1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-25 13:15:55 +01:00

Visualisation tools

This commit is contained in:
Peter Boyle 2025-04-24 13:47:34 -04:00
parent 233150d93f
commit 6d015ae8fc
7 changed files with 908 additions and 0 deletions

View File

@ -0,0 +1,37 @@
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(GridViewer)
list(APPEND CMAKE_PREFIX_PATH "/Users/peterboyle/QCD/vtk/VTK-9.4.2-install/")
find_package(VTK COMPONENTS
CommonColor
CommonCore
FiltersCore
FiltersModeling
IOImage
IOFFMPEG
InteractionStyle
InteractionWidgets
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "GridViewer: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(FieldDensityAnimate MACOSX_BUNDLE FieldDensityAnimate.cxx )
target_link_libraries(FieldDensityAnimate PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS FieldDensityAnimate
MODULES ${VTK_LIBRARIES}
)

Binary file not shown.

View File

@ -0,0 +1,285 @@
#!/usr/bin/env python
# noinspection PyUnresolvedReferences
import math
import vtk
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import (
VTK_VERSION_NUMBER,
vtkVersion
)
from vtkmodules.vtkCommonCore import VTK_DOUBLE
from vtkmodules.vtkCommonDataModel import vtkImageData
from vtkmodules.vtkFiltersCore import (
vtkMarchingCubes,
vtkStripper
)
from vtkmodules.vtkFiltersModeling import vtkOutlineFilter
from vtkmodules.vtkIOImage import (
vtkMetaImageReader,
vtkJPEGWriter,
vtkPNGWriter
)
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkCamera,
vtkPolyDataMapper,
vtkProperty,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer,
vtkWindowToImageFilter
)
class vtkTimerCallback():
def __init__(self, steps, imageData, iren):
self.timer_count = 0
self.steps = steps
self.imageData = imageData
self.iren = iren
self.timerId = None
self.step = 0
def execute(self, obj, event):
print(self.timer_count)
dims = self.imageData.GetDimensions()
t=self.step/10.0
z0 = 2
y0 = 4
x0 = 4
z1 = 14
y1 = 12
x1 = 12
for z in range(dims[2]):
for y in range(dims[1]):
for x in range(dims[0]):
self.imageData.SetScalarComponentFromDouble(x, y, z, 0,
math.sin(t)*math.exp(-0.25*((x-x0)*(x-x0)+(y-y0)*(y-y0)+(z-z0)*(z-z0)))
- math.cos(t)*math.exp(-0.25*((x-x1)*(x-x1)+(y-y1)*(y-y1)+(z-z1)*(z-z1))))
self.imageData.Modified()
iren = obj
iren.GetRenderWindow().Render()
self.timer_count += 1
self.step += 1
if self.step >= self.steps :
iren.DestroyTimer(self.timerId)
def WriteImage(fileName, renWin):
'''
'''
import os
if fileName:
# Select the writer to use.
path, ext = os.path.splitext(fileName)
ext = ext.lower()
if not ext:
ext = '.png'
fileName = fileName + ext
elif ext == '.jpg':
writer = vtkJPEGWriter()
else:
writer = vtkPNGWriter()
windowto_image_filter = vtkWindowToImageFilter()
windowto_image_filter.SetInput(renWin)
windowto_image_filter.SetScale(1) # image quality
windowto_image_filter.SetInputBufferTypeToRGBA()
writer.SetFileName(fileName)
writer.SetInputConnection(windowto_image_filter.GetOutputPort())
writer.Write()
else:
raise RuntimeError('Need a filename.')
def main():
colors = vtkNamedColors()
file_name = get_program_parameters()
colors.SetColor('InstantonColor', [240, 184, 160, 255])
colors.SetColor('BackfaceColor', [255, 229, 200, 255])
colors.SetColor('BkgColor', [51, 77, 102, 255])
# Create the renderer, the render window, and the interactor. The renderer
# draws into the render window, the interactor enables mouse- and
# keyboard-based interaction with the data within the render window.
#
a_renderer = vtkRenderer()
ren_win = vtkRenderWindow()
ren_win.AddRenderer(a_renderer)
iren = vtkRenderWindowInteractor()
iren.SetRenderWindow(ren_win)
# The following reader is used to read a series of 2D slices (images)
# that compose the volume. The slice dimensions are set, and the
# pixel spacing. The data Endianness must also be specified. The reader
# uses the FilePrefix in combination with the slice number to construct
# filenames using the format FilePrefix.%d. (In this case the FilePrefix
# is the root name of the file: quarter.)
imageData = vtkImageData()
imageData.SetDimensions(16, 16, 16)
imageData.AllocateScalars(VTK_DOUBLE, 1)
dims = imageData.GetDimensions()
# Fill every entry of the image data with '2.0'
# Set the input data
for z in range(dims[2]):
z0 = dims[2]/2
for y in range(dims[1]):
y0 = dims[1]/2
for x in range(dims[0]):
x0 = dims[0]/2
imageData.SetScalarComponentFromDouble(x, y, z, 0, math.exp(-0.25*((x-x0)*(x-x0)+(y-y0)*(y-y0)+z*z)) - math.exp(-0.25*((x-x0)*(x-x0)+y*y+(z-z0)*(z-z0))))
instanton_extractor = vtkMarchingCubes()
instanton_extractor.SetInputData(imageData)
instanton_extractor.SetValue(0, 0.1)
instanton_stripper = vtkStripper()
instanton_stripper.SetInputConnection(instanton_extractor.GetOutputPort())
instanton_mapper = vtkPolyDataMapper()
instanton_mapper.SetInputConnection(instanton_stripper.GetOutputPort())
instanton_mapper.ScalarVisibilityOff()
instanton = vtkActor()
instanton.SetMapper(instanton_mapper)
instanton.GetProperty().SetDiffuseColor(colors.GetColor3d('InstantonColor'))
instanton.GetProperty().SetSpecular(0.3)
instanton.GetProperty().SetSpecularPower(20)
instanton.GetProperty().SetOpacity(0.5)
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
antiinstanton_extractor = vtkMarchingCubes()
antiinstanton_extractor.SetInputData(imageData)
antiinstanton_extractor.SetValue(0, -0.1)
antiinstanton_stripper = vtkStripper()
antiinstanton_stripper.SetInputConnection(antiinstanton_extractor.GetOutputPort())
antiinstanton_mapper = vtkPolyDataMapper()
antiinstanton_mapper.SetInputConnection(antiinstanton_stripper.GetOutputPort())
antiinstanton_mapper.ScalarVisibilityOff()
antiinstanton = vtkActor()
antiinstanton.SetMapper(antiinstanton_mapper)
antiinstanton.GetProperty().SetDiffuseColor(colors.GetColor3d('Ivory'))
# An outline provides box around the data.
outline_data = vtkOutlineFilter()
outline_data.SetInputData(imageData)
map_outline = vtkPolyDataMapper()
map_outline.SetInputConnection(outline_data.GetOutputPort())
outline = vtkActor()
outline.SetMapper(map_outline)
outline.GetProperty().SetColor(colors.GetColor3d('Black'))
# It is convenient to create an initial view of the data. The FocalPoint
# and Position form a vector direction. Later on (ResetCamera() method)
# this vector is used to position the camera to look at the data in
# this direction.
a_camera = vtkCamera()
a_camera.SetViewUp(0, 0, -1)
a_camera.SetPosition(0, -100, 0)
a_camera.SetFocalPoint(0, 0, 0)
a_camera.ComputeViewPlaneNormal()
a_camera.Azimuth(30.0)
a_camera.Elevation(30.0)
# Actors are added to the renderer. An initial camera view is created.
# The Dolly() method moves the camera towards the FocalPoint,
# thereby enlarging the image.
a_renderer.AddActor(outline)
a_renderer.AddActor(instanton)
a_renderer.AddActor(antiinstanton)
a_renderer.SetActiveCamera(a_camera)
a_renderer.ResetCamera()
a_camera.Dolly(1.0)
# Set a background color for the renderer and set the size of the
# render window (expressed in pixels).
a_renderer.SetBackground(colors.GetColor3d('BkgColor'))
ren_win.SetSize(1024, 1024)
ren_win.SetWindowName('ExpoDemo')
# Note that when camera movement occurs (as it does in the Dolly()
# method), the clipping planes often need adjusting. Clipping planes
# consist of two planes: near and far along the view direction. The
# near plane clips out objects in front of the plane the far plane
# clips out objects behind the plane. This way only what is drawn
# between the planes is actually rendered.
a_renderer.ResetCameraClippingRange()
# write image
# WriteImage('exp.jpg',ren_win)
# Sign up to receive TimerEvent
cb = vtkTimerCallback(200, imageData, iren)
iren.AddObserver('TimerEvent', cb.execute)
cb.timerId = iren.CreateRepeatingTimer(50)
# start the interaction and timer
ren_win.Render()
# Initialize the event loop and then start it.
iren.Initialize()
iren.Start()
def get_program_parameters():
import argparse
description = 'Simple lattice volumetric demo'
epilogue = '''
Derived from VTK/Examples/Cxx/Medical2.cxx
'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('filename', help='FieldDensity.py')
args = parser.parse_args()
return args.filename
def vtk_version_ok(major, minor, build):
"""
Check the VTK version.
:param major: Major version.
:param minor: Minor version.
:param build: Build version.
:return: True if the requested VTK version is greater or equal to the actual VTK version.
"""
needed_version = 10000000000 * int(major) + 100000000 * int(minor) + int(build)
try:
vtk_version_number = VTK_VERSION_NUMBER
except AttributeError: # as error:
ver = vtkVersion()
vtk_version_number = 10000000000 * ver.GetVTKMajorVersion() + 100000000 * ver.GetVTKMinorVersion() \
+ ver.GetVTKBuildVersion()
if vtk_version_number >= needed_version:
return True
else:
return False
if __name__ == '__main__':
main()

View File

@ -0,0 +1,490 @@
// Derived from VTK/Examples/Cxx/Medical2.cxx
// The example reads a volume dataset, extracts two isosurfaces that
// represent the skin and bone, and then displays them.
//
// Modified heavily by Peter Boyle to display lattice field theory data as movies and compare multiple files
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkMetaImageReader.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkOutlineFilter.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkStripper.h>
#include <vtkImageData.h>
#include <vtkVersion.h>
#include <vtkCallbackCommand.h>
#include <vtkTextActor.h>
#include <vtkTextProperty.h>
#define MPEG
#ifdef MPEG
#include <vtkFFMPEGWriter.h>
#endif
#include <vtkProperty2D.h>
#include <vtkSliderWidget.h>
#include <vtkSliderRepresentation2D.h>
#include <vtkWindowToImageFilter.h>
#include <array>
#include <string>
#include <Grid/Grid.h>
#define USE_FLYING_EDGES
#ifdef USE_FLYING_EDGES
#include <vtkFlyingEdges3D.h>
typedef vtkFlyingEdges3D isosurface;
#else
#include <vtkMarchingCubes.h>
typedef vtkMarchingCubes isosurface;
#endif
int mpeg = 0 ;
int xlate = 0 ;
template <class T> void readFile(T& out, std::string const fname){
#ifdef HAVE_LIME
Grid::emptyUserRecord record;
Grid::ScidacReader RD;
RD.open(fname);
RD.readScidacFieldRecord(out,record);
RD.close();
#endif
}
using namespace Grid;
class FrameUpdater : public vtkCallbackCommand
{
public:
FrameUpdater() {
TimerCount = 0;
xoff = 0;
t = 0;
imageData = nullptr;
grid_data = nullptr;
timerId = 0;
maxCount = -1;
}
static FrameUpdater* New()
{
FrameUpdater* cb = new FrameUpdater;
cb->TimerCount = 0;
return cb;
}
virtual void Execute(vtkObject* caller, unsigned long eventId,void* vtkNotUsed(callData))
{
const int max=256;
char text_string[max];
if (this->TimerCount < this->maxCount) {
if (vtkCommand::TimerEvent == eventId)
{
++this->TimerCount;
// Make a new frame
auto latt_size = grid_data->Grid()->GlobalDimensions();
for(int xx=0;xx<latt_size[0];xx++){
for(int yy=0;yy<latt_size[1];yy++){
for(int zz=0;zz<latt_size[2];zz++){
int x = (xx+xoff)%latt_size[0];
Coordinate site({x,yy,zz,t});
RealD value = real(peekSite(*grid_data,site));
imageData->SetScalarComponentFromDouble(xx,yy,zz,0,value);
}}}
if ( xlate ) {
xoff = (xoff + 1)%latt_size[0];
if ( xoff== 0 ) t = (t+1)%latt_size[3];
} else {
t = (t+1)%latt_size[3];
if ( t== 0 ) xoff = (xoff + 1)%latt_size[0];
}
snprintf(text_string,max,"T=%d",t);
text->SetInput(text_string);
std::cout << this->TimerCount<<"/"<<maxCount<< " xoff "<<xoff<<" t "<<t <<std::endl;
imageData->Modified();
vtkRenderWindowInteractor* iren = dynamic_cast<vtkRenderWindowInteractor*>(caller);
iren->GetRenderWindow()->Render();
}
}
if (this->TimerCount >= this->maxCount) {
vtkRenderWindowInteractor* iren = dynamic_cast<vtkRenderWindowInteractor*>(caller);
if (this->timerId > -1)
{
iren->DestroyTimer(this->timerId);
}
}
}
private:
int TimerCount;
int xoff;
int t;
public:
Grid::LatticeComplexD * grid_data;
vtkImageData* imageData = nullptr;
vtkTextActor* text = nullptr;
vtkFFMPEGWriter *writer = nullptr;
int timerId ;
int maxCount ;
double rms;
isosurface * posExtractor;
isosurface * negExtractor;
};
class SliderCallback : public vtkCommand
{
public:
static SliderCallback* New()
{
return new SliderCallback;
}
virtual void Execute(vtkObject* caller, unsigned long eventId, void* callData)
{
vtkSliderWidget *sliderWidget = vtkSliderWidget::SafeDownCast(caller);
if (sliderWidget)
{
contour = ((vtkSliderRepresentation *)sliderWidget->GetRepresentation())->GetValue();
}
for(int i=0;i<fu_list.size();i++){
fu_list[i]->posExtractor->SetValue(0, SliderCallback::contour*fu_list[i]->rms);
fu_list[i]->negExtractor->SetValue(0, -SliderCallback::contour*fu_list[i]->rms);
fu_list[i]->posExtractor->Modified();
fu_list[i]->negExtractor->Modified();
}
}
public:
static double contour;
std::vector<FrameUpdater *> fu_list;
};
double SliderCallback::contour;
int main(int argc, char* argv[])
{
using namespace Grid;
Grid_init(&argc, &argv);
GridLogLayout();
auto latt_size = GridDefaultLatt();
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
auto mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
std::cout << argc << " command Line arguments "<<std::endl;
for(int c=0;c<argc;c++) {
std::cout << " - "<<argv[c]<<std::endl;
}
std::vector<std::string> file_list;
double default_contour = 1.0;
std::string arg;
#ifdef MPEG
if( GridCmdOptionExists(argv,argv+argc,"--mpeg") ){
mpeg = 1;
}
#endif
if( GridCmdOptionExists(argv,argv+argc,"--xlate") ){
xlate = 1;
}
if( GridCmdOptionExists(argv,argv+argc,"--isosurface") ){
arg=GridCmdOptionPayload(argv,argv+argc,"--isosurface");
GridCmdOptionFloat(arg,default_contour);
}
if( GridCmdOptionExists(argv,argv+argc,"--file1") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--file1");
file_list.push_back(arg);
}
if( GridCmdOptionExists(argv,argv+argc,"--file2") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--file2");
file_list.push_back(arg);
}
if( GridCmdOptionExists(argv,argv+argc,"--file3") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--file3");
file_list.push_back(arg);
}
if( GridCmdOptionExists(argv,argv+argc,"--file4") ){
arg = GridCmdOptionPayload(argv,argv+argc,"--file4");
file_list.push_back(arg);
}
for(int c=0;c<file_list.size();c++) {
std::cout << " file: "<<file_list[c]<<std::endl;
}
// Common things:
vtkNew<vtkNamedColors> colors;
std::array<unsigned char, 4> posColor{{240, 184, 160, 255}}; colors->SetColor("posColor", posColor.data());
std::array<unsigned char, 4> bkg{{51, 77, 102, 255}}; colors->SetColor("BkgColor", bkg.data());
// Create the renderer, the render window, and the interactor. The renderer
// draws into the render window, the interactor enables mouse- and
// keyboard-based interaction with the data within the render window.
//
vtkNew<vtkRenderWindow> renWin;
vtkNew<vtkRenderWindowInteractor> iren;
iren->SetRenderWindow(renWin);
std::vector<LatticeComplexD> data(file_list.size(),&Grid);
FieldMetaData header;
int frameCount;
if ( mpeg ) frameCount = latt_size[3];
else frameCount = latt_size[0] * latt_size[3];
std::vector<FrameUpdater *> fu_list;
for (int f=0;f<file_list.size();f++){
// It is convenient to create an initial view of the data. The FocalPoint
// and Position form a vector direction. Later on (ResetCamera() method)
// this vector is used to position the camera to look at the data in
// this direction.
vtkNew<vtkCamera> aCamera;
aCamera->SetViewUp(0, 0, -1);
aCamera->SetPosition(0, -1000, 0);
aCamera->SetFocalPoint(0, 0, 0);
aCamera->ComputeViewPlaneNormal();
aCamera->Azimuth(30.0);
aCamera->Elevation(30.0);
vtkNew<vtkRenderer> aRenderer;
renWin->AddRenderer(aRenderer);
double vol = data[f].Grid()->gSites();
std::cout << "Reading "<<file_list[f]<<std::endl;
readFile(data[f],file_list[f]);
auto nrm = norm2(data[f]);
auto nrmbar = nrm/vol;
auto rms = sqrt(nrmbar);
double contour = default_contour * rms; // default to 1 x RMS
// The following reader is used to read a series of 2D slices (images)
// that compose the volume. The slice dimensions are set, and the
// pixel spacing. The data Endianness must also be specified. The reader
// uses the FilePrefix in combination with the slice number to construct
// filenames using the format FilePrefix.%d. (In this case the FilePrefix
// is the root name of the file: quarter.)
vtkNew<vtkImageData> imageData;
imageData->SetDimensions(latt_size[0],latt_size[1],latt_size[2]);
imageData->AllocateScalars(VTK_DOUBLE, 1);
for(int xx=0;xx<latt_size[0];xx++){
for(int yy=0;yy<latt_size[1];yy++){
for(int zz=0;zz<latt_size[2];zz++){
Coordinate site({xx,yy,zz,0});
RealD value = real(peekSite(data[f],site));
imageData->SetScalarComponentFromDouble(xx,yy,zz,0,value);
}}}
vtkNew<isosurface> posExtractor;
posExtractor->SetInputData(imageData);
posExtractor->SetValue(0, contour);
vtkNew<vtkStripper> posStripper;
posStripper->SetInputConnection(posExtractor->GetOutputPort());
vtkNew<vtkPolyDataMapper> posMapper;
posMapper->SetInputConnection(posStripper->GetOutputPort());
posMapper->ScalarVisibilityOff();
vtkNew<vtkActor> pos;
pos->SetMapper(posMapper);
pos->GetProperty()->SetDiffuseColor(colors->GetColor3d("posColor").GetData());
pos->GetProperty()->SetSpecular(0.3);
pos->GetProperty()->SetSpecularPower(20);
pos->GetProperty()->SetOpacity(0.5);
// An isosurface, or contour value is set
// The triangle stripper is used to create triangle strips from the
// isosurface; these render much faster on may systems.
vtkNew<isosurface> negExtractor;
negExtractor->SetInputData(imageData);
negExtractor->SetValue(0, -contour);
vtkNew<vtkStripper> negStripper;
negStripper->SetInputConnection(negExtractor->GetOutputPort());
vtkNew<vtkPolyDataMapper> negMapper;
negMapper->SetInputConnection(negStripper->GetOutputPort());
negMapper->ScalarVisibilityOff();
vtkNew<vtkActor> neg;
neg->SetMapper(negMapper);
neg->GetProperty()->SetDiffuseColor(colors->GetColor3d("Ivory").GetData());
// An outline provides context around the data.
vtkNew<vtkOutlineFilter> outlineData;
outlineData->SetInputData(imageData);
vtkNew<vtkPolyDataMapper> mapOutline;
mapOutline->SetInputConnection(outlineData->GetOutputPort());
vtkNew<vtkActor> outline;
outline->SetMapper(mapOutline);
outline->GetProperty()->SetColor(colors->GetColor3d("Black").GetData());
vtkNew<vtkTextActor> Text;
Text->SetInput(file_list[f].c_str());
Text->SetPosition2(0,0);
Text->GetTextProperty()->SetFontSize(48);
Text->GetTextProperty()->SetColor(colors->GetColor3d("Gold").GetData());
vtkNew<vtkTextActor> TextT;
TextT->SetInput("T=0");
TextT->SetPosition(0,.9*1025);
TextT->GetTextProperty()->SetFontSize(48);
TextT->GetTextProperty()->SetColor(colors->GetColor3d("Gold").GetData());
// Actors are added to the renderer. An initial camera view is created.
// The Dolly() method moves the camera towards the FocalPoint,
// thereby enlarging the image.
aRenderer->AddActor(Text);
aRenderer->AddActor(TextT);
aRenderer->AddActor(outline);
aRenderer->AddActor(pos);
aRenderer->AddActor(neg);
// Sign up to receive TimerEvent
vtkNew<FrameUpdater> fu;
fu->imageData = imageData;
fu->grid_data = &data[f];
fu->text = TextT;
fu->maxCount = frameCount;
fu->posExtractor = posExtractor;
fu->negExtractor = negExtractor;
fu->rms = rms;
iren->AddObserver(vtkCommand::TimerEvent, fu);
aRenderer->SetActiveCamera(aCamera);
aRenderer->ResetCamera();
aRenderer->SetBackground(colors->GetColor3d("BkgColor").GetData());
aCamera->Dolly(1.0);
double nf = file_list.size();
std::cout << " Adding renderer " <<f<<" of "<<nf<<std::endl;
aRenderer->SetViewport((1.0/nf)*f, 0.0,(1.0/nf)*(f+1) , 1.0);
// Note that when camera movement occurs (as it does in the Dolly()
// method), the clipping planes often need adjusting. Clipping planes
// consist of two planes: near and far along the view direction. The
// near plane clips out objects in front of the plane; the far plane
// clips out objects behind the plane. This way only what is drawn
// between the planes is actually rendered.
aRenderer->ResetCameraClippingRange();
fu_list.push_back(fu);
}
// Set a background color for the renderer and set the size of the
// render window (expressed in pixels).
// Initialize the event loop and then start it.
renWin->SetSize(1024*file_list.size(), 1024);
renWin->SetWindowName("FieldDensity");
renWin->Render();
iren->Initialize();
if ( mpeg ) {
#ifdef MPEG
vtkWindowToImageFilter *imageFilter = vtkWindowToImageFilter::New();
imageFilter->SetInput( renWin );
imageFilter->SetInputBufferTypeToRGB();
vtkFFMPEGWriter *writer = vtkFFMPEGWriter::New();
writer->SetFileName("movie.avi");
writer->SetRate(1);
writer->SetInputConnection(imageFilter->GetOutputPort());
writer->Start();
for(int i=0;i<fu_list[0]->maxCount;i++){
for(int f=0;f<fu_list.size();f++){
fu_list[f]->Execute(iren,vtkCommand::TimerEvent,nullptr);
}
imageFilter->Modified();
writer->Write();
}
writer->End();
writer->Delete();
#else
assert(-1 && "MPEG support not compiled");
#endif
} else {
// Add control of contour threshold
// Create a slider widget
vtkSmartPointer<vtkSliderRepresentation2D> sliderRep = vtkSmartPointer<vtkSliderRepresentation2D>::New();
sliderRep->SetMinimumValue(0.1);
sliderRep->SetMaximumValue(5.0);
sliderRep->SetValue(1.0);
sliderRep->SetTitleText("Fraction RMS");
// Set color properties:
// Change the color of the knob that slides
// sliderRep->GetSliderProperty()->SetColor(colors->GetColor3d("Green").GetData());
sliderRep->GetTitleProperty()->SetColor(colors->GetColor3d("AliceBlue").GetData());
sliderRep->GetLabelProperty()->SetColor(colors->GetColor3d("AliceBlue").GetData());
sliderRep->GetSelectedProperty()->SetColor(colors->GetColor3d("DeepPink").GetData());
// Change the color of the bar
sliderRep->GetTubeProperty()->SetColor(colors->GetColor3d("MistyRose").GetData());
sliderRep->GetCapProperty()->SetColor(colors->GetColor3d("Yellow").GetData());
sliderRep->SetSliderLength(0.05);
sliderRep->SetSliderWidth(0.025);
sliderRep->SetEndCapLength(0.02);
double nf = file_list.size();
sliderRep->GetPoint1Coordinate()->SetCoordinateSystemToNormalizedDisplay();
sliderRep->GetPoint1Coordinate()->SetValue(0.1, 0.1);
sliderRep->GetPoint2Coordinate()->SetCoordinateSystemToNormalizedDisplay();
sliderRep->GetPoint2Coordinate()->SetValue(0.9/nf, 0.1);
vtkSmartPointer<vtkSliderWidget> sliderWidget = vtkSmartPointer<vtkSliderWidget>::New();
sliderWidget->SetInteractor(iren);
sliderWidget->SetRepresentation(sliderRep);
sliderWidget->SetAnimationModeToAnimate();
sliderWidget->EnabledOn();
// Create the slider callback
vtkSmartPointer<SliderCallback> slidercallback = vtkSmartPointer<SliderCallback>::New();
slidercallback->fu_list = fu_list;
sliderWidget->AddObserver(vtkCommand::InteractionEvent, slidercallback);
int timerId = iren->CreateRepeatingTimer(300);
std::cout << "timerId: " << timerId << std::endl;
// Start the interaction and timer
iren->Start();
}
Grid_finalize();
return EXIT_SUCCESS;
}

87
visualisation/README Normal file
View File

@ -0,0 +1,87 @@
========================================
Visualisation of Grid / SciDAC format density fields using VTK (visualisation toolkit). Peter Boyle, 2025.
========================================
Uses:
https://vtk.org
Files are, for example, those produced by
Grid/HMC/ComputeWilsonFlow.cc
and
Grid/HMC/site_plaquette.cc
========================================
Prerequisites:
========================================
1) Install ffmpeg-7.0.2 (developer install, includes headers and libraries).
MacOS note: must install ffmpeg from source -- homebrew only installs binaries.
https://ffmpeg.org/download.html#releases
Note: the latest ffmpeg (7.1.1) broke software compatibility with VTK.
2) Build and install VTK-9.4.2, with FFMEG support enabled.
This is particularly involved on MacOS, so documented here.
cd VTK-9.4.2
mkdir build
cd build
ccmake ..
Using cmake editor, set:
FFMPEG_DIR /usr/local
toggle "advanced mode"
CMAKE_EXE_LINKER_FLAGS to:
-framework Foundation -framework AudioToolbox -framework CoreAudio -liconv -lm -framework AVFoundation -framework CoreVideo -framework CoreMedia -framework CoreGraphics -framework AudioToolbox -framework OpenGL -framework OpenGL -framework VideoToolbox -framework CoreImage -framework AppKit -framework CoreFoundation -framework CoreServices -lz -lbz2 -Wl,-framework,CoreFoundation -Wl,-framework,Security -L/usr/local/lib -lavdevice -lavfilter -lavformat -lavcodec -lswresample -lswscale -lavutil
VTK really should make it easier to pick up the flags required for FFMPEG linkage, especially as they are very quirky on MacOS.
========================================
Grid:
========================================
3) Build and install a version of Grid
4) Ensure "grid-config" is in your path.
5) cd Grid/visualisation/
libs=`grid-config --libs`
ldflags=`grid-config --ldflags`
cxxflags=`grid-config --cxxflags`
cxx=`grid-config --cxx`
mkdir build
cd build
LDFLAGS="$ldflags $libs " cmake .. -DCMAKE_CXX_COMPILER=$cxx -DCMAKE_CXX_FLAGS=$cxxflags
make
6) Invoke as:
FieldDensityAnimate --isosurface <float-from-0-to-5> --grid X.Y.Z.T --file1 SciDacDensityFile1 [--xlate] [--mpeg]
FieldDensityAnimate --isosurface <float-from-0-to-5> --grid X.Y.Z.T --file1 SciDacDensityFile1 --file2 SciDacDensityFile2 [--xlate] [--mpeg]
==================================
Extensions
==================================
7) Direct calling from Grid ?:
Not yet implemented, but could develop sufficient interface to write a Lattice scalar field into MPEG direct from running code.
8) Example python code: FieldDensity.py . This is not interfaced to Grid.

Binary file not shown.

View File

@ -0,0 +1,9 @@
libs=`grid-config --libs`
ldflags=`grid-config --ldflags`
cxxflags=`grid-config --cxxflags`
cxx=`grid-config --cxx`
mkdir build
cd build
LDFLAGS="$ldflags $libs " cmake .. -DCMAKE_CXX_COMPILER=$cxx -DCMAKE_CXX_FLAGS=$cxxflags