mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-02 21:14:32 +00:00 
			
		
		
		
	Merge branch 'develop' into feature/hadrons
This commit is contained in:
		@@ -162,15 +162,10 @@ namespace Grid {
 | 
			
		||||
	_Mat.M(in,out);
 | 
			
		||||
      }
 | 
			
		||||
      void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
	ComplexD dot;
 | 
			
		||||
 | 
			
		||||
	_Mat.M(in,out);
 | 
			
		||||
	
 | 
			
		||||
	dot= innerProduct(in,out);
 | 
			
		||||
	n1=real(dot);
 | 
			
		||||
 | 
			
		||||
	dot = innerProduct(out,out);
 | 
			
		||||
	n2=real(dot);
 | 
			
		||||
	ComplexD dot= innerProduct(in,out); n1=real(dot);
 | 
			
		||||
	n2=norm2(out);
 | 
			
		||||
      }
 | 
			
		||||
      void HermOp(const Field &in, Field &out){
 | 
			
		||||
	_Mat.M(in,out);
 | 
			
		||||
@@ -192,10 +187,10 @@ namespace Grid {
 | 
			
		||||
	ni=Mpc(in,tmp);
 | 
			
		||||
	no=MpcDag(tmp,out);
 | 
			
		||||
      }
 | 
			
		||||
      void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
      virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
	MpcDagMpc(in,out,n1,n2);
 | 
			
		||||
      }
 | 
			
		||||
      void HermOp(const Field &in, Field &out){
 | 
			
		||||
      virtual void HermOp(const Field &in, Field &out){
 | 
			
		||||
	RealD n1,n2;
 | 
			
		||||
	HermOpAndNorm(in,out,n1,n2);
 | 
			
		||||
      }
 | 
			
		||||
@@ -212,7 +207,6 @@ namespace Grid {
 | 
			
		||||
      void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    };
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
      class SchurDiagMooeeOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
@@ -270,7 +264,6 @@ namespace Grid {
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,in);
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
      class SchurDiagTwoOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
    protected:
 | 
			
		||||
@@ -299,6 +292,45 @@ namespace Grid {
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,in);
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Left  handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta  -->  ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
 | 
			
		||||
    // Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta  -->  ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
 | 
			
		||||
    template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    //  Staggered use
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
      class SchurStaggeredOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
    protected:
 | 
			
		||||
      Matrix &_Mat;
 | 
			
		||||
    public:
 | 
			
		||||
      SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
      virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
	n2 = Mpc(in,out);
 | 
			
		||||
	ComplexD dot= innerProduct(in,out);
 | 
			
		||||
	n1 = real(dot);
 | 
			
		||||
      }
 | 
			
		||||
      virtual void HermOp(const Field &in, Field &out){
 | 
			
		||||
	Mpc(in,out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual  RealD Mpc      (const Field &in, Field &out) {
 | 
			
		||||
	Field tmp(in._grid);
 | 
			
		||||
	_Mat.Meooe(in,tmp);
 | 
			
		||||
	_Mat.MooeeInv(tmp,out);
 | 
			
		||||
	_Mat.MeooeDag(out,tmp);
 | 
			
		||||
	_Mat.Mooee(in,out);
 | 
			
		||||
        return axpy_norm(out,-1.0,tmp,out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual  RealD MpcDag   (const Field &in, Field &out){
 | 
			
		||||
	return Mpc(in,out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
 | 
			
		||||
	assert(0);// Never need with staggered
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
    template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -8,6 +8,7 @@
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
@@ -193,6 +194,47 @@ namespace Grid {
 | 
			
		||||
      return sum;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    RealD approxD(RealD x)
 | 
			
		||||
    {
 | 
			
		||||
      RealD Un;
 | 
			
		||||
      RealD Unm;
 | 
			
		||||
      RealD Unp;
 | 
			
		||||
      
 | 
			
		||||
      RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
      RealD U0=1;
 | 
			
		||||
      RealD U1=2*y;
 | 
			
		||||
      
 | 
			
		||||
      RealD sum;
 | 
			
		||||
      sum = Coeffs[1]*U0;
 | 
			
		||||
      sum+= Coeffs[2]*U1*2.0;
 | 
			
		||||
      
 | 
			
		||||
      Un =U1;
 | 
			
		||||
      Unm=U0;
 | 
			
		||||
      for(int i=2;i<order-1;i++){
 | 
			
		||||
	Unp=2*y*Un-Unm;
 | 
			
		||||
	Unm=Un;
 | 
			
		||||
	Un =Unp;
 | 
			
		||||
	sum+= Un*Coeffs[i+1]*(i+1.0);
 | 
			
		||||
      }
 | 
			
		||||
      return sum/(0.5*(hi-lo));
 | 
			
		||||
    };
 | 
			
		||||
    
 | 
			
		||||
    RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
 | 
			
		||||
      RealD x = x0;
 | 
			
		||||
      RealD eps;
 | 
			
		||||
      
 | 
			
		||||
      int i;
 | 
			
		||||
      for (i=0;i<maxiter;i++) {
 | 
			
		||||
	eps = approx(x) - z;
 | 
			
		||||
	if (fabs(eps / z) < resid)
 | 
			
		||||
	  return x;
 | 
			
		||||
	x = x - eps / approxD(x);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      return std::numeric_limits<double>::quiet_NaN();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // Implement the required interface
 | 
			
		||||
    void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1,753 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_BIRL_H
 | 
			
		||||
#define GRID_BIRL_H
 | 
			
		||||
 | 
			
		||||
#include <string.h> //memset
 | 
			
		||||
 | 
			
		||||
#include <zlib.h>
 | 
			
		||||
#include <sys/stat.h>
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockProjector.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid { 
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Implicitly restarted lanczos
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 template<class Field> 
 | 
			
		||||
 class BlockImplicitlyRestartedLanczos {
 | 
			
		||||
 | 
			
		||||
    const RealD small = 1.0e-16;
 | 
			
		||||
public:       
 | 
			
		||||
    int lock;
 | 
			
		||||
    int get;
 | 
			
		||||
    int Niter;
 | 
			
		||||
    int converged;
 | 
			
		||||
 | 
			
		||||
    int Nminres; // Minimum number of restarts; only check for convergence after
 | 
			
		||||
    int Nstop;   // Number of evecs checked for convergence
 | 
			
		||||
    int Nk;      // Number of converged sought
 | 
			
		||||
    int Np;      // Np -- Number of spare vecs in kryloc space
 | 
			
		||||
    int Nm;      // Nm -- total number of vectors
 | 
			
		||||
 | 
			
		||||
    int orth_period;
 | 
			
		||||
 | 
			
		||||
    RealD OrthoTime;
 | 
			
		||||
 | 
			
		||||
    RealD eresid, betastp;
 | 
			
		||||
    SortEigen<Field> _sort;
 | 
			
		||||
    LinearFunction<Field> &_HermOp;
 | 
			
		||||
    LinearFunction<Field> &_HermOpTest;
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Constructor
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
 | 
			
		||||
    BlockImplicitlyRestartedLanczos(
 | 
			
		||||
			       LinearFunction<Field> & HermOp,
 | 
			
		||||
			       LinearFunction<Field> & HermOpTest,
 | 
			
		||||
			       int _Nstop, // sought vecs
 | 
			
		||||
			       int _Nk, // sought vecs
 | 
			
		||||
			       int _Nm, // spare vecs
 | 
			
		||||
			       RealD _eresid, // resid in lmdue deficit 
 | 
			
		||||
			       RealD _betastp, // if beta(k) < betastp: converged
 | 
			
		||||
			       int _Niter, // Max iterations
 | 
			
		||||
			       int _Nminres, int _orth_period = 1) :
 | 
			
		||||
      _HermOp(HermOp),
 | 
			
		||||
      _HermOpTest(HermOpTest),
 | 
			
		||||
      Nstop(_Nstop),
 | 
			
		||||
      Nk(_Nk),
 | 
			
		||||
      Nm(_Nm),
 | 
			
		||||
      eresid(_eresid),
 | 
			
		||||
      betastp(_betastp),
 | 
			
		||||
      Niter(_Niter),
 | 
			
		||||
	Nminres(_Nminres),
 | 
			
		||||
	orth_period(_orth_period)
 | 
			
		||||
    { 
 | 
			
		||||
      Np = Nm-Nk; assert(Np>0);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    BlockImplicitlyRestartedLanczos(
 | 
			
		||||
			       LinearFunction<Field> & HermOp,
 | 
			
		||||
			       LinearFunction<Field> & HermOpTest,
 | 
			
		||||
			       int _Nk, // sought vecs
 | 
			
		||||
			       int _Nm, // spare vecs
 | 
			
		||||
			       RealD _eresid, // resid in lmdue deficit 
 | 
			
		||||
			       RealD _betastp, // if beta(k) < betastp: converged
 | 
			
		||||
			       int _Niter, // Max iterations
 | 
			
		||||
			       int _Nminres,
 | 
			
		||||
			       int _orth_period = 1) : 
 | 
			
		||||
      _HermOp(HermOp),
 | 
			
		||||
      _HermOpTest(HermOpTest),
 | 
			
		||||
      Nstop(_Nk),
 | 
			
		||||
      Nk(_Nk),
 | 
			
		||||
      Nm(_Nm),
 | 
			
		||||
      eresid(_eresid),
 | 
			
		||||
      betastp(_betastp),
 | 
			
		||||
      Niter(_Niter),
 | 
			
		||||
	Nminres(_Nminres),
 | 
			
		||||
	orth_period(_orth_period)
 | 
			
		||||
    { 
 | 
			
		||||
      Np = Nm-Nk; assert(Np>0);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* Saad PP. 195
 | 
			
		||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
 | 
			
		||||
2. For k = 1,2,...,m Do:
 | 
			
		||||
3. wk:=Avk−βkv_{k−1}      
 | 
			
		||||
4. αk:=(wk,vk)       // 
 | 
			
		||||
5. wk:=wk−αkvk       // wk orthog vk 
 | 
			
		||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
 | 
			
		||||
7. vk+1 := wk/βk+1
 | 
			
		||||
8. EndDo
 | 
			
		||||
 */
 | 
			
		||||
    void step(std::vector<RealD>& lmd,
 | 
			
		||||
	      std::vector<RealD>& lme, 
 | 
			
		||||
	      BasisFieldVector<Field>& evec,
 | 
			
		||||
	      Field& w,int Nm,int k)
 | 
			
		||||
    {
 | 
			
		||||
      assert( k< Nm );
 | 
			
		||||
 | 
			
		||||
      GridStopWatch gsw_op,gsw_o;
 | 
			
		||||
 | 
			
		||||
      Field& evec_k = evec[k];
 | 
			
		||||
 | 
			
		||||
      gsw_op.Start();
 | 
			
		||||
      _HermOp(evec_k,w);
 | 
			
		||||
      gsw_op.Stop();
 | 
			
		||||
 | 
			
		||||
      if(k>0){
 | 
			
		||||
	w -= lme[k-1] * evec[k-1];
 | 
			
		||||
      }    
 | 
			
		||||
 | 
			
		||||
      ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
 | 
			
		||||
      RealD     alph = real(zalph);
 | 
			
		||||
 | 
			
		||||
      w = w - alph * evec_k;// 5. wk:=wk−αkvk
 | 
			
		||||
 | 
			
		||||
      RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
 | 
			
		||||
                                 // 7. vk+1 := wk/βk+1
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
      const RealD tiny = 1.0e-20;
 | 
			
		||||
      if ( beta < tiny ) { 
 | 
			
		||||
	std::cout<<GridLogMessage << " beta is tiny "<<beta<<std::endl;
 | 
			
		||||
     }
 | 
			
		||||
      lmd[k] = alph;
 | 
			
		||||
      lme[k]  = beta;
 | 
			
		||||
 | 
			
		||||
      gsw_o.Start();
 | 
			
		||||
      if (k>0 && k % orth_period == 0) { 
 | 
			
		||||
	orthogonalize(w,evec,k); // orthonormalise
 | 
			
		||||
      }
 | 
			
		||||
      gsw_o.Stop();
 | 
			
		||||
 | 
			
		||||
      if(k < Nm-1) { 
 | 
			
		||||
	evec[k+1] = w;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Timing: operator=" << gsw_op.Elapsed() <<
 | 
			
		||||
	" orth=" << gsw_o.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void qr_decomp(std::vector<RealD>& lmd,
 | 
			
		||||
		   std::vector<RealD>& lme,
 | 
			
		||||
		   int Nk,
 | 
			
		||||
		   int Nm,
 | 
			
		||||
		   std::vector<RealD>& Qt,
 | 
			
		||||
		   RealD Dsh, 
 | 
			
		||||
		   int kmin,
 | 
			
		||||
		   int kmax)
 | 
			
		||||
    {
 | 
			
		||||
      int k = kmin-1;
 | 
			
		||||
      RealD x;
 | 
			
		||||
 | 
			
		||||
      RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
 | 
			
		||||
      RealD c = ( lmd[k] -Dsh) *Fden;
 | 
			
		||||
      RealD s = -lme[k] *Fden;
 | 
			
		||||
      
 | 
			
		||||
      RealD tmpa1 = lmd[k];
 | 
			
		||||
      RealD tmpa2 = lmd[k+1];
 | 
			
		||||
      RealD tmpb  = lme[k];
 | 
			
		||||
 | 
			
		||||
      lmd[k]   = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
 | 
			
		||||
      lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
 | 
			
		||||
      lme[k]   = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
 | 
			
		||||
      x        =-s*lme[k+1];
 | 
			
		||||
      lme[k+1] = c*lme[k+1];
 | 
			
		||||
      
 | 
			
		||||
      for(int i=0; i<Nk; ++i){
 | 
			
		||||
	RealD Qtmp1 = Qt[i+Nm*k  ];
 | 
			
		||||
	RealD Qtmp2 = Qt[i+Nm*(k+1)];
 | 
			
		||||
	Qt[i+Nm*k    ] = c*Qtmp1 - s*Qtmp2;
 | 
			
		||||
	Qt[i+Nm*(k+1)] = s*Qtmp1 + c*Qtmp2; 
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Givens transformations
 | 
			
		||||
      for(int k = kmin; k < kmax-1; ++k){
 | 
			
		||||
 | 
			
		||||
	RealD Fden = 1.0/hypot(x,lme[k-1]);
 | 
			
		||||
	RealD c = lme[k-1]*Fden;
 | 
			
		||||
	RealD s = - x*Fden;
 | 
			
		||||
	
 | 
			
		||||
	RealD tmpa1 = lmd[k];
 | 
			
		||||
	RealD tmpa2 = lmd[k+1];
 | 
			
		||||
	RealD tmpb  = lme[k];
 | 
			
		||||
 | 
			
		||||
	lmd[k]   = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
 | 
			
		||||
	lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
 | 
			
		||||
	lme[k]   = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
 | 
			
		||||
	lme[k-1] = c*lme[k-1] -s*x;
 | 
			
		||||
 | 
			
		||||
	if(k != kmax-2){
 | 
			
		||||
	  x = -s*lme[k+1];
 | 
			
		||||
	  lme[k+1] = c*lme[k+1];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	for(int i=0; i<Nk; ++i){
 | 
			
		||||
	  RealD Qtmp1 = Qt[i+Nm*k    ];
 | 
			
		||||
	  RealD Qtmp2 = Qt[i+Nm*(k+1)];
 | 
			
		||||
	  Qt[i+Nm*k    ] = c*Qtmp1 -s*Qtmp2;
 | 
			
		||||
	  Qt[i+Nm*(k+1)] = s*Qtmp1 +c*Qtmp2;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#ifdef USE_LAPACK_IRL
 | 
			
		||||
#define LAPACK_INT int
 | 
			
		||||
//long long
 | 
			
		||||
    void diagonalize_lapack(std::vector<RealD>& lmd,
 | 
			
		||||
			    std::vector<RealD>& lme, 
 | 
			
		||||
			    int N1,
 | 
			
		||||
			    int N2,
 | 
			
		||||
			    std::vector<RealD>& Qt,
 | 
			
		||||
			    GridBase *grid){
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "diagonalize_lapack start\n";
 | 
			
		||||
      GridStopWatch gsw;
 | 
			
		||||
 | 
			
		||||
      const int size = Nm;
 | 
			
		||||
      //  tevals.resize(size);
 | 
			
		||||
      //  tevecs.resize(size);
 | 
			
		||||
      LAPACK_INT NN = N1;
 | 
			
		||||
      std::vector<double> evals_tmp(NN);
 | 
			
		||||
      std::vector<double> evec_tmp(NN*NN);
 | 
			
		||||
      memset(&evec_tmp[0],0,sizeof(double)*NN*NN);
 | 
			
		||||
      //  double AA[NN][NN];
 | 
			
		||||
      std::vector<double> DD(NN);
 | 
			
		||||
      std::vector<double> EE(NN);
 | 
			
		||||
      for (int i = 0; i< NN; i++)
 | 
			
		||||
	for (int j = i - 1; j <= i + 1; j++)
 | 
			
		||||
	  if ( j < NN && j >= 0 ) {
 | 
			
		||||
	    if (i==j) DD[i] = lmd[i];
 | 
			
		||||
	    if (i==j) evals_tmp[i] = lmd[i];
 | 
			
		||||
	    if (j==(i-1)) EE[j] = lme[j];
 | 
			
		||||
	  }
 | 
			
		||||
      LAPACK_INT evals_found;
 | 
			
		||||
      LAPACK_INT lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
 | 
			
		||||
      LAPACK_INT liwork =  3+NN*10 ;
 | 
			
		||||
      std::vector<LAPACK_INT> iwork(liwork);
 | 
			
		||||
      std::vector<double> work(lwork);
 | 
			
		||||
      std::vector<LAPACK_INT> isuppz(2*NN);
 | 
			
		||||
      char jobz = 'V'; // calculate evals & evecs
 | 
			
		||||
      char range = 'I'; // calculate all evals
 | 
			
		||||
      //    char range = 'A'; // calculate all evals
 | 
			
		||||
      char uplo = 'U'; // refer to upper half of original matrix
 | 
			
		||||
      char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
 | 
			
		||||
      std::vector<int> ifail(NN);
 | 
			
		||||
      LAPACK_INT info;
 | 
			
		||||
      //  int total = QMP_get_number_of_nodes();
 | 
			
		||||
      //  int node = QMP_get_node_number();
 | 
			
		||||
      //  GridBase *grid = evec[0]._grid;
 | 
			
		||||
      int total = grid->_Nprocessors;
 | 
			
		||||
      int node = grid->_processor;
 | 
			
		||||
      int interval = (NN/total)+1;
 | 
			
		||||
      double vl = 0.0, vu = 0.0;
 | 
			
		||||
      LAPACK_INT il = interval*node+1 , iu = interval*(node+1);
 | 
			
		||||
      if (iu > NN)  iu=NN;
 | 
			
		||||
      double tol = 0.0;
 | 
			
		||||
      if (1) {
 | 
			
		||||
	memset(&evals_tmp[0],0,sizeof(double)*NN);
 | 
			
		||||
	if ( il <= NN){
 | 
			
		||||
	  std::cout << GridLogMessage << "dstegr started" << std::endl; 
 | 
			
		||||
	  gsw.Start();
 | 
			
		||||
	  dstegr(&jobz, &range, &NN,
 | 
			
		||||
		 (double*)&DD[0], (double*)&EE[0],
 | 
			
		||||
		 &vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
 | 
			
		||||
		 &tol, // tolerance
 | 
			
		||||
		 &evals_found, &evals_tmp[0], (double*)&evec_tmp[0], &NN,
 | 
			
		||||
		 &isuppz[0],
 | 
			
		||||
		 &work[0], &lwork, &iwork[0], &liwork,
 | 
			
		||||
		 &info);
 | 
			
		||||
	  gsw.Stop();
 | 
			
		||||
	  std::cout << GridLogMessage << "dstegr completed in " << gsw.Elapsed() << std::endl;
 | 
			
		||||
	  for (int i = iu-1; i>= il-1; i--){
 | 
			
		||||
	    evals_tmp[i] = evals_tmp[i - (il-1)];
 | 
			
		||||
	    if (il>1) evals_tmp[i-(il-1)]=0.;
 | 
			
		||||
	    for (int j = 0; j< NN; j++){
 | 
			
		||||
	      evec_tmp[i*NN + j] = evec_tmp[(i - (il-1)) * NN + j];
 | 
			
		||||
	      if (il>1) evec_tmp[(i-(il-1)) * NN + j]=0.;
 | 
			
		||||
	    }
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	{
 | 
			
		||||
	  //        QMP_sum_double_array(evals_tmp,NN);
 | 
			
		||||
	  //        QMP_sum_double_array((double *)evec_tmp,NN*NN);
 | 
			
		||||
	  grid->GlobalSumVector(&evals_tmp[0],NN);
 | 
			
		||||
	  grid->GlobalSumVector(&evec_tmp[0],NN*NN);
 | 
			
		||||
	}
 | 
			
		||||
      } 
 | 
			
		||||
      // cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
 | 
			
		||||
      for(int i=0;i<NN;i++){
 | 
			
		||||
	for(int j=0;j<NN;j++)
 | 
			
		||||
	  Qt[(NN-1-i)*N2+j]=evec_tmp[i*NN + j];
 | 
			
		||||
	lmd [NN-1-i]=evals_tmp[i];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "diagonalize_lapack complete\n";
 | 
			
		||||
    }
 | 
			
		||||
#undef LAPACK_INT 
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void diagonalize(std::vector<RealD>& lmd,
 | 
			
		||||
		     std::vector<RealD>& lme, 
 | 
			
		||||
		     int N2,
 | 
			
		||||
		     int N1,
 | 
			
		||||
		     std::vector<RealD>& Qt,
 | 
			
		||||
		     GridBase *grid)
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
#ifdef USE_LAPACK_IRL
 | 
			
		||||
    const int check_lapack=0; // just use lapack if 0, check against lapack if 1
 | 
			
		||||
 | 
			
		||||
    if(!check_lapack)
 | 
			
		||||
	return diagonalize_lapack(lmd,lme,N2,N1,Qt,grid);
 | 
			
		||||
 | 
			
		||||
	std::vector <RealD> lmd2(N1);
 | 
			
		||||
	std::vector <RealD> lme2(N1);
 | 
			
		||||
	std::vector<RealD> Qt2(N1*N1);
 | 
			
		||||
         for(int k=0; k<N1; ++k){
 | 
			
		||||
	    lmd2[k] = lmd[k];
 | 
			
		||||
	    lme2[k] = lme[k];
 | 
			
		||||
	  }
 | 
			
		||||
         for(int k=0; k<N1*N1; ++k)
 | 
			
		||||
	Qt2[k] = Qt[k];
 | 
			
		||||
 | 
			
		||||
//	diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
      int Niter = 10000*N1;
 | 
			
		||||
      int kmin = 1;
 | 
			
		||||
      int kmax = N2;
 | 
			
		||||
      // (this should be more sophisticated)
 | 
			
		||||
 | 
			
		||||
      for(int iter=0; ; ++iter){
 | 
			
		||||
      if ( (iter+1)%(100*N1)==0) 
 | 
			
		||||
      std::cout<<GridLogMessage << "[QL method] Not converged - iteration "<<iter+1<<"\n";
 | 
			
		||||
 | 
			
		||||
	// determination of 2x2 leading submatrix
 | 
			
		||||
	RealD dsub = lmd[kmax-1]-lmd[kmax-2];
 | 
			
		||||
	RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
 | 
			
		||||
	RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
 | 
			
		||||
	// (Dsh: shift)
 | 
			
		||||
	
 | 
			
		||||
	// transformation
 | 
			
		||||
	qr_decomp(lmd,lme,N2,N1,Qt,Dsh,kmin,kmax);
 | 
			
		||||
	
 | 
			
		||||
	// Convergence criterion (redef of kmin and kamx)
 | 
			
		||||
	for(int j=kmax-1; j>= kmin; --j){
 | 
			
		||||
	  RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
 | 
			
		||||
	  if(fabs(lme[j-1])+dds > dds){
 | 
			
		||||
	    kmax = j+1;
 | 
			
		||||
	    goto continued;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	Niter = iter;
 | 
			
		||||
#ifdef USE_LAPACK_IRL
 | 
			
		||||
    if(check_lapack){
 | 
			
		||||
	const double SMALL=1e-8;
 | 
			
		||||
	diagonalize_lapack(lmd2,lme2,N2,N1,Qt2,grid);
 | 
			
		||||
	std::vector <RealD> lmd3(N2);
 | 
			
		||||
         for(int k=0; k<N2; ++k) lmd3[k]=lmd[k];
 | 
			
		||||
        _sort.push(lmd3,N2);
 | 
			
		||||
        _sort.push(lmd2,N2);
 | 
			
		||||
         for(int k=0; k<N2; ++k){
 | 
			
		||||
	    if (fabs(lmd2[k] - lmd3[k]) >SMALL)  std::cout<<GridLogMessage <<"lmd(qr) lmd(lapack) "<< k << ": " << lmd2[k] <<" "<< lmd3[k] <<std::endl;
 | 
			
		||||
//	    if (fabs(lme2[k] - lme[k]) >SMALL)  std::cout<<GridLogMessage <<"lme(qr)-lme(lapack) "<< k << ": " << lme2[k] - lme[k] <<std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
         for(int k=0; k<N1*N1; ++k){
 | 
			
		||||
//	    if (fabs(Qt2[k] - Qt[k]) >SMALL)  std::cout<<GridLogMessage <<"Qt(qr)-Qt(lapack) "<< k << ": " << Qt2[k] - Qt[k] <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
	return;
 | 
			
		||||
 | 
			
		||||
      continued:
 | 
			
		||||
	for(int j=0; j<kmax-1; ++j){
 | 
			
		||||
	  RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
 | 
			
		||||
	  if(fabs(lme[j])+dds > dds){
 | 
			
		||||
	    kmin = j+1;
 | 
			
		||||
	    break;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<GridLogMessage << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
 | 
			
		||||
      abort();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
    template<typename T>
 | 
			
		||||
    static RealD normalise(T& v) 
 | 
			
		||||
    {
 | 
			
		||||
      RealD nn = norm2(v);
 | 
			
		||||
      nn = sqrt(nn);
 | 
			
		||||
      v = v * (1.0/nn);
 | 
			
		||||
      return nn;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void orthogonalize(Field& w,
 | 
			
		||||
		       BasisFieldVector<Field>& evec,
 | 
			
		||||
		       int k)
 | 
			
		||||
    {
 | 
			
		||||
      double t0=-usecond()/1e6;
 | 
			
		||||
 | 
			
		||||
      evec.orthogonalize(w,k);
 | 
			
		||||
 | 
			
		||||
      normalise(w);
 | 
			
		||||
      t0+=usecond()/1e6;
 | 
			
		||||
      OrthoTime +=t0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void setUnit_Qt(int Nm, std::vector<RealD> &Qt) {
 | 
			
		||||
      for(int i=0; i<Qt.size(); ++i) Qt[i] = 0.0;
 | 
			
		||||
      for(int k=0; k<Nm; ++k) Qt[k + k*Nm] = 1.0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
/* Rudy Arthur's thesis pp.137
 | 
			
		||||
------------------------
 | 
			
		||||
Require: M > K P = M − K †
 | 
			
		||||
Compute the factorization AVM = VM HM + fM eM 
 | 
			
		||||
repeat
 | 
			
		||||
  Q=I
 | 
			
		||||
  for i = 1,...,P do
 | 
			
		||||
    QiRi =HM −θiI Q = QQi
 | 
			
		||||
    H M = Q †i H M Q i
 | 
			
		||||
  end for
 | 
			
		||||
  βK =HM(K+1,K) σK =Q(M,K)
 | 
			
		||||
  r=vK+1βK +rσK
 | 
			
		||||
  VK =VM(1:M)Q(1:M,1:K)
 | 
			
		||||
  HK =HM(1:K,1:K)
 | 
			
		||||
  →AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
 | 
			
		||||
until convergence
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
    void calc(std::vector<RealD>& eval,
 | 
			
		||||
	      BasisFieldVector<Field>& evec,
 | 
			
		||||
	      const Field& src,
 | 
			
		||||
	      int& Nconv,
 | 
			
		||||
	      bool reverse,
 | 
			
		||||
	      int SkipTest)
 | 
			
		||||
      {
 | 
			
		||||
 | 
			
		||||
	GridBase *grid = evec._v[0]._grid;//evec.get(0 + evec_offset)._grid;
 | 
			
		||||
	assert(grid == src._grid);
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << " -- Nk = " << Nk << " Np = "<< Np << std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << " -- Nm = " << Nm << std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << " -- size of eval   = " << eval.size() << std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << " -- size of evec  = " << evec.size() << std::endl;
 | 
			
		||||
	
 | 
			
		||||
	assert(Nm <= evec.size() && Nm <= eval.size());
 | 
			
		||||
 | 
			
		||||
	// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
 | 
			
		||||
	RealD evalMaxApprox = 0.0;
 | 
			
		||||
	{
 | 
			
		||||
	  auto src_n = src;
 | 
			
		||||
	  auto tmp = src;
 | 
			
		||||
	  const int _MAX_ITER_IRL_MEVAPP_ = 50;
 | 
			
		||||
	  for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
 | 
			
		||||
	    _HermOpTest(src_n,tmp);
 | 
			
		||||
	    RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
	    RealD vden = norm2(src_n);
 | 
			
		||||
	    RealD na = vnum/vden;
 | 
			
		||||
	    if (fabs(evalMaxApprox/na - 1.0) < 0.05)
 | 
			
		||||
	      i=_MAX_ITER_IRL_MEVAPP_;
 | 
			
		||||
	    evalMaxApprox = na;
 | 
			
		||||
	    std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
	    src_n = tmp;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	std::vector<RealD> lme(Nm);  
 | 
			
		||||
	std::vector<RealD> lme2(Nm);
 | 
			
		||||
	std::vector<RealD> eval2(Nm);
 | 
			
		||||
	std::vector<RealD> eval2_copy(Nm);
 | 
			
		||||
	std::vector<RealD> Qt(Nm*Nm);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	Field f(grid);
 | 
			
		||||
	Field v(grid);
 | 
			
		||||
  
 | 
			
		||||
	int k1 = 1;
 | 
			
		||||
	int k2 = Nk;
 | 
			
		||||
 | 
			
		||||
	Nconv = 0;
 | 
			
		||||
 | 
			
		||||
	RealD beta_k;
 | 
			
		||||
  
 | 
			
		||||
	// Set initial vector
 | 
			
		||||
	evec[0] = src;
 | 
			
		||||
	normalise(evec[0]);
 | 
			
		||||
	std:: cout<<GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0])<<std::endl;
 | 
			
		||||
	
 | 
			
		||||
	// Initial Nk steps
 | 
			
		||||
	OrthoTime=0.;
 | 
			
		||||
	double t0=usecond()/1e6;
 | 
			
		||||
	for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
 | 
			
		||||
	double t1=usecond()/1e6;
 | 
			
		||||
	std::cout<<GridLogMessage <<"IRL::Initial steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
 | 
			
		||||
	t1=usecond()/1e6;
 | 
			
		||||
 | 
			
		||||
	// Restarting loop begins
 | 
			
		||||
	for(int iter = 0; iter<Niter; ++iter){
 | 
			
		||||
	  
 | 
			
		||||
	  std::cout<<GridLogMessage<<"\n Restart iteration = "<< iter << std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  // 
 | 
			
		||||
	  // Rudy does a sort first which looks very different. Getting fed up with sorting out the algo defs.
 | 
			
		||||
	  // We loop over 
 | 
			
		||||
	  //
 | 
			
		||||
	  OrthoTime=0.;
 | 
			
		||||
	  for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL:: "<<Np <<" steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
 | 
			
		||||
	  f *= lme[Nm-1];
 | 
			
		||||
	  
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
 | 
			
		||||
	  
 | 
			
		||||
	  // getting eigenvalues
 | 
			
		||||
	  for(int k=0; k<Nm; ++k){
 | 
			
		||||
	    eval2[k] = eval[k+k1-1];
 | 
			
		||||
	    lme2[k] = lme[k+k1-1];
 | 
			
		||||
	  }
 | 
			
		||||
	  setUnit_Qt(Nm,Qt);
 | 
			
		||||
	  diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL:: diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  
 | 
			
		||||
	  // sorting
 | 
			
		||||
	  eval2_copy = eval2;
 | 
			
		||||
 | 
			
		||||
	  _sort.push(eval2,Nm);
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL:: eval sorting: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  
 | 
			
		||||
	  // Implicitly shifted QR transformations
 | 
			
		||||
	  setUnit_Qt(Nm,Qt);
 | 
			
		||||
	  for(int ip=0; ip<k2; ++ip){
 | 
			
		||||
	    std::cout<<GridLogMessage << "eval "<< ip << " "<< eval2[ip] << std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	  for(int ip=k2; ip<Nm; ++ip){ 
 | 
			
		||||
	    std::cout<<GridLogMessage << "qr_decomp "<< ip << " "<< eval2[ip] << std::endl;
 | 
			
		||||
	    qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
 | 
			
		||||
	    
 | 
			
		||||
	  }
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL::qr_decomp: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  assert(k2<Nm);
 | 
			
		||||
	  
 | 
			
		||||
 | 
			
		||||
	  assert(k2<Nm);
 | 
			
		||||
	  assert(k1>0);
 | 
			
		||||
	  evec.rotate(Qt,k1-1,k2+1,0,Nm,Nm);
 | 
			
		||||
	  
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL::QR rotation: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  fflush(stdout);
 | 
			
		||||
	  
 | 
			
		||||
	  // Compressed vector f and beta(k2)
 | 
			
		||||
	  f *= Qt[Nm-1+Nm*(k2-1)];
 | 
			
		||||
	  f += lme[k2-1] * evec[k2];
 | 
			
		||||
	  beta_k = norm2(f);
 | 
			
		||||
	  beta_k = sqrt(beta_k);
 | 
			
		||||
	  std::cout<<GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  RealD betar = 1.0/beta_k;
 | 
			
		||||
	  evec[k2] = betar * f;
 | 
			
		||||
	  lme[k2-1] = beta_k;
 | 
			
		||||
	  
 | 
			
		||||
	  // Convergence test
 | 
			
		||||
	  for(int k=0; k<Nm; ++k){    
 | 
			
		||||
	    eval2[k] = eval[k];
 | 
			
		||||
	    lme2[k] = lme[k];
 | 
			
		||||
 | 
			
		||||
	    std::cout<<GridLogMessage << "eval2[" << k << "] = " << eval2[k] << std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
	  setUnit_Qt(Nm,Qt);
 | 
			
		||||
	  diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL::diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  
 | 
			
		||||
	  
 | 
			
		||||
	  Nconv = 0;
 | 
			
		||||
	  
 | 
			
		||||
	  if (iter >= Nminres) {
 | 
			
		||||
	    std::cout << GridLogMessage << "Rotation to test convergence " << std::endl;
 | 
			
		||||
	    
 | 
			
		||||
	    Field ev0_orig(grid);
 | 
			
		||||
	    ev0_orig = evec[0];
 | 
			
		||||
	    
 | 
			
		||||
	    evec.rotate(Qt,0,Nk,0,Nk,Nm);
 | 
			
		||||
	    
 | 
			
		||||
	    {
 | 
			
		||||
	      std::cout << GridLogMessage << "Test convergence" << std::endl;
 | 
			
		||||
	      Field B(grid);
 | 
			
		||||
	      
 | 
			
		||||
	      for(int j = 0; j<Nk; j+=SkipTest){
 | 
			
		||||
		B=evec[j];
 | 
			
		||||
		//std::cout << "Checkerboard: " << evec[j].checkerboard << std::endl; 
 | 
			
		||||
		B.checkerboard = evec[0].checkerboard;
 | 
			
		||||
 | 
			
		||||
		_HermOpTest(B,v);
 | 
			
		||||
		
 | 
			
		||||
		RealD vnum = real(innerProduct(B,v)); // HermOp.
 | 
			
		||||
		RealD vden = norm2(B);
 | 
			
		||||
		RealD vv0 = norm2(v);
 | 
			
		||||
		eval2[j] = vnum/vden;
 | 
			
		||||
		v -= eval2[j]*B;
 | 
			
		||||
		RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
		std::cout.precision(13);
 | 
			
		||||
		std::cout<<GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<j<<"] "
 | 
			
		||||
			 <<"eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[j] << " (" << eval2_copy[j] << ")"
 | 
			
		||||
			 <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv
 | 
			
		||||
			 <<" "<< vnum/(sqrt(vden)*sqrt(vv0))
 | 
			
		||||
			 << " norm(B["<<j<<"])="<< vden <<std::endl;
 | 
			
		||||
		
 | 
			
		||||
		// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
 | 
			
		||||
		if((vv<eresid*eresid) && (j == Nconv) ){
 | 
			
		||||
		  Nconv+=SkipTest;
 | 
			
		||||
		}
 | 
			
		||||
	      }
 | 
			
		||||
	      
 | 
			
		||||
	      // test if we converged, if so, terminate
 | 
			
		||||
	      t1=usecond()/1e6;
 | 
			
		||||
	      std::cout<<GridLogMessage <<"IRL::convergence testing: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	      
 | 
			
		||||
	      std::cout<<GridLogMessage<<" #modes converged: "<<Nconv<<std::endl;
 | 
			
		||||
	      
 | 
			
		||||
	      if( Nconv>=Nstop || beta_k < betastp){
 | 
			
		||||
		goto converged;
 | 
			
		||||
	      }
 | 
			
		||||
	      
 | 
			
		||||
	      std::cout << GridLogMessage << "Rotate back" << std::endl;
 | 
			
		||||
	      //B[j] +=Qt[k+_Nm*j] * _v[k]._odata[ss];
 | 
			
		||||
	      {
 | 
			
		||||
		Eigen::MatrixXd qm = Eigen::MatrixXd::Zero(Nk,Nk);
 | 
			
		||||
		for (int k=0;k<Nk;k++)
 | 
			
		||||
		  for (int j=0;j<Nk;j++)
 | 
			
		||||
		    qm(j,k) = Qt[k+Nm*j];
 | 
			
		||||
		GridStopWatch timeInv;
 | 
			
		||||
		timeInv.Start();
 | 
			
		||||
		Eigen::MatrixXd qmI = qm.inverse();
 | 
			
		||||
		timeInv.Stop();
 | 
			
		||||
		std::vector<RealD> QtI(Nm*Nm);
 | 
			
		||||
		for (int k=0;k<Nk;k++)
 | 
			
		||||
		  for (int j=0;j<Nk;j++)
 | 
			
		||||
		    QtI[k+Nm*j] = qmI(j,k);
 | 
			
		||||
		
 | 
			
		||||
		RealD res_check_rotate_inverse = (qm*qmI - Eigen::MatrixXd::Identity(Nk,Nk)).norm(); // sqrt( |X|^2 )
 | 
			
		||||
		assert(res_check_rotate_inverse < 1e-7);
 | 
			
		||||
		evec.rotate(QtI,0,Nk,0,Nk,Nm);
 | 
			
		||||
		
 | 
			
		||||
		axpy(ev0_orig,-1.0,evec[0],ev0_orig);
 | 
			
		||||
		std::cout << GridLogMessage << "Rotation done (in " << timeInv.Elapsed() << " = " << timeInv.useconds() << " us" <<
 | 
			
		||||
		  ", error = " << res_check_rotate_inverse << 
 | 
			
		||||
		  "); | evec[0] - evec[0]_orig | = " << ::sqrt(norm2(ev0_orig)) << std::endl;
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
	  } else {
 | 
			
		||||
	    std::cout << GridLogMessage << "iter < Nminres: do not yet test for convergence\n";
 | 
			
		||||
	  } // end of iter loop
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<<"\n NOT converged.\n";
 | 
			
		||||
	abort();
 | 
			
		||||
	
 | 
			
		||||
      converged:
 | 
			
		||||
 | 
			
		||||
	if (SkipTest == 1) {
 | 
			
		||||
	  eval = eval2;
 | 
			
		||||
	} else {
 | 
			
		||||
 | 
			
		||||
	  // test quickly
 | 
			
		||||
	  for (int j=0;j<Nstop;j+=SkipTest) {
 | 
			
		||||
	    std::cout<<GridLogMessage << "Eigenvalue[" << j << "] = " << eval2[j] << " (" << eval2_copy[j] << ")" << std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	  eval2_copy.resize(eval2.size());
 | 
			
		||||
	  eval = eval2_copy;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	evec.sortInPlace(eval,reverse);
 | 
			
		||||
 | 
			
		||||
	{
 | 
			
		||||
	  
 | 
			
		||||
	 // test
 | 
			
		||||
	 for (int j=0;j<Nstop;j++) {
 | 
			
		||||
	   std::cout<<GridLogMessage << " |e[" << j << "]|^2 = " << norm2(evec[j]) << std::endl;
 | 
			
		||||
	 }
 | 
			
		||||
       }
 | 
			
		||||
       
 | 
			
		||||
       //_sort.push(eval,evec,Nconv);
 | 
			
		||||
       //evec.sort(eval,Nconv);
 | 
			
		||||
       
 | 
			
		||||
       std::cout<<GridLogMessage << "\n Converged\n Summary :\n";
 | 
			
		||||
       std::cout<<GridLogMessage << " -- Iterations  = "<< Nconv  << "\n";
 | 
			
		||||
       std::cout<<GridLogMessage << " -- beta(k)     = "<< beta_k << "\n";
 | 
			
		||||
       std::cout<<GridLogMessage << " -- Nconv       = "<< Nconv  << "\n";
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -0,0 +1,143 @@
 | 
			
		||||
namespace Grid { 
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  BlockProjector
 | 
			
		||||
 | 
			
		||||
  If _HP_BLOCK_PROJECTORS_ is defined, we assume that _evec is a basis that is not
 | 
			
		||||
  fully orthonormalized (to the precision of the coarse field) and we allow for higher-precision
 | 
			
		||||
  coarse field than basis field.
 | 
			
		||||
 | 
			
		||||
*/
 | 
			
		||||
//#define _HP_BLOCK_PROJECTORS_
 | 
			
		||||
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class BlockProjector {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  BasisFieldVector<Field>& _evec;
 | 
			
		||||
  BlockedGrid<Field>& _bgrid;
 | 
			
		||||
 | 
			
		||||
  BlockProjector(BasisFieldVector<Field>& evec, BlockedGrid<Field>& bgrid) : _evec(evec), _bgrid(bgrid) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void createOrthonormalBasis(RealD thres = 0.0) {
 | 
			
		||||
 | 
			
		||||
    GridStopWatch sw;
 | 
			
		||||
    sw.Start();
 | 
			
		||||
 | 
			
		||||
    int cnt = 0;
 | 
			
		||||
 | 
			
		||||
#pragma omp parallel shared(cnt)
 | 
			
		||||
    {
 | 
			
		||||
      int lcnt = 0;
 | 
			
		||||
 | 
			
		||||
#pragma omp for
 | 
			
		||||
      for (int b=0;b<_bgrid._o_blocks;b++) {
 | 
			
		||||
	
 | 
			
		||||
	for (int i=0;i<_evec._Nm;i++) {
 | 
			
		||||
	  
 | 
			
		||||
	  auto nrm0 = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
 | 
			
		||||
	  
 | 
			
		||||
	  // |i> -= <j|i> |j>
 | 
			
		||||
	  for (int j=0;j<i;j++) {
 | 
			
		||||
	    _bgrid.block_caxpy(b,_evec._v[i],-_bgrid.block_sp(b,_evec._v[j],_evec._v[i]),_evec._v[j],_evec._v[i]);
 | 
			
		||||
	  }
 | 
			
		||||
	  
 | 
			
		||||
	  auto nrm = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
 | 
			
		||||
	  
 | 
			
		||||
	  auto eps = nrm/nrm0;
 | 
			
		||||
	  if (Reduce(eps).real() < thres) {
 | 
			
		||||
	    lcnt++;
 | 
			
		||||
	  }
 | 
			
		||||
	  
 | 
			
		||||
	  // TODO: if norm is too small, remove this eigenvector/mark as not needed; in practice: set it to zero norm here and return a mask
 | 
			
		||||
	  // that is then used later to decide not to write certain eigenvectors to disk (add a norm calculation before subtraction step and look at nrm/nrm0 < eps to decide)
 | 
			
		||||
	  _bgrid.block_cscale(b,1.0 / sqrt(nrm),_evec._v[i]);
 | 
			
		||||
	  
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
#pragma omp critical
 | 
			
		||||
      {
 | 
			
		||||
	cnt += lcnt;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    sw.Stop();
 | 
			
		||||
    std::cout << GridLogMessage << "Gram-Schmidt to create blocked basis took " << sw.Elapsed() << " (" << ((RealD)cnt / (RealD)_bgrid._o_blocks / (RealD)_evec._Nm) 
 | 
			
		||||
	      << " below threshold)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
  void coarseToFine(const CoarseField& in, Field& out) {
 | 
			
		||||
 | 
			
		||||
    out = zero;
 | 
			
		||||
    out.checkerboard = _evec._v[0].checkerboard;
 | 
			
		||||
 | 
			
		||||
    int Nbasis = sizeof(in._odata[0]._internal._internal) / sizeof(in._odata[0]._internal._internal[0]);
 | 
			
		||||
    assert(Nbasis == _evec._Nm);
 | 
			
		||||
    
 | 
			
		||||
#pragma omp parallel for
 | 
			
		||||
    for (int b=0;b<_bgrid._o_blocks;b++) {
 | 
			
		||||
      for (int j=0;j<_evec._Nm;j++) {
 | 
			
		||||
	_bgrid.block_caxpy(b,out,in._odata[b]._internal._internal[j],_evec._v[j],out);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
  void fineToCoarse(const Field& in, CoarseField& out) {
 | 
			
		||||
 | 
			
		||||
    out = zero;
 | 
			
		||||
 | 
			
		||||
    int Nbasis = sizeof(out._odata[0]._internal._internal) / sizeof(out._odata[0]._internal._internal[0]);
 | 
			
		||||
    assert(Nbasis == _evec._Nm);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    Field tmp(_bgrid._grid);
 | 
			
		||||
    tmp = in;
 | 
			
		||||
    
 | 
			
		||||
#pragma omp parallel for
 | 
			
		||||
    for (int b=0;b<_bgrid._o_blocks;b++) {
 | 
			
		||||
      for (int j=0;j<_evec._Nm;j++) {
 | 
			
		||||
	// |rhs> -= <j|rhs> |j>
 | 
			
		||||
	auto c = _bgrid.block_sp(b,_evec._v[j],tmp);
 | 
			
		||||
	_bgrid.block_caxpy(b,tmp,-c,_evec._v[j],tmp); // may make this more numerically stable
 | 
			
		||||
	out._odata[b]._internal._internal[j] = c;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
    void deflateFine(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
 | 
			
		||||
    result = zero;
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      Field tmp(result._grid);
 | 
			
		||||
      coarseToFine(_coef._v[i],tmp);
 | 
			
		||||
      axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
    void deflateCoarse(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
 | 
			
		||||
    CoarseField src_coarse(_coef._v[0]._grid);
 | 
			
		||||
    CoarseField result_coarse = src_coarse;
 | 
			
		||||
    result_coarse = zero;
 | 
			
		||||
    fineToCoarse(src_orig,src_coarse);
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      axpy(result_coarse,TensorRemove(innerProduct(_coef._v[i],src_coarse)) / eval[i],_coef._v[i],result_coarse);
 | 
			
		||||
    }
 | 
			
		||||
    coarseToFine(result_coarse,result);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
    void deflate(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
 | 
			
		||||
    // Deflation on coarse Grid is much faster, so use it by default.  Deflation on fine Grid is kept for legacy reasons for now.
 | 
			
		||||
    deflateCoarse(_coef,eval,N,src_orig,result);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,401 @@
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class BlockedGrid {
 | 
			
		||||
public:
 | 
			
		||||
  GridBase* _grid;
 | 
			
		||||
  typedef typename Field::scalar_type  Coeff_t;
 | 
			
		||||
  typedef typename Field::vector_type vCoeff_t;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> _bs; // block size
 | 
			
		||||
  std::vector<int> _nb; // number of blocks
 | 
			
		||||
  std::vector<int> _l;  // local dimensions irrespective of cb
 | 
			
		||||
  std::vector<int> _l_cb;  // local dimensions of checkerboarded vector
 | 
			
		||||
  std::vector<int> _l_cb_o;  // local dimensions of inner checkerboarded vector
 | 
			
		||||
  std::vector<int> _bs_cb; // block size in checkerboarded vector
 | 
			
		||||
  std::vector<int> _nb_o; // number of blocks of simd o-sites
 | 
			
		||||
 | 
			
		||||
  int _nd, _blocks, _cf_size, _cf_block_size, _cf_o_block_size, _o_blocks, _block_sites;
 | 
			
		||||
  
 | 
			
		||||
  BlockedGrid(GridBase* grid, const std::vector<int>& block_size) :
 | 
			
		||||
    _grid(grid), _bs(block_size), _nd((int)_bs.size()), 
 | 
			
		||||
      _nb(block_size), _l(block_size), _l_cb(block_size), _nb_o(block_size),
 | 
			
		||||
      _l_cb_o(block_size), _bs_cb(block_size) {
 | 
			
		||||
 | 
			
		||||
    _blocks = 1;
 | 
			
		||||
    _o_blocks = 1;
 | 
			
		||||
    _l = grid->FullDimensions();
 | 
			
		||||
    _l_cb = grid->LocalDimensions();
 | 
			
		||||
    _l_cb_o = grid->_rdimensions;
 | 
			
		||||
 | 
			
		||||
    _cf_size = 1;
 | 
			
		||||
    _block_sites = 1;
 | 
			
		||||
    for (int i=0;i<_nd;i++) {
 | 
			
		||||
      _l[i] /= grid->_processors[i];
 | 
			
		||||
 | 
			
		||||
      assert(!(_l[i] % _bs[i])); // lattice must accommodate choice of blocksize
 | 
			
		||||
 | 
			
		||||
      int r = _l[i] / _l_cb[i];
 | 
			
		||||
      assert(!(_bs[i] % r)); // checkerboarding must accommodate choice of blocksize
 | 
			
		||||
      _bs_cb[i] = _bs[i] / r;
 | 
			
		||||
      _block_sites *= _bs_cb[i];
 | 
			
		||||
      _nb[i] = _l[i] / _bs[i];
 | 
			
		||||
      _nb_o[i] = _nb[i] / _grid->_simd_layout[i];
 | 
			
		||||
      if (_nb[i] % _grid->_simd_layout[i]) { // simd must accommodate choice of blocksize
 | 
			
		||||
	std::cout << GridLogMessage << "Problem: _nb[" << i << "] = " << _nb[i] << " _grid->_simd_layout[" << i << "] = " << _grid->_simd_layout[i] << std::endl;
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
      _blocks *= _nb[i];
 | 
			
		||||
      _o_blocks *= _nb_o[i];
 | 
			
		||||
      _cf_size *= _l[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    _cf_size *= 12 / 2;
 | 
			
		||||
    _cf_block_size = _cf_size / _blocks;
 | 
			
		||||
    _cf_o_block_size = _cf_size / _o_blocks;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "BlockedGrid:" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _l     = " << _l << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _l_cb     = " << _l_cb << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _l_cb_o     = " << _l_cb_o << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _bs    = " << _bs << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _bs_cb    = " << _bs_cb << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " _nb    = " << _nb << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _nb_o    = " << _nb_o << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _blocks = " << _blocks << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _o_blocks = " << _o_blocks << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " sizeof(vCoeff_t) = " << sizeof(vCoeff_t) << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _cf_size = " << _cf_size << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _cf_block_size = " << _cf_block_size << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _block_sites = " << _block_sites << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _grid->oSites() = " << _grid->oSites() << std::endl;
 | 
			
		||||
 | 
			
		||||
    //    _grid->Barrier();
 | 
			
		||||
    //abort();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    void block_to_coor(int b, std::vector<int>& x0) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> bcoor;
 | 
			
		||||
      bcoor.resize(_nd);
 | 
			
		||||
      x0.resize(_nd);
 | 
			
		||||
      assert(b < _o_blocks);
 | 
			
		||||
      Lexicographic::CoorFromIndex(bcoor,b,_nb_o);
 | 
			
		||||
      int i;
 | 
			
		||||
 | 
			
		||||
      for (i=0;i<_nd;i++) {
 | 
			
		||||
	x0[i] = bcoor[i]*_bs_cb[i];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //std::cout << GridLogMessage << "Map block b -> " << x0 << std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_site_to_o_coor(const std::vector<int>& x0, std::vector<int>& coor, int i) {
 | 
			
		||||
      Lexicographic::CoorFromIndex(coor,i,_bs_cb);
 | 
			
		||||
      for (int j=0;j<_nd;j++)
 | 
			
		||||
	coor[j] += x0[j];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int block_site_to_o_site(const std::vector<int>& x0, int i) {
 | 
			
		||||
      std::vector<int> coor;  coor.resize(_nd);
 | 
			
		||||
      block_site_to_o_coor(x0,coor,i);
 | 
			
		||||
      Lexicographic::IndexFromCoor(coor,i,_l_cb_o);
 | 
			
		||||
      return i;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    vCoeff_t block_sp(int b, const Field& x, const Field& y) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      vCoeff_t ret = 0.0;
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
	ret += TensorRemove(innerProduct(x._odata[ss],y._odata[ss]));
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      return ret;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    vCoeff_t block_sp(int b, const Field& x, const std::vector< ComplexD >& y) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
 | 
			
		||||
      int lsize = _cf_o_block_size / _block_sites;
 | 
			
		||||
 | 
			
		||||
      std::vector< ComplexD > ret(nsimd);
 | 
			
		||||
      for (int i=0;i<nsimd;i++)
 | 
			
		||||
	ret[i] = 0.0;
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
 | 
			
		||||
	int n = lsize / nsimd;
 | 
			
		||||
	for (int l=0;l<n;l++) {
 | 
			
		||||
	  for (int j=0;j<nsimd;j++) {
 | 
			
		||||
	    int t = lsize * i + l*nsimd + j;
 | 
			
		||||
 | 
			
		||||
	    ret[j] += conjugate(((Coeff_t*)&x._odata[ss]._internal)[l*nsimd + j]) * y[t];
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vCoeff_t vret;
 | 
			
		||||
      for (int i=0;i<nsimd;i++)
 | 
			
		||||
	((Coeff_t*)&vret)[i] = (Coeff_t)ret[i];
 | 
			
		||||
 | 
			
		||||
      return vret;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T>
 | 
			
		||||
      void vcaxpy(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x,const iScalar<T>& y) {
 | 
			
		||||
      vcaxpy(r._internal,a,x._internal,y._internal);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T,int N>
 | 
			
		||||
      void vcaxpy(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x,const iVector<T,N>& y) {
 | 
			
		||||
      for (int i=0;i<N;i++)
 | 
			
		||||
	vcaxpy(r._internal[i],a,x._internal[i],y._internal[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void vcaxpy(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x,const vCoeff_t& y) {
 | 
			
		||||
      r = a*x + y;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_caxpy(int b, Field& ret, const vCoeff_t& a, const Field& x, const Field& y) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
	vcaxpy(ret._odata[ss],a,x._odata[ss],y._odata[ss]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_caxpy(int b, std::vector< ComplexD >& ret, const vCoeff_t& a, const Field& x, const std::vector< ComplexD >& y) {
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
 | 
			
		||||
      int lsize = _cf_o_block_size / _block_sites;
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
 | 
			
		||||
	int n = lsize / nsimd;
 | 
			
		||||
	for (int l=0;l<n;l++) {
 | 
			
		||||
	  vCoeff_t r = a* ((vCoeff_t*)&x._odata[ss]._internal)[l];
 | 
			
		||||
 | 
			
		||||
	  for (int j=0;j<nsimd;j++) {
 | 
			
		||||
	    int t = lsize * i + l*nsimd + j;
 | 
			
		||||
	    ret[t] = y[t] + ((Coeff_t*)&r)[j];
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_set(int b, Field& ret, const std::vector< ComplexD >& x) {
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      int lsize = _cf_o_block_size / _block_sites;
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
 | 
			
		||||
	for (int l=0;l<lsize;l++)
 | 
			
		||||
	  ((Coeff_t*)&ret._odata[ss]._internal)[l] = (Coeff_t)x[lsize * i + l]; // convert precision
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_get(int b, const Field& ret, std::vector< ComplexD >& x) {
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      int lsize = _cf_o_block_size / _block_sites;
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
 | 
			
		||||
	for (int l=0;l<lsize;l++)
 | 
			
		||||
	  x[lsize * i + l] = (ComplexD)((Coeff_t*)&ret._odata[ss]._internal)[l];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T>
 | 
			
		||||
    void vcscale(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x) {
 | 
			
		||||
      vcscale(r._internal,a,x._internal);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T,int N>
 | 
			
		||||
    void vcscale(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x) {
 | 
			
		||||
      for (int i=0;i<N;i++)
 | 
			
		||||
	vcscale(r._internal[i],a,x._internal[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void vcscale(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x) {
 | 
			
		||||
      r = a*x;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_cscale(int b, const vCoeff_t& a, Field& ret) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
      
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
	vcscale(ret._odata[ss],a,ret._odata[ss]);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void getCanonicalBlockOffset(int cb, std::vector<int>& x0) {
 | 
			
		||||
      const int ndim = 5;
 | 
			
		||||
      assert(_nb.size() == ndim);
 | 
			
		||||
      std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
 | 
			
		||||
      std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
 | 
			
		||||
      x0.resize(ndim);
 | 
			
		||||
 | 
			
		||||
      assert(cb >= 0);
 | 
			
		||||
      assert(cb < _nbc[0]*_nbc[1]*_nbc[2]*_nbc[3]*_nbc[4]);
 | 
			
		||||
 | 
			
		||||
      Lexicographic::CoorFromIndex(x0,cb,_nbc);
 | 
			
		||||
      int i;
 | 
			
		||||
 | 
			
		||||
      for (i=0;i<ndim;i++) {
 | 
			
		||||
	x0[i] *= _bsc[i];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //if (cb < 2)
 | 
			
		||||
      //	std::cout << GridLogMessage << "Map: " << cb << " To: " << x0 << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void pokeBlockOfVectorCanonical(int cb,Field& v,const std::vector<float>& buf) {
 | 
			
		||||
      std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
 | 
			
		||||
      std::vector<int> ldim = v._grid->LocalDimensions();
 | 
			
		||||
      std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
 | 
			
		||||
      const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
 | 
			
		||||
      // take canonical block cb of v and put it in canonical ordering in buf
 | 
			
		||||
      std::vector<int> cx0;
 | 
			
		||||
      getCanonicalBlockOffset(cb,cx0);
 | 
			
		||||
 | 
			
		||||
#pragma omp parallel
 | 
			
		||||
      {
 | 
			
		||||
	std::vector<int> co0,cl0;
 | 
			
		||||
	co0=cx0; cl0=cx0;
 | 
			
		||||
 | 
			
		||||
#pragma omp for
 | 
			
		||||
	for (int i=0;i<_nbsc;i++) {
 | 
			
		||||
	  Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
 | 
			
		||||
	  for (int j=0;j<(int)_bsc.size();j++)
 | 
			
		||||
	    cl0[j] = cx0[j] + co0[j];
 | 
			
		||||
	  
 | 
			
		||||
	  std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
 | 
			
		||||
	  int oi = v._grid->oIndex(l0);
 | 
			
		||||
	  int ii = v._grid->iIndex(l0);
 | 
			
		||||
	  int lti = i;
 | 
			
		||||
 | 
			
		||||
	  //if (cb < 2 && i<2)
 | 
			
		||||
	  //  std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  for (int s=0;s<4;s++)
 | 
			
		||||
	    for (int c=0;c<3;c++) {
 | 
			
		||||
	      Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
 | 
			
		||||
	      int ti = 12*lti + 3*s + c;
 | 
			
		||||
	      ld = Coeff_t(buf[2*ti+0], buf[2*ti+1]);
 | 
			
		||||
	    }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void peekBlockOfVectorCanonical(int cb,const Field& v,std::vector<float>& buf) {
 | 
			
		||||
      std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
 | 
			
		||||
      std::vector<int> ldim = v._grid->LocalDimensions();
 | 
			
		||||
      std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
 | 
			
		||||
      const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
 | 
			
		||||
      // take canonical block cb of v and put it in canonical ordering in buf
 | 
			
		||||
      std::vector<int> cx0;
 | 
			
		||||
      getCanonicalBlockOffset(cb,cx0);
 | 
			
		||||
 | 
			
		||||
      buf.resize(_cf_block_size * 2);
 | 
			
		||||
 | 
			
		||||
#pragma omp parallel
 | 
			
		||||
      {
 | 
			
		||||
	std::vector<int> co0,cl0;
 | 
			
		||||
	co0=cx0; cl0=cx0;
 | 
			
		||||
 | 
			
		||||
#pragma omp for
 | 
			
		||||
	for (int i=0;i<_nbsc;i++) {
 | 
			
		||||
	  Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
 | 
			
		||||
	  for (int j=0;j<(int)_bsc.size();j++)
 | 
			
		||||
	    cl0[j] = cx0[j] + co0[j];
 | 
			
		||||
	  
 | 
			
		||||
	  std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
 | 
			
		||||
	  int oi = v._grid->oIndex(l0);
 | 
			
		||||
	  int ii = v._grid->iIndex(l0);
 | 
			
		||||
	  int lti = i;
 | 
			
		||||
	  
 | 
			
		||||
	  //if (cb < 2 && i<2)
 | 
			
		||||
	  //  std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
 | 
			
		||||
 | 
			
		||||
	  for (int s=0;s<4;s++)
 | 
			
		||||
	    for (int c=0;c<3;c++) {
 | 
			
		||||
	      Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
 | 
			
		||||
	      int ti = 12*lti + 3*s + c;
 | 
			
		||||
	      buf[2*ti+0] = ld.real();
 | 
			
		||||
	      buf[2*ti+1] = ld.imag();
 | 
			
		||||
	    }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int globalToLocalCanonicalBlock(int slot,const std::vector<int>& src_nodes,int nb) {
 | 
			
		||||
      // processor coordinate
 | 
			
		||||
      int _nd = (int)src_nodes.size();
 | 
			
		||||
      std::vector<int> _src_nodes = src_nodes;
 | 
			
		||||
      std::vector<int> pco(_nd);
 | 
			
		||||
      Lexicographic::CoorFromIndex(pco,slot,_src_nodes);
 | 
			
		||||
      std::vector<int> cpco = { pco[1], pco[2], pco[3], pco[4], pco[0] };
 | 
			
		||||
 | 
			
		||||
      // get local block
 | 
			
		||||
      std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
 | 
			
		||||
      assert(_nd == 5);
 | 
			
		||||
      std::vector<int> c_src_local_blocks(_nd);
 | 
			
		||||
      for (int i=0;i<_nd;i++) {
 | 
			
		||||
	assert(_grid->_fdimensions[i] % (src_nodes[i] * _bs[i]) == 0);
 | 
			
		||||
	c_src_local_blocks[(i+4) % 5] = _grid->_fdimensions[i] / src_nodes[i] / _bs[i];
 | 
			
		||||
      }
 | 
			
		||||
      std::vector<int> cbcoor(_nd); // coordinate of block in slot in canonical form
 | 
			
		||||
      Lexicographic::CoorFromIndex(cbcoor,nb,c_src_local_blocks);
 | 
			
		||||
 | 
			
		||||
      // cpco, cbcoor
 | 
			
		||||
      std::vector<int> clbcoor(_nd);
 | 
			
		||||
      for (int i=0;i<_nd;i++) {
 | 
			
		||||
	int cgcoor = cpco[i] * c_src_local_blocks[i] + cbcoor[i]; // global block coordinate
 | 
			
		||||
	int pcoor = cgcoor / _nbc[i]; // processor coordinate in my Grid
 | 
			
		||||
	int tpcoor = _grid->_processor_coor[(i+1)%5];
 | 
			
		||||
	if (pcoor != tpcoor)
 | 
			
		||||
	  return -1;
 | 
			
		||||
	clbcoor[i] = cgcoor - tpcoor * _nbc[i]; // canonical local block coordinate for canonical dimension i
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      int lnb;
 | 
			
		||||
      Lexicographic::IndexFromCoor(clbcoor,lnb,_nbc);
 | 
			
		||||
      //std::cout << "Mapped slot = " << slot << " nb = " << nb << " to " << lnb << std::endl;
 | 
			
		||||
      return lnb;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,163 @@
 | 
			
		||||
namespace Grid { 
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class BasisFieldVector {
 | 
			
		||||
 public:
 | 
			
		||||
  int _Nm;
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type Coeff_t;
 | 
			
		||||
  typedef typename Field::vector_type vCoeff_t;
 | 
			
		||||
  typedef typename Field::vector_object vobj;
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
  std::vector<Field> _v; // _Nfull vectors
 | 
			
		||||
 | 
			
		||||
  void report(int n,GridBase* value) {
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "BasisFieldVector allocated:\n";
 | 
			
		||||
    std::cout << GridLogMessage << " Delta N = " << n << "\n";
 | 
			
		||||
    std::cout << GridLogMessage << " Size of full vectors (size) = " << 
 | 
			
		||||
      ((double)n*sizeof(vobj)*value->oSites() / 1024./1024./1024.) << " GB\n";
 | 
			
		||||
    std::cout << GridLogMessage << " Size = " << _v.size() << " Capacity = " << _v.capacity() << std::endl;
 | 
			
		||||
 | 
			
		||||
    value->Barrier();
 | 
			
		||||
 | 
			
		||||
    if (value->IsBoss()) {
 | 
			
		||||
      system("cat /proc/meminfo");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    value->Barrier();
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  BasisFieldVector(int Nm,GridBase* value) : _Nm(Nm), _v(Nm,value) {
 | 
			
		||||
    report(Nm,value);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ~BasisFieldVector() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Field& operator[](int i) {
 | 
			
		||||
    return _v[i];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void orthogonalize(Field& w, int k) {
 | 
			
		||||
    for(int j=0; j<k; ++j){
 | 
			
		||||
      Coeff_t ip = (Coeff_t)innerProduct(_v[j],w);
 | 
			
		||||
      w = w - ip*_v[j];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void rotate(std::vector<RealD>& Qt,int j0, int j1, int k0,int k1,int Nm) {
 | 
			
		||||
    
 | 
			
		||||
    GridBase* grid = _v[0]._grid;
 | 
			
		||||
      
 | 
			
		||||
#pragma omp parallel
 | 
			
		||||
    {
 | 
			
		||||
      std::vector < vobj > B(Nm);
 | 
			
		||||
      
 | 
			
		||||
#pragma omp for
 | 
			
		||||
      for(int ss=0;ss < grid->oSites();ss++){
 | 
			
		||||
	for(int j=j0; j<j1; ++j) B[j]=0.;
 | 
			
		||||
	
 | 
			
		||||
	for(int j=j0; j<j1; ++j){
 | 
			
		||||
	  for(int k=k0; k<k1; ++k){
 | 
			
		||||
	    B[j] +=Qt[k+Nm*j] * _v[k]._odata[ss];
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	for(int j=j0; j<j1; ++j){
 | 
			
		||||
	  _v[j]._odata[ss] = B[j];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  size_t size() const {
 | 
			
		||||
    return _Nm;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void resize(int n) {
 | 
			
		||||
    if (n > _Nm)
 | 
			
		||||
      _v.reserve(n);
 | 
			
		||||
    
 | 
			
		||||
    _v.resize(n,_v[0]._grid);
 | 
			
		||||
 | 
			
		||||
    if (n < _Nm)
 | 
			
		||||
      _v.shrink_to_fit();
 | 
			
		||||
 | 
			
		||||
    report(n - _Nm,_v[0]._grid);
 | 
			
		||||
 | 
			
		||||
    _Nm = n;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::vector<int> getIndex(std::vector<RealD>& sort_vals) {
 | 
			
		||||
 | 
			
		||||
    std::vector<int> idx(sort_vals.size());
 | 
			
		||||
    iota(idx.begin(), idx.end(), 0);
 | 
			
		||||
 | 
			
		||||
    // sort indexes based on comparing values in v
 | 
			
		||||
    sort(idx.begin(), idx.end(),
 | 
			
		||||
	 [&sort_vals](int i1, int i2) {return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);});
 | 
			
		||||
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void reorderInPlace(std::vector<RealD>& sort_vals, std::vector<int>& idx) {
 | 
			
		||||
    GridStopWatch gsw;
 | 
			
		||||
    gsw.Start();
 | 
			
		||||
 | 
			
		||||
    int nswaps = 0;
 | 
			
		||||
    for (size_t i=0;i<idx.size();i++) {
 | 
			
		||||
      if (idx[i] != i) {
 | 
			
		||||
 | 
			
		||||
	// find proper place (this could be done in logarithmic time, don't bother for now)
 | 
			
		||||
	size_t j;
 | 
			
		||||
	for (j=i;j<idx.size();j++)
 | 
			
		||||
	  if (idx[j]==i)
 | 
			
		||||
	    break;
 | 
			
		||||
	assert(j!=idx.size());
 | 
			
		||||
	
 | 
			
		||||
	Field _t(_v[0]._grid);
 | 
			
		||||
	_t = _v[idx[j]];
 | 
			
		||||
	_v[idx[j]] = _v[idx[i]];
 | 
			
		||||
	_v[idx[i]] = _t;
 | 
			
		||||
 | 
			
		||||
	RealD _td = sort_vals[idx[j]];
 | 
			
		||||
	sort_vals[idx[j]] = sort_vals[idx[i]];
 | 
			
		||||
	sort_vals[idx[i]] = _td;
 | 
			
		||||
 | 
			
		||||
	int _tt = idx[i];
 | 
			
		||||
	idx[i] = idx[j];
 | 
			
		||||
	idx[j] = _tt;
 | 
			
		||||
	
 | 
			
		||||
	nswaps++;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // sort values
 | 
			
		||||
    gsw.Stop();
 | 
			
		||||
    std::cout << GridLogMessage << "Sorted eigenspace in place in " << gsw.Elapsed() << " using " << nswaps << " swaps" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void sortInPlace(std::vector<RealD>& sort_vals, bool reverse) {
 | 
			
		||||
 | 
			
		||||
    std::vector<int> idx = getIndex(sort_vals);
 | 
			
		||||
    if (reverse)
 | 
			
		||||
      std::reverse(idx.begin(), idx.end());
 | 
			
		||||
 | 
			
		||||
    reorderInPlace(sort_vals,idx);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void deflate(const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
 | 
			
		||||
    result = zero;
 | 
			
		||||
    int N = (int)_v.size();
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      Field& tmp = _v[i];
 | 
			
		||||
      axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 }; 
 | 
			
		||||
}
 | 
			
		||||
@@ -53,16 +53,110 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
   *     M psi = eta
 | 
			
		||||
   ***********************
 | 
			
		||||
   *Odd
 | 
			
		||||
   * i)   (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   * i)                 D_oo psi_o =  L^{-1}  eta_o
 | 
			
		||||
   *                        eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *      (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   *Even
 | 
			
		||||
   * ii)  Mee psi_e + Meo psi_o = src_e
 | 
			
		||||
   *
 | 
			
		||||
   *   => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
   *
 | 
			
		||||
   * 
 | 
			
		||||
   * TODO: Other options:
 | 
			
		||||
   * 
 | 
			
		||||
   * a) change checkerboards for Schur e<->o
 | 
			
		||||
   *
 | 
			
		||||
   * Left precon by Moo^-1
 | 
			
		||||
   * b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 =  (D_oo)^dag M_oo^-dag Moo^-1 L^{-1}  eta_o
 | 
			
		||||
   *                              eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *
 | 
			
		||||
   * Right precon by Moo^-1
 | 
			
		||||
   * c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   *                              eta_o'     = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *                              psi_o = M_oo^-1 phi_o
 | 
			
		||||
   * TODO: Deflation 
 | 
			
		||||
   */
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  template<class Field> class SchurRedBlackStaggeredSolve {
 | 
			
		||||
  private:
 | 
			
		||||
    OperatorFunction<Field> & _HermitianRBSolver;
 | 
			
		||||
    int CBfactorise;
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver)  :
 | 
			
		||||
     _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise=0;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<class Matrix>
 | 
			
		||||
      void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
 | 
			
		||||
      // FIXME CGdiagonalMee not implemented virtual function
 | 
			
		||||
      // FIXME use CBfactorise to control schur decomp
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
 
 | 
			
		||||
      Field src_e(grid);
 | 
			
		||||
      Field src_o(grid);
 | 
			
		||||
      Field sol_e(grid);
 | 
			
		||||
      Field sol_o(grid);
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,in);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,in);
 | 
			
		||||
      pickCheckerboard(Even,sol_e,out);
 | 
			
		||||
      pickCheckerboard(Odd ,sol_o,out);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);     
 | 
			
		||||
 | 
			
		||||
      _Matrix.Mooee(tmp,src_o);     assert(src_o.checkerboard ==Odd);
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the red-black solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
 | 
			
		||||
      _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd);
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
      setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd );
 | 
			
		||||
 | 
			
		||||
      // Verify the unprec residual
 | 
			
		||||
      _Matrix.M(out,resid); 
 | 
			
		||||
      resid = resid-in;
 | 
			
		||||
      RealD ns = norm2(in);
 | 
			
		||||
      RealD nr = norm2(resid);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
 | 
			
		||||
    }     
 | 
			
		||||
  };
 | 
			
		||||
  template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
@@ -76,12 +170,10 @@ namespace Grid {
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver)  :
 | 
			
		||||
     _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise=0;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
  SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0)  :  _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
  { 
 | 
			
		||||
    CBfactorise=cb;
 | 
			
		||||
  };
 | 
			
		||||
    template<class Matrix>
 | 
			
		||||
      void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
 | 
			
		||||
@@ -141,5 +233,166 @@ namespace Grid {
 | 
			
		||||
    }     
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagTwoSolve {
 | 
			
		||||
  private:
 | 
			
		||||
    OperatorFunction<Field> & _HermitianRBSolver;
 | 
			
		||||
    int CBfactorise;
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver)  :
 | 
			
		||||
     _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise=0;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<class Matrix>
 | 
			
		||||
      void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
 | 
			
		||||
      // FIXME CGdiagonalMee not implemented virtual function
 | 
			
		||||
      // FIXME use CBfactorise to control schur decomp
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
 
 | 
			
		||||
      Field src_e(grid);
 | 
			
		||||
      Field src_o(grid);
 | 
			
		||||
      Field sol_e(grid);
 | 
			
		||||
      Field sol_o(grid);
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,in);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,in);
 | 
			
		||||
      pickCheckerboard(Even,sol_e,out);
 | 
			
		||||
      pickCheckerboard(Odd ,sol_o,out);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.checkerboard ==Odd);       
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the red-black solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
 | 
			
		||||
//      _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd);
 | 
			
		||||
      _HermitianRBSolver(_HermOpEO,src_o,tmp);  assert(tmp.checkerboard==Odd);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_o);        assert(  sol_o.checkerboard   ==Odd);
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
      setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd );
 | 
			
		||||
 | 
			
		||||
      // Verify the unprec residual
 | 
			
		||||
      _Matrix.M(out,resid); 
 | 
			
		||||
      resid = resid-in;
 | 
			
		||||
      RealD ns = norm2(in);
 | 
			
		||||
      RealD nr = norm2(resid);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
 | 
			
		||||
    }     
 | 
			
		||||
  };
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagTwoMixed {
 | 
			
		||||
  private:
 | 
			
		||||
    LinearFunction<Field> & _HermitianRBSolver;
 | 
			
		||||
    int CBfactorise;
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver)  :
 | 
			
		||||
     _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise=0;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<class Matrix>
 | 
			
		||||
      void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
 | 
			
		||||
      // FIXME CGdiagonalMee not implemented virtual function
 | 
			
		||||
      // FIXME use CBfactorise to control schur decomp
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
 
 | 
			
		||||
      Field src_e(grid);
 | 
			
		||||
      Field src_o(grid);
 | 
			
		||||
      Field sol_e(grid);
 | 
			
		||||
      Field sol_o(grid);
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,in);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,in);
 | 
			
		||||
      pickCheckerboard(Even,sol_e,out);
 | 
			
		||||
      pickCheckerboard(Odd ,sol_o,out);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.checkerboard ==Odd);       
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the red-black solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
 | 
			
		||||
//      _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd);
 | 
			
		||||
//      _HermitianRBSolver(_HermOpEO,src_o,tmp);  assert(tmp.checkerboard==Odd);
 | 
			
		||||
      _HermitianRBSolver(src_o,tmp);  assert(tmp.checkerboard==Odd);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_o);        assert(  sol_o.checkerboard   ==Odd);
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
      setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd );
 | 
			
		||||
 | 
			
		||||
      // Verify the unprec residual
 | 
			
		||||
      _Matrix.M(out,resid); 
 | 
			
		||||
      resid = resid-in;
 | 
			
		||||
      RealD ns = norm2(in);
 | 
			
		||||
      RealD nr = norm2(resid);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
 | 
			
		||||
    }     
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -117,32 +117,40 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,
 | 
			
		||||
  int Nchild = Nparent/childsize;
 | 
			
		||||
  assert (childsize * Nchild == Nparent);
 | 
			
		||||
 | 
			
		||||
  int prank;  MPI_Comm_rank(parent.communicator,&prank);
 | 
			
		||||
  int crank = prank % childsize;
 | 
			
		||||
  int ccomm = prank / childsize;
 | 
			
		||||
  std::vector<int> ccoor(_ndimension); // coor within subcommunicator
 | 
			
		||||
  std::vector<int> scoor(_ndimension); // coor of split within parent
 | 
			
		||||
  std::vector<int> ssize(_ndimension); // coor of split within parent
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<_ndimension;d++){
 | 
			
		||||
    ccoor[d] = parent._processor_coor[d] % processors[d];
 | 
			
		||||
    scoor[d] = parent._processor_coor[d] / processors[d];
 | 
			
		||||
    ssize[d] = parent._processors[d]/ processors[d];
 | 
			
		||||
  }
 | 
			
		||||
  int crank,srank;  // rank within subcomm ; rank of subcomm within blocks of subcomms
 | 
			
		||||
  Lexicographic::IndexFromCoor(ccoor,crank,processors);
 | 
			
		||||
  Lexicographic::IndexFromCoor(scoor,srank,ssize);
 | 
			
		||||
 | 
			
		||||
  MPI_Comm comm_split;
 | 
			
		||||
  if ( Nchild > 1 ) { 
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
 | 
			
		||||
    std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"]    ";
 | 
			
		||||
    for(int d=0;d<parent._processors.size();d++)  std::cout << parent._processors[d] << " ";
 | 
			
		||||
    std::cout<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"]    ";
 | 
			
		||||
    //    for(int d=0;d<parent._processors.size();d++)  std::cout << parent._processors[d] << " ";
 | 
			
		||||
    //    std::cout<<std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage<<" child grid["<< _ndimension <<"]    ";
 | 
			
		||||
    for(int d=0;d<processors.size();d++)  std::cout << processors[d] << " ";
 | 
			
		||||
    std::cout<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<" child grid["<< _ndimension <<"]    ";
 | 
			
		||||
    //    for(int d=0;d<processors.size();d++)  std::cout << processors[d] << " ";
 | 
			
		||||
    //    std::cout<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int ierr= MPI_Comm_split(parent.communicator, ccomm,crank,&comm_split);
 | 
			
		||||
    int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Declare victory
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
 | 
			
		||||
	      <<Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
 | 
			
		||||
    // 	      << Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
 | 
			
		||||
  } else {
 | 
			
		||||
    comm_split=parent.communicator;
 | 
			
		||||
    //    std::cout << "Passed parental communicator to a new communicator" <<std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -262,6 +262,23 @@ class CartesianCommunicator {
 | 
			
		||||
  // Broadcast a buffer and composite larger
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void Broadcast(int root,void* data, int bytes);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // All2All down one dimension
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
 | 
			
		||||
    assert(dim>=0);
 | 
			
		||||
    assert(dim<_ndimension);
 | 
			
		||||
    int numnode = _processors[dim];
 | 
			
		||||
    //    std::cerr << " AllToAll in.size()  "<<in.size()<<std::endl;
 | 
			
		||||
    //    std::cerr << " AllToAll out.size() "<<out.size()<<std::endl;
 | 
			
		||||
    assert(in.size()==out.size());
 | 
			
		||||
    size_t bytes=(in.size()*sizeof(T))/numnode;
 | 
			
		||||
    assert((bytes*numnode) == in.size()*sizeof(T));
 | 
			
		||||
    AllToAll(dim,(void *)&in[0],(void *)&out[0],bytes);
 | 
			
		||||
  }
 | 
			
		||||
  void AllToAll(int dim  ,void *in,void *out,int bytes);
 | 
			
		||||
  void AllToAll(void  *in,void *out,int bytes);
 | 
			
		||||
  
 | 
			
		||||
  template<class obj> void Broadcast(int root,obj &data)
 | 
			
		||||
    {
 | 
			
		||||
 
 | 
			
		||||
@@ -187,6 +187,21 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
 | 
			
		||||
		     root,
 | 
			
		||||
		     communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,int bytes)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<int> row(_ndimension,1);
 | 
			
		||||
  assert(dim>=0 && dim<_ndimension);
 | 
			
		||||
 | 
			
		||||
  //  Split the communicator
 | 
			
		||||
  row[dim] = _processors[dim];
 | 
			
		||||
 | 
			
		||||
  CartesianCommunicator Comm(row,*this);
 | 
			
		||||
  Comm.AllToAll(in,out,bytes);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(void  *in,void *out,int bytes)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Alltoall(in ,bytes,MPI_BYTE,out,bytes,MPI_BYTE,communicator);
 | 
			
		||||
}
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  // Should only be used prior to Grid Init finished.
 | 
			
		||||
@@ -207,5 +222,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -98,6 +98,10 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,int bytes)
 | 
			
		||||
{
 | 
			
		||||
  bcopy(in,out,bytes);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int  CartesianCommunicator::RankWorld(void){return 0;}
 | 
			
		||||
void CartesianCommunicator::Barrier(void){}
 | 
			
		||||
 
 | 
			
		||||
@@ -684,6 +684,307 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
 | 
			
		||||
    merge(out._odata[out_oidx], ptrs, 0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Communicate between grids
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// All to all plan
 | 
			
		||||
//
 | 
			
		||||
// Subvolume on fine grid is v.    Vectors a,b,c,d 
 | 
			
		||||
//
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// SIMPLEST CASE:
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Mesh of nodes (2) ; subdivide to  1 subdivisions
 | 
			
		||||
//
 | 
			
		||||
// Lex ord:   
 | 
			
		||||
//          N0 va0 vb0  N1 va1 vb1 
 | 
			
		||||
//
 | 
			
		||||
// For each dimension do an all to all
 | 
			
		||||
//
 | 
			
		||||
// full AllToAll(0)
 | 
			
		||||
//          N0 va0 va1    N1 vb0 vb1
 | 
			
		||||
//
 | 
			
		||||
// REARRANGE
 | 
			
		||||
//          N0 va01       N1 vb01
 | 
			
		||||
//
 | 
			
		||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
 | 
			
		||||
// NB: Easiest to programme if keep in lex order.
 | 
			
		||||
//
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// SIMPLE CASE:
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// Mesh of nodes (2x2) ; subdivide to  1x1 subdivisions
 | 
			
		||||
//
 | 
			
		||||
// Lex ord:   
 | 
			
		||||
//          N0 va0 vb0 vc0 vd0       N1 va1 vb1 vc1 vd1  
 | 
			
		||||
//          N2 va2 vb2 vc2 vd2       N3 va3 vb3 vc3 vd3 
 | 
			
		||||
//
 | 
			
		||||
// Ratio = full[dim] / split[dim]
 | 
			
		||||
//
 | 
			
		||||
// For each dimension do an all to all; get Nvec -> Nvec / ratio
 | 
			
		||||
//                                          Ldim -> Ldim * ratio
 | 
			
		||||
//                                          LocalVol -> LocalVol * ratio
 | 
			
		||||
// full AllToAll(0)
 | 
			
		||||
//          N0 va0 vb0 va1 vb1       N1 vc0 vd0 vc1 vd1   
 | 
			
		||||
//          N2 va2 vb2 va3 vb3       N3 vc2 vd2 vc3 vd3 
 | 
			
		||||
//
 | 
			
		||||
// REARRANGE
 | 
			
		||||
//          N0 va01 vb01      N1 vc01 vd01
 | 
			
		||||
//          N2 va23 vb23      N3 vc23 vd23
 | 
			
		||||
//
 | 
			
		||||
// full AllToAll(1)           // Not what is wanted. FIXME
 | 
			
		||||
//          N0 va01 va23      N1 vc01 vc23 
 | 
			
		||||
//          N2 vb01 vb23      N3 vd01 vd23
 | 
			
		||||
// 
 | 
			
		||||
// REARRANGE
 | 
			
		||||
//          N0 va0123      N1 vc0123
 | 
			
		||||
//          N2 vb0123      N3 vd0123
 | 
			
		||||
//
 | 
			
		||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
 | 
			
		||||
// NB: Easiest to programme if keep in lex order.
 | 
			
		||||
//
 | 
			
		||||
/////////////////////////////////////////////////////////
 | 
			
		||||
template<class Vobj>
 | 
			
		||||
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename Vobj::scalar_object Sobj;
 | 
			
		||||
 | 
			
		||||
  int full_vecs   = full.size();
 | 
			
		||||
 | 
			
		||||
  assert(full_vecs>=1);
 | 
			
		||||
 | 
			
		||||
  GridBase * full_grid = full[0]._grid;
 | 
			
		||||
  GridBase *split_grid = split._grid;
 | 
			
		||||
 | 
			
		||||
  int       ndim  = full_grid->_ndimension;
 | 
			
		||||
  int  full_nproc = full_grid->_Nprocessors;
 | 
			
		||||
  int split_nproc =split_grid->_Nprocessors;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Checkerboard management
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  int cb = full[0].checkerboard;
 | 
			
		||||
  split.checkerboard = cb;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Checks
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  for(int n=0;n<full_vecs;n++){
 | 
			
		||||
    assert(full[n].checkerboard == cb);
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
 | 
			
		||||
      assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int   nvector   =full_nproc/split_nproc; 
 | 
			
		||||
  assert(nvector*split_nproc==full_nproc);
 | 
			
		||||
  assert(nvector == full_vecs);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> ratio(ndim);
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
    ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int lsites = full_grid->lSites();
 | 
			
		||||
  Integer sz = lsites * nvector;
 | 
			
		||||
  std::vector<Sobj> tmpdata(sz);
 | 
			
		||||
  std::vector<Sobj> alldata(sz);
 | 
			
		||||
  std::vector<Sobj> scalardata(lsites); 
 | 
			
		||||
  for(int v=0;v<nvector;v++){
 | 
			
		||||
    unvectorizeToLexOrdArray(scalardata,full[v]);    
 | 
			
		||||
    parallel_for(int site=0;site<lsites;site++){
 | 
			
		||||
      alldata[v*lsites+site] = scalardata[site];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int nvec = nvector; // Counts down to 1 as we collapse dims
 | 
			
		||||
  std::vector<int> ldims = full_grid->_ldimensions;
 | 
			
		||||
  std::vector<int> lcoor(ndim);
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
 | 
			
		||||
    if ( ratio[d] != 1 ) {
 | 
			
		||||
 | 
			
		||||
      full_grid ->AllToAll(d,alldata,tmpdata);
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      //Local volume for this dimension is expanded by ratio of processor extents
 | 
			
		||||
      // Number of vectors is decreased by same factor
 | 
			
		||||
      // Rearrange to lexico for bigger volume
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      nvec    /= ratio[d];
 | 
			
		||||
      auto rdims = ldims; rdims[d]  *=   ratio[d];
 | 
			
		||||
      auto rsites= lsites*ratio[d];
 | 
			
		||||
      for(int v=0;v<nvec;v++){
 | 
			
		||||
 | 
			
		||||
	// For loop over each site within old subvol
 | 
			
		||||
	for(int lsite=0;lsite<lsites;lsite++){
 | 
			
		||||
 | 
			
		||||
	  Lexicographic::CoorFromIndex(lcoor, lsite, ldims);	  
 | 
			
		||||
 | 
			
		||||
	  for(int r=0;r<ratio[d];r++){ // ratio*nvec terms
 | 
			
		||||
 | 
			
		||||
	    auto rcoor = lcoor;	    rcoor[d]  += r*ldims[d];
 | 
			
		||||
 | 
			
		||||
	    int rsite; Lexicographic::IndexFromCoor(rcoor, rsite, rdims);	  
 | 
			
		||||
	    rsite += v * rsites;
 | 
			
		||||
 | 
			
		||||
	    int rmul=nvec*lsites;
 | 
			
		||||
	    int vmul=     lsites;
 | 
			
		||||
	    alldata[rsite] = tmpdata[lsite+r*rmul+v*vmul];
 | 
			
		||||
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ldims[d]*= ratio[d];
 | 
			
		||||
      lsites  *= ratio[d];
 | 
			
		||||
 | 
			
		||||
      if ( split_grid->_processors[d] > 1 ) {
 | 
			
		||||
	tmpdata = alldata;
 | 
			
		||||
	split_grid->AllToAll(d,tmpdata,alldata);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  vectorizeFromLexOrdArray(alldata,split);    
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Vobj>
 | 
			
		||||
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj>   & split)
 | 
			
		||||
{
 | 
			
		||||
  int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors;
 | 
			
		||||
  std::vector<Lattice<Vobj> > full_v(nvector,full._grid);
 | 
			
		||||
  for(int n=0;n<nvector;n++){
 | 
			
		||||
    full_v[n] = full;
 | 
			
		||||
  }
 | 
			
		||||
  Grid_split(full_v,split);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Vobj>
 | 
			
		||||
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename Vobj::scalar_object Sobj;
 | 
			
		||||
 | 
			
		||||
  int full_vecs   = full.size();
 | 
			
		||||
 | 
			
		||||
  assert(full_vecs>=1);
 | 
			
		||||
 | 
			
		||||
  GridBase * full_grid = full[0]._grid;
 | 
			
		||||
  GridBase *split_grid = split._grid;
 | 
			
		||||
 | 
			
		||||
  int       ndim  = full_grid->_ndimension;
 | 
			
		||||
  int  full_nproc = full_grid->_Nprocessors;
 | 
			
		||||
  int split_nproc =split_grid->_Nprocessors;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Checkerboard management
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  int cb = full[0].checkerboard;
 | 
			
		||||
  split.checkerboard = cb;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Checks
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  for(int n=0;n<full_vecs;n++){
 | 
			
		||||
    assert(full[n].checkerboard == cb);
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
 | 
			
		||||
      assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int   nvector   =full_nproc/split_nproc; 
 | 
			
		||||
  assert(nvector*split_nproc==full_nproc);
 | 
			
		||||
  assert(nvector == full_vecs);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> ratio(ndim);
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
    ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int lsites = full_grid->lSites();
 | 
			
		||||
  Integer sz = lsites * nvector;
 | 
			
		||||
  std::vector<Sobj> tmpdata(sz);
 | 
			
		||||
  std::vector<Sobj> alldata(sz);
 | 
			
		||||
  std::vector<Sobj> scalardata(lsites); 
 | 
			
		||||
 | 
			
		||||
  unvectorizeToLexOrdArray(alldata,split);    
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Start from split grid and work towards full grid
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  std::vector<int> lcoor(ndim);
 | 
			
		||||
  std::vector<int> rcoor(ndim);
 | 
			
		||||
 | 
			
		||||
  int nvec = 1;
 | 
			
		||||
  lsites = split_grid->lSites();
 | 
			
		||||
  std::vector<int> ldims = split_grid->_ldimensions;
 | 
			
		||||
 | 
			
		||||
  for(int d=ndim-1;d>=0;d--){
 | 
			
		||||
 | 
			
		||||
    if ( ratio[d] != 1 ) {
 | 
			
		||||
 | 
			
		||||
      if ( split_grid->_processors[d] > 1 ) {
 | 
			
		||||
	tmpdata = alldata;
 | 
			
		||||
	split_grid->AllToAll(d,tmpdata,alldata);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      //Local volume for this dimension is expanded by ratio of processor extents
 | 
			
		||||
      // Number of vectors is decreased by same factor
 | 
			
		||||
      // Rearrange to lexico for bigger volume
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      auto rsites= lsites/ratio[d];
 | 
			
		||||
      auto rdims = ldims; rdims[d]/=ratio[d];
 | 
			
		||||
 | 
			
		||||
      for(int v=0;v<nvec;v++){
 | 
			
		||||
 | 
			
		||||
	// rsite, rcoor --> smaller local volume
 | 
			
		||||
	// lsite, lcoor --> bigger original (single node?) volume
 | 
			
		||||
	// For loop over each site within smaller subvol
 | 
			
		||||
	for(int rsite=0;rsite<rsites;rsite++){
 | 
			
		||||
 | 
			
		||||
	  Lexicographic::CoorFromIndex(rcoor, rsite, rdims);	  
 | 
			
		||||
	  int lsite;
 | 
			
		||||
 | 
			
		||||
	  for(int r=0;r<ratio[d];r++){ 
 | 
			
		||||
 | 
			
		||||
	    lcoor = rcoor; lcoor[d] += r*rdims[d];
 | 
			
		||||
	    Lexicographic::IndexFromCoor(lcoor, lsite, ldims); lsite += v * lsites;
 | 
			
		||||
 | 
			
		||||
	    int rmul=nvec*rsites;
 | 
			
		||||
	    int vmul=     rsites;
 | 
			
		||||
	    tmpdata[rsite+r*rmul+v*vmul]=alldata[lsite];
 | 
			
		||||
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      nvec   *= ratio[d];
 | 
			
		||||
      ldims[d]=rdims[d];
 | 
			
		||||
      lsites  =rsites;
 | 
			
		||||
 | 
			
		||||
      full_grid ->AllToAll(d,tmpdata,alldata);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  lsites = full_grid->lSites();
 | 
			
		||||
  for(int v=0;v<nvector;v++){
 | 
			
		||||
    parallel_for(int site=0;site<lsites;site++){
 | 
			
		||||
      scalardata[site] = alldata[v*lsites+site];
 | 
			
		||||
    }
 | 
			
		||||
    assert(v<full.size());
 | 
			
		||||
 | 
			
		||||
    vectorizeFromLexOrdArray(scalardata,full[v]);    
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -61,10 +61,10 @@ namespace QCD {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /***************************************************************
 | 
			
		||||
    /* Additional EOFA operators only called outside the inverter.
 | 
			
		||||
    /* Since speed is not essential, simple axpby-style
 | 
			
		||||
    /* implementations should be fine.
 | 
			
		||||
    /***************************************************************/
 | 
			
		||||
     * Additional EOFA operators only called outside the inverter.
 | 
			
		||||
     * Since speed is not essential, simple axpby-style
 | 
			
		||||
     * implementations should be fine.
 | 
			
		||||
     ***************************************************************/
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
 | 
			
		||||
    {
 | 
			
		||||
@@ -116,8 +116,8 @@ namespace QCD {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /********************************************************************
 | 
			
		||||
    /* Performance critical fermion operators called inside the inverter
 | 
			
		||||
    /********************************************************************/
 | 
			
		||||
     * Performance critical fermion operators called inside the inverter
 | 
			
		||||
     ********************************************************************/
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
 | 
			
		||||
 
 | 
			
		||||
@@ -77,11 +77,11 @@ namespace QCD {
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /***************************************************************
 | 
			
		||||
    /* Additional EOFA operators only called outside the inverter.
 | 
			
		||||
    /* Since speed is not essential, simple axpby-style
 | 
			
		||||
    /* implementations should be fine.
 | 
			
		||||
    /***************************************************************/
 | 
			
		||||
    /****************************************************************
 | 
			
		||||
     * Additional EOFA operators only called outside the inverter.  
 | 
			
		||||
     * Since speed is not essential, simple axpby-style
 | 
			
		||||
     * implementations should be fine.
 | 
			
		||||
     ***************************************************************/
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
 | 
			
		||||
    {
 | 
			
		||||
@@ -194,8 +194,8 @@ namespace QCD {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /********************************************************************
 | 
			
		||||
    /* Performance critical fermion operators called inside the inverter
 | 
			
		||||
    /********************************************************************/
 | 
			
		||||
     * Performance critical fermion operators called inside the inverter
 | 
			
		||||
     ********************************************************************/
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
 | 
			
		||||
 
 | 
			
		||||
@@ -243,6 +243,12 @@ void Grid_init(int *argc,char ***argv)
 | 
			
		||||
    fname<<CartesianCommunicator::RankWorld();
 | 
			
		||||
    fp=freopen(fname.str().c_str(),"w",stdout);
 | 
			
		||||
    assert(fp!=(FILE *)NULL);
 | 
			
		||||
 | 
			
		||||
    std::ostringstream ename;
 | 
			
		||||
    ename<<"Grid.stderr.";
 | 
			
		||||
    ename<<CartesianCommunicator::RankWorld();
 | 
			
		||||
    fp=freopen(ename.str().c_str(),"w",stderr);
 | 
			
		||||
    assert(fp!=(FILE *)NULL);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user