Coeff_t> as;
Vector<Coeff_t> omega;
Vector<Coeff_t> bs; // S dependent coeffs
Vector<Coeff_t> cs;
Vector<Coeff_t> as;
// For preconditioning Cayley form
std::vector<Coeff_t> bee;
std::vector<Coeff_t> cee;
std::vector<Coeff_t> aee;
std::vector<Coeff_t> beo;
std::vector<Coeff_t> ceo;
std::vector<Coeff_t> aeo;
Vector<Coeff_t> bee;
Vector<Coeff_t> cee;
Vector<Coeff_t> aee;
Vector<Coeff_t> beo;
Vector<Coeff_t> ceo;
Vector<Coeff_t> aeo;
// LDU factorisation of the eeoo matrix
std::vector<Coeff_t> lee;
std::vector<Coeff_t> leem;
std::vector<Coeff_t> uee;
std::vector<Coeff_t> ueem;
std::vector<Coeff_t> dee;
Vector<Coeff_t> lee;
Vector<Coeff_t> leem;
Vector<Coeff_t> uee;
Vector<Coeff_t> ueem;
Vector<Coeff_t> dee;
// Matrices of 5d ee inverse params
Vector<iSinglet<Simd> > MatpInv;
@ -189,8 +148,6 @@ namespace Grid {
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
void CayleyReport(void);
void CayleyZeroCounters(void);
@ -205,22 +162,8 @@ namespace Grid {
protected:
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c);
};
}
}
#define INSTANTIATE_DPERP(A)\
template void CayleyFermion5D< A >::M5D(const FermionField &psi,const FermionField &phi,FermionField &chi,\
std::vector<Coeff_t> &lower,std::vector<Coeff_t> &diag,std::vector<Coeff_t> &upper); \
template void CayleyFermion5D< A >::M5Ddag(const FermionField &psi,const FermionField &phi,FermionField &chi,\
std::vector<Coeff_t> &lower,std::vector<Coeff_t> &diag,std::vector<Coeff_t> &upper); \
template void CayleyFermion5D< A >::MooeeInv (const FermionField &psi, FermionField &chi); \
template void CayleyFermion5D< A >::MooeeInvDag (const FermionField &psi, FermionField &chi);
NAMESPACE_END(Grid);
#undef CAYLEY_DPERP_DENSE
#define CAYLEY_DPERP_CACHE
#undef CAYLEY_DPERP_LINALG
#define CAYLEY_DPERP_VEC
#endif

Some files were not shown because too many files have changed in this diff Show More