1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-18 09:45:55 +01:00

Namespace, indentation

This commit is contained in:
paboyle 2018-01-14 22:44:06 +00:00
parent be612b3931
commit 6b7e82f1a9

View File

@ -26,164 +26,163 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution See the full license in the file "LICENSE" in the top level distribution
directory directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H #ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H #define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
namespace Grid { NAMESPACE_BEGIN(Grid);
namespace QCD {
////////////////////////////////////////////////////////////////////////
// Two flavour pseudofermion action for any EO prec dop
////////////////////////////////////////////////////////////////////////
template <class Impl>
class TwoFlavourEvenOddPseudoFermionAction
: public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> &FermOp; // the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory
public:
/////////////////////////////////////////////////
// Pass in required objects.
/////////////////////////////////////////////////
TwoFlavourEvenOddPseudoFermionAction(FermionOperator<Impl> &Op,
OperatorFunction<FermionField> &DS,
OperatorFunction<FermionField> &AS)
: FermOp(Op),
DerivativeSolver(DS),
ActionSolver(AS),
PhiEven(Op.FermionRedBlackGrid()),
PhiOdd(Op.FermionRedBlackGrid())
{};
virtual std::string action_name(){return "TwoFlavourEvenOddPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// Push the gauge field in to the dops. Assume any BC's and smearing already applied // Two flavour pseudofermion action for any EO prec dop
////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) { template <class Impl>
class TwoFlavourEvenOddPseudoFermionAction
: public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1 phi} private:
// Phi = McpDag eta FermionOperator<Impl> &FermOp; // the basic operator
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
RealD scale = std::sqrt(0.5); OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField eta (FermOp.FermionGrid()); FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField etaOdd (FermOp.FermionRedBlackGrid()); FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField etaEven(FermOp.FermionRedBlackGrid());
gaussian(pRNG,eta); public:
pickCheckerboard(Even,etaEven,eta); /////////////////////////////////////////////////
pickCheckerboard(Odd,etaOdd,eta); // Pass in required objects.
/////////////////////////////////////////////////
TwoFlavourEvenOddPseudoFermionAction(FermionOperator<Impl> &Op,
OperatorFunction<FermionField> &DS,
OperatorFunction<FermionField> &AS)
: FermOp(Op),
DerivativeSolver(DS),
ActionSolver(AS),
PhiEven(Op.FermionRedBlackGrid()),
PhiOdd(Op.FermionRedBlackGrid())
{};
FermOp.ImportGauge(U); virtual std::string action_name(){return "TwoFlavourEvenOddPseudoFermionAction";}
SchurDifferentiableOperator<Impl> PCop(FermOp);
PCop.MpcDag(etaOdd,PhiOdd);
FermOp.MooeeDag(etaEven,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1 phi (odd)
// + phi^dag (Mdag M)^-1 phi (even)
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
SchurDifferentiableOperator<Impl> PCop(FermOp);
X=zero;
ActionSolver(PCop,PhiOdd,X);
PCop.Op(X,Y);
RealD action = norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this.
FermOp.MooeeInvDag(PhiEven,Y);
action = action + norm2(Y);
std::cout << GridLogMessage << "Pseudofermion EO action "<<action<<std::endl;
return action;
};
//////////////////////////////////////////////////////
//
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM (Mdag)^-1 phi
//
// = - Ydag dM X - Xdag dMdag Y
//
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
GaugeField tmp(FermOp.GaugeGrid());
SchurDifferentiableOperator<Impl> Mpc(FermOp);
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
X=zero;
DerivativeSolver(Mpc,PhiOdd,X);
Mpc.Mpc(X,Y);
Mpc.MpcDeriv(tmp , Y, X ); dSdU=tmp;
Mpc.MpcDagDeriv(tmp , X, Y); dSdU=dSdU+tmp;
// Treat the EE case. (MdagM)^-1 = Minv Minvdag
// Deriv defaults to zero.
// FermOp.MooeeInvDag(PhiOdd,Y);
// FermOp.MooeeInv(Y,X);
// FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
// FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
assert(FermOp.ConstEE() == 1);
/*
FermOp.MooeeInvDag(PhiOdd,Y);
FermOp.MooeeInv(Y,X);
FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
*/
//dSdU = Ta(dSdU);
};
};
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
} }
}
//////////////////////////////////////////////////////////////////////////////////////
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
//////////////////////////////////////////////////////////////////////////////////////
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1 phi}
// Phi = McpDag eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
RealD scale = std::sqrt(0.5);
FermionField eta (FermOp.FermionGrid());
FermionField etaOdd (FermOp.FermionRedBlackGrid());
FermionField etaEven(FermOp.FermionRedBlackGrid());
gaussian(pRNG,eta);
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
FermOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> PCop(FermOp);
PCop.MpcDag(etaOdd,PhiOdd);
FermOp.MooeeDag(etaEven,PhiEven);
PhiOdd =PhiOdd*scale;
PhiEven=PhiEven*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1 phi (odd)
// + phi^dag (Mdag M)^-1 phi (even)
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
SchurDifferentiableOperator<Impl> PCop(FermOp);
X=zero;
ActionSolver(PCop,PhiOdd,X);
PCop.Op(X,Y);
RealD action = norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this.
FermOp.MooeeInvDag(PhiEven,Y);
action = action + norm2(Y);
std::cout << GridLogMessage << "Pseudofermion EO action "<<action<<std::endl;
return action;
};
//////////////////////////////////////////////////////
//
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM (Mdag)^-1 phi
//
// = - Ydag dM X - Xdag dMdag Y
//
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
GaugeField tmp(FermOp.GaugeGrid());
SchurDifferentiableOperator<Impl> Mpc(FermOp);
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
X=zero;
DerivativeSolver(Mpc,PhiOdd,X);
Mpc.Mpc(X,Y);
Mpc.MpcDeriv(tmp , Y, X ); dSdU=tmp;
Mpc.MpcDagDeriv(tmp , X, Y); dSdU=dSdU+tmp;
// Treat the EE case. (MdagM)^-1 = Minv Minvdag
// Deriv defaults to zero.
// FermOp.MooeeInvDag(PhiOdd,Y);
// FermOp.MooeeInv(Y,X);
// FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
// FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
assert(FermOp.ConstEE() == 1);
/*
FermOp.MooeeInvDag(PhiOdd,Y);
FermOp.MooeeInv(Y,X);
FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
*/
//dSdU = Ta(dSdU);
};
};
NAMESPACE_END(Grid);
#endif #endif