mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-14 05:07:05 +01:00
merged new hadrons interface
This commit is contained in:
@ -1,28 +1,18 @@
|
||||
extra_sources=
|
||||
extra_headers=
|
||||
if BUILD_COMMS_MPI
|
||||
extra_sources+=communicator/Communicator_mpi.cc
|
||||
extra_sources+=communicator/Communicator_base.cc
|
||||
endif
|
||||
|
||||
if BUILD_COMMS_MPI3
|
||||
extra_sources+=communicator/Communicator_mpi3.cc
|
||||
extra_sources+=communicator/Communicator_base.cc
|
||||
endif
|
||||
|
||||
if BUILD_COMMS_MPIT
|
||||
extra_sources+=communicator/Communicator_mpit.cc
|
||||
extra_sources+=communicator/Communicator_base.cc
|
||||
endif
|
||||
|
||||
if BUILD_COMMS_SHMEM
|
||||
extra_sources+=communicator/Communicator_shmem.cc
|
||||
extra_sources+=communicator/Communicator_base.cc
|
||||
extra_sources+=communicator/SharedMemoryMPI.cc
|
||||
extra_sources+=communicator/SharedMemory.cc
|
||||
endif
|
||||
|
||||
if BUILD_COMMS_NONE
|
||||
extra_sources+=communicator/Communicator_none.cc
|
||||
extra_sources+=communicator/Communicator_base.cc
|
||||
extra_sources+=communicator/SharedMemoryNone.cc
|
||||
extra_sources+=communicator/SharedMemory.cc
|
||||
endif
|
||||
|
||||
if BUILD_HDF5
|
||||
|
@ -103,29 +103,32 @@ namespace Grid {
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid)
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
|
||||
// CheckOrthogonal();
|
||||
}
|
||||
void CheckOrthogonal(void){
|
||||
CoarseVector iProj(CoarseGrid);
|
||||
CoarseVector eProj(CoarseGrid);
|
||||
Lattice<CComplex> pokey(CoarseGrid);
|
||||
|
||||
|
||||
for(int i=0;i<nbasis;i++){
|
||||
blockProject(iProj,subspace[i],subspace);
|
||||
|
||||
eProj=zero;
|
||||
for(int ss=0;ss<CoarseGrid->oSites();ss++){
|
||||
parallel_for(int ss=0;ss<CoarseGrid->oSites();ss++){
|
||||
eProj._odata[ss](i)=CComplex(1.0);
|
||||
}
|
||||
eProj=eProj - iProj;
|
||||
@ -137,6 +140,7 @@ namespace Grid {
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.checkerboard = subspace[0].checkerboard;
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void CreateSubspaceRandom(GridParallelRNG &RNG){
|
||||
@ -147,6 +151,7 @@ namespace Grid {
|
||||
Orthogonalise();
|
||||
}
|
||||
|
||||
/*
|
||||
virtual void CreateSubspaceLanczos(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
||||
{
|
||||
// Run a Lanczos with sloppy convergence
|
||||
@ -195,7 +200,7 @@ namespace Grid {
|
||||
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||
|
||||
RealD scale;
|
||||
|
@ -162,15 +162,10 @@ namespace Grid {
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
ComplexD dot;
|
||||
|
||||
_Mat.M(in,out);
|
||||
|
||||
dot= innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
|
||||
dot = innerProduct(out,out);
|
||||
n2=real(dot);
|
||||
ComplexD dot= innerProduct(in,out); n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
@ -192,10 +187,10 @@ namespace Grid {
|
||||
ni=Mpc(in,tmp);
|
||||
no=MpcDag(tmp,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
MpcDagMpc(in,out,n1,n2);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
@ -212,7 +207,6 @@ namespace Grid {
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
@ -270,7 +264,6 @@ namespace Grid {
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
@ -299,6 +292,59 @@ namespace Grid {
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
|
||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
|
||||
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Staggered use
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
GridLogIterative.TimingMode(1);
|
||||
std::cout << GridLogIterative << " HermOpAndNorm "<<std::endl;
|
||||
n2 = Mpc(in,out);
|
||||
std::cout << GridLogIterative << " HermOpAndNorm.Mpc "<<std::endl;
|
||||
ComplexD dot= innerProduct(in,out);
|
||||
std::cout << GridLogIterative << " HermOpAndNorm.innerProduct "<<std::endl;
|
||||
n1 = real(dot);
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
std::cout << GridLogIterative << " HermOp "<<std::endl;
|
||||
Mpc(in,out);
|
||||
}
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in._grid);
|
||||
Field tmp2(in._grid);
|
||||
|
||||
std::cout << GridLogIterative << " HermOp.Mpc "<<std::endl;
|
||||
_Mat.Mooee(in,out);
|
||||
_Mat.Mooee(out,tmp);
|
||||
std::cout << GridLogIterative << " HermOp.MooeeMooee "<<std::endl;
|
||||
|
||||
_Mat.Meooe(in,out);
|
||||
_Mat.Meooe(out,tmp2);
|
||||
std::cout << GridLogIterative << " HermOp.MeooeMeooe "<<std::endl;
|
||||
|
||||
RealD nn=axpy_norm(out,-1.0,tmp2,tmp);
|
||||
std::cout << GridLogIterative << " HermOp.axpy_norm "<<std::endl;
|
||||
return nn;
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
return Mpc(in,out);
|
||||
}
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
assert(0);// Never need with staggered
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
@ -314,6 +360,14 @@ namespace Grid {
|
||||
virtual void operator() (const Field &in, Field &out) = 0;
|
||||
};
|
||||
|
||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
|
||||
public:
|
||||
void operator() (const Field &in, Field &out){
|
||||
out = in;
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for Multishift solvers for operators
|
||||
/////////////////////////////////////////////////////////////
|
||||
@ -336,6 +390,64 @@ namespace Grid {
|
||||
};
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hermitian operator Linear function and operator function
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class HermOpOperatorFunction : public OperatorFunction<Field> {
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
Linop.HermOp(in,out);
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class PlainHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
|
||||
{}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_Linop.HermOp(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class FunctionHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
FunctionHermOp(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
|
||||
: _poly(poly), _Linop(linop) {};
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
_poly(_Linop,in,out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class Polynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
public:
|
||||
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
Field AtoN(in._grid);
|
||||
Field Mtmp(in._grid);
|
||||
AtoN = in;
|
||||
out = AtoN*Coeffs[0];
|
||||
for(int n=1;n<Coeffs.size();n++){
|
||||
Mtmp = AtoN;
|
||||
Linop.HermOp(Mtmp,AtoN);
|
||||
out=out+AtoN*Coeffs[n];
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
@ -8,6 +8,7 @@
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -33,41 +34,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Simple general polynomial with user supplied coefficients
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class HermOpOperatorFunction : public OperatorFunction<Field> {
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
Linop.HermOp(in,out);
|
||||
};
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class Polynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
public:
|
||||
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
Field AtoN(in._grid);
|
||||
Field Mtmp(in._grid);
|
||||
AtoN = in;
|
||||
out = AtoN*Coeffs[0];
|
||||
// std::cout <<"Poly in " <<norm2(in)<<" size "<< Coeffs.size()<<std::endl;
|
||||
// std::cout <<"Coeffs[0]= "<<Coeffs[0]<< " 0 " <<norm2(out)<<std::endl;
|
||||
for(int n=1;n<Coeffs.size();n++){
|
||||
Mtmp = AtoN;
|
||||
Linop.HermOp(Mtmp,AtoN);
|
||||
out=out+AtoN*Coeffs[n];
|
||||
// std::cout <<"Coeffs "<<n<<"= "<< Coeffs[n]<< " 0 " <<std::endl;
|
||||
// std::cout << n<<" " <<norm2(out)<<std::endl;
|
||||
}
|
||||
};
|
||||
};
|
||||
struct ChebyParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyParams,
|
||||
RealD, alpha,
|
||||
RealD, beta,
|
||||
int, Npoly);
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Generic Chebyshev approximations
|
||||
@ -82,8 +54,10 @@ namespace Grid {
|
||||
|
||||
public:
|
||||
void csv(std::ostream &out){
|
||||
RealD diff = hi-lo;
|
||||
for (RealD x=lo-0.2*diff; x<hi+0.2*diff; x+=(hi-lo)/1000) {
|
||||
RealD diff = hi-lo;
|
||||
RealD delta = (hi-lo)*1.0e-9;
|
||||
for (RealD x=lo; x<hi; x+=delta) {
|
||||
delta*=1.1;
|
||||
RealD f = approx(x);
|
||||
out<< x<<" "<<f<<std::endl;
|
||||
}
|
||||
@ -99,6 +73,7 @@ namespace Grid {
|
||||
};
|
||||
|
||||
Chebyshev(){};
|
||||
Chebyshev(ChebyParams p){ Init(p.alpha,p.beta,p.Npoly);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD) ) {Init(_lo,_hi,_order,func);};
|
||||
Chebyshev(RealD _lo,RealD _hi,int _order) {Init(_lo,_hi,_order);};
|
||||
|
||||
@ -193,6 +168,47 @@ namespace Grid {
|
||||
return sum;
|
||||
};
|
||||
|
||||
RealD approxD(RealD x)
|
||||
{
|
||||
RealD Un;
|
||||
RealD Unm;
|
||||
RealD Unp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD U0=1;
|
||||
RealD U1=2*y;
|
||||
|
||||
RealD sum;
|
||||
sum = Coeffs[1]*U0;
|
||||
sum+= Coeffs[2]*U1*2.0;
|
||||
|
||||
Un =U1;
|
||||
Unm=U0;
|
||||
for(int i=2;i<order-1;i++){
|
||||
Unp=2*y*Un-Unm;
|
||||
Unm=Un;
|
||||
Un =Unp;
|
||||
sum+= Un*Coeffs[i+1]*(i+1.0);
|
||||
}
|
||||
return sum/(0.5*(hi-lo));
|
||||
};
|
||||
|
||||
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
|
||||
RealD x = x0;
|
||||
RealD eps;
|
||||
|
||||
int i;
|
||||
for (i=0;i<maxiter;i++) {
|
||||
eps = approx(x) - z;
|
||||
if (fabs(eps / z) < resid)
|
||||
return x;
|
||||
x = x - eps / approxD(x);
|
||||
}
|
||||
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
|
@ -78,12 +78,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
cp = a;
|
||||
ssq = norm2(src);
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mp " << d << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mmp " << b << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: cp,r " << cp << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: p " << a << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mp " << d << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mmp " << b << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: cp,r " << cp << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: p " << a << std::endl;
|
||||
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
@ -92,7 +92,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
std::cout << GridLogIterative << std::setprecision(8)
|
||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
|
@ -7,8 +7,9 @@
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung
|
||||
Author: Guido Cossu
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -27,125 +28,288 @@ Author: Guido Cossu
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_IRL_H
|
||||
#define GRID_IRL_H
|
||||
#ifndef GRID_BIRL_H
|
||||
#define GRID_BIRL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
//#include <zlib.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
namespace Grid {
|
||||
namespace Grid {
|
||||
|
||||
enum IRLdiagonalisation {
|
||||
IRLdiagonaliseWithDSTEGR,
|
||||
IRLdiagonaliseWithQR,
|
||||
IRLdiagonaliseWithEigen
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Helper class for sorting the evalues AND evectors by Field
|
||||
// Use pointer swizzle on vectors
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////
|
||||
// Move following 100 LOC to lattice/Lattice_basis.h
|
||||
////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class SortEigen {
|
||||
private:
|
||||
static bool less_lmd(RealD left,RealD right){
|
||||
return left > right;
|
||||
}
|
||||
static bool less_pair(std::pair<RealD,Field const*>& left,
|
||||
std::pair<RealD,Field const*>& right){
|
||||
return left.first > (right.first);
|
||||
}
|
||||
|
||||
public:
|
||||
void push(std::vector<RealD>& lmd,std::vector<Field>& evec,int N) {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// PAB: FIXME: VERY VERY VERY wasteful: takes a copy of the entire vector set.
|
||||
// : The vector reorder should be done by pointer swizzle somehow
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
std::vector<Field> cpy(lmd.size(),evec[0]._grid);
|
||||
for(int i=0;i<lmd.size();i++) cpy[i] = evec[i];
|
||||
|
||||
std::vector<std::pair<RealD, Field const*> > emod(lmd.size());
|
||||
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
|
||||
{
|
||||
for(int j=0; j<k; ++j){
|
||||
auto ip = innerProduct(basis[j],w);
|
||||
w = w - ip*basis[j];
|
||||
}
|
||||
}
|
||||
|
||||
for(int i=0;i<lmd.size();++i) emod[i] = std::pair<RealD,Field const*>(lmd[i],&cpy[i]);
|
||||
|
||||
partial_sort(emod.begin(),emod.begin()+N,emod.end(),less_pair);
|
||||
|
||||
typename std::vector<std::pair<RealD, Field const*> >::iterator it = emod.begin();
|
||||
for(int i=0;i<N;++i){
|
||||
lmd[i]=it->first;
|
||||
evec[i]=*(it->second);
|
||||
++it;
|
||||
template<class Field>
|
||||
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0]._grid;
|
||||
|
||||
parallel_region
|
||||
{
|
||||
std::vector < vobj > B(Nm); // Thread private
|
||||
|
||||
parallel_for_internal(int ss=0;ss < grid->oSites();ss++){
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt(j,k) * basis[k]._odata[ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
basis[j]._odata[ss] = B[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
void push(std::vector<RealD>& lmd,int N) {
|
||||
std::partial_sort(lmd.begin(),lmd.begin()+N,lmd.end(),less_lmd);
|
||||
}
|
||||
|
||||
// Extract a single rotated vector
|
||||
template<class Field>
|
||||
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0]._grid;
|
||||
|
||||
result.checkerboard = basis[0].checkerboard;
|
||||
parallel_for(int ss=0;ss < grid->oSites();ss++){
|
||||
vobj B = zero;
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B +=Qt(j,k) * basis[k]._odata[ss];
|
||||
}
|
||||
result._odata[ss] = B;
|
||||
}
|
||||
bool saturated(RealD lmd, RealD thrs) {
|
||||
return fabs(lmd) > fabs(thrs);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
|
||||
{
|
||||
int vlen = idx.size();
|
||||
|
||||
assert(vlen>=1);
|
||||
assert(vlen<=sort_vals.size());
|
||||
assert(vlen<=_v.size());
|
||||
|
||||
for (size_t i=0;i<vlen;i++) {
|
||||
|
||||
if (idx[i] != i) {
|
||||
|
||||
//////////////////////////////////////
|
||||
// idx[i] is a table of desired sources giving a permutation.
|
||||
// Swap v[i] with v[idx[i]].
|
||||
// Find j>i for which _vnew[j] = _vold[i],
|
||||
// track the move idx[j] => idx[i]
|
||||
// track the move idx[i] => i
|
||||
//////////////////////////////////////
|
||||
size_t j;
|
||||
for (j=i;j<idx.size();j++)
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
|
||||
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
|
||||
|
||||
std::swap(_v[i]._odata,_v[idx[i]]._odata); // should use vector move constructor, no data copy
|
||||
std::swap(sort_vals[i],sort_vals[idx[i]]);
|
||||
|
||||
idx[j] = idx[i];
|
||||
idx[i] = i;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
|
||||
{
|
||||
std::vector<int> idx(sort_vals.size());
|
||||
std::iota(idx.begin(), idx.end(), 0);
|
||||
|
||||
// sort indexes based on comparing values in v
|
||||
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
|
||||
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
|
||||
});
|
||||
return idx;
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
|
||||
{
|
||||
std::vector<int> idx = basisSortGetIndex(sort_vals);
|
||||
if (reverse)
|
||||
std::reverse(idx.begin(), idx.end());
|
||||
|
||||
basisReorderInPlace(_v,sort_vals,idx);
|
||||
}
|
||||
|
||||
// PAB: faster to compute the inner products first then fuse loops.
|
||||
// If performance critical can improve.
|
||||
template<class Field>
|
||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = zero;
|
||||
assert(_v.size()==eval.size());
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class ImplicitlyRestartedLanczosTester
|
||||
{
|
||||
public:
|
||||
virtual int TestConvergence(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
|
||||
virtual int ReconstructEval(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
|
||||
};
|
||||
|
||||
enum IRLdiagonalisation {
|
||||
IRLdiagonaliseWithDSTEGR,
|
||||
IRLdiagonaliseWithQR,
|
||||
IRLdiagonaliseWithEigen
|
||||
};
|
||||
|
||||
template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public ImplicitlyRestartedLanczosTester<Field>
|
||||
{
|
||||
public:
|
||||
LinearFunction<Field> &_HermOp;
|
||||
ImplicitlyRestartedLanczosHermOpTester(LinearFunction<Field> &HermOp) : _HermOp(HermOp) { };
|
||||
int ReconstructEval(int j,RealD resid,Field &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
return TestConvergence(j,resid,B,eval,evalMaxApprox);
|
||||
}
|
||||
int TestConvergence(int j,RealD eresid,Field &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
Field v(B);
|
||||
RealD eval_poly = eval;
|
||||
// Apply operator
|
||||
_HermOp(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
eval = vnum/vden;
|
||||
v -= eval*B;
|
||||
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
|
||||
return conv;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class ImplicitlyRestartedLanczos {
|
||||
|
||||
private:
|
||||
|
||||
int MaxIter; // Max iterations
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
int Nm; // Nm -- total number of vectors
|
||||
RealD eresid;
|
||||
private:
|
||||
const RealD small = 1.0e-8;
|
||||
int MaxIter;
|
||||
int MinRestart; // Minimum number of restarts; only check for convergence after
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
// int Np; // Np -- Number of spare vecs in krylov space // == Nm - Nk
|
||||
int Nm; // Nm -- total number of vectors
|
||||
IRLdiagonalisation diagonalisation;
|
||||
////////////////////////////////////
|
||||
int orth_period;
|
||||
|
||||
RealD OrthoTime;
|
||||
RealD eresid, betastp;
|
||||
////////////////////////////////
|
||||
// Embedded objects
|
||||
////////////////////////////////////
|
||||
SortEigen<Field> _sort;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
OperatorFunction<Field> &_poly;
|
||||
|
||||
////////////////////////////////
|
||||
LinearFunction<Field> &_PolyOp;
|
||||
LinearFunction<Field> &_HermOp;
|
||||
ImplicitlyRestartedLanczosTester<Field> &_Tester;
|
||||
// Default tester provided (we need a ref to something in default case)
|
||||
ImplicitlyRestartedLanczosHermOpTester<Field> SimpleTester;
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
|
||||
public:
|
||||
ImplicitlyRestartedLanczos(LinearOperatorBase<Field> &Linop, // op
|
||||
OperatorFunction<Field> & poly, // polynomial
|
||||
int _Nstop, // really sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // total vecs
|
||||
RealD _eresid, // resid in lmd deficit
|
||||
int _MaxIter, // Max iterations
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen ) :
|
||||
_Linop(Linop), _poly(poly),
|
||||
Nstop(_Nstop), Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), MaxIter(_MaxIter),
|
||||
diagonalisation(_diagonalisation)
|
||||
{ };
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// PAB:
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// Too many options & knobs.
|
||||
// Eliminate:
|
||||
// orth_period
|
||||
// betastp
|
||||
// MinRestart
|
||||
//
|
||||
// Do we really need orth_period
|
||||
// What is the theoretical basis & guarantees of betastp ?
|
||||
// Nstop=Nk viable?
|
||||
// MinRestart avoidable with new convergence test?
|
||||
// Could cut to PolyOp, HermOp, Tester, Nk, Nm, resid, maxiter (+diagonalisation)
|
||||
// HermOp could be eliminated if we dropped the Power method for max eval.
|
||||
// -- also: The eval, eval2, eval2_copy stuff is still unnecessarily unclear
|
||||
//////////////////////////////////////////////////////////////////
|
||||
ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
|
||||
LinearFunction<Field> & HermOp,
|
||||
ImplicitlyRestartedLanczosTester<Field> & Tester,
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
int _MaxIter, // Max iterations
|
||||
RealD _betastp=0.0, // if beta(k) < betastp: converged
|
||||
int _MinRestart=1, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(Tester),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), betastp(_betastp),
|
||||
MaxIter(_MaxIter) , MinRestart(_MinRestart),
|
||||
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
|
||||
|
||||
ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
|
||||
LinearFunction<Field> & HermOp,
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
int _MaxIter, // Max iterations
|
||||
RealD _betastp=0.0, // if beta(k) < betastp: converged
|
||||
int _MinRestart=1, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(SimpleTester),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), betastp(_betastp),
|
||||
MaxIter(_MaxIter) , MinRestart(_MinRestart),
|
||||
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
static RealD normalise(Field& v)
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec,int k)
|
||||
{
|
||||
typedef typename Field::scalar_type MyComplex;
|
||||
MyComplex ip;
|
||||
|
||||
for(int j=0; j<k; ++j){
|
||||
ip = innerProduct(evec[j],w);
|
||||
w = w - ip * evec[j];
|
||||
}
|
||||
OrthoTime-=usecond()/1e6;
|
||||
basisOrthogonalize(evec,w,k);
|
||||
normalise(w);
|
||||
OrthoTime+=usecond()/1e6;
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
@ -165,184 +329,238 @@ repeat
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv)
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
|
||||
{
|
||||
GridBase *grid = src._grid;
|
||||
assert(grid == evec[0]._grid);
|
||||
|
||||
GridBase *grid = evec[0]._grid;
|
||||
assert(grid == src._grid);
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
|
||||
std::cout << GridLogMessage <<" -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout << GridLogMessage <<" -- size of evec = " << evec.size() << std::endl;
|
||||
GridLogIRL.TimingMode(1);
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout << GridLogIRL <<" -- size of evec = " << evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is DSTEGR "<<std::endl;
|
||||
std::cout << GridLogIRL << "Diagonalisation is DSTEGR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is QR "<<std::endl;
|
||||
std::cout << GridLogIRL << "Diagonalisation is QR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
std::cout << GridLogMessage << "Diagonalisation is Eigen "<<std::endl;
|
||||
std::cout << GridLogIRL << "Diagonalisation is Eigen "<<std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
|
||||
assert(Nm <= evec.size() && Nm <= eval.size());
|
||||
|
||||
assert(Nm == evec.size() && Nm == eval.size());
|
||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||
RealD evalMaxApprox = 0.0;
|
||||
{
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_IRL_MEVAPP_ = 50;
|
||||
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
|
||||
normalise(src_n);
|
||||
_HermOp(src_n,tmp);
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
|
||||
i=_MAX_ITER_IRL_MEVAPP_;
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
src_n = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
std::vector<RealD> eval2(Nm);
|
||||
std::vector<RealD> eval2_copy(Nm);
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
|
||||
std::vector<int> Iconv(Nm);
|
||||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||||
|
||||
Field f(grid);
|
||||
Field v(grid);
|
||||
|
||||
int k1 = 1;
|
||||
int k2 = Nk;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
// Set initial vector
|
||||
evec[0] = src;
|
||||
std::cout << GridLogMessage <<"norm2(src)= " << norm2(src)<<std::endl;
|
||||
|
||||
normalise(evec[0]);
|
||||
std::cout << GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0]) <<std::endl;
|
||||
|
||||
|
||||
// Initial Nk steps
|
||||
OrthoTime=0.;
|
||||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
|
||||
std::cout<<GridLogIRL <<"Initial "<< Nk <<"steps done "<<std::endl;
|
||||
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// Restarting loop begins
|
||||
//////////////////////////////////
|
||||
int iter;
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
OrthoTime=0.;
|
||||
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
|
||||
|
||||
std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
|
||||
f *= lme[Nm-1];
|
||||
|
||||
|
||||
std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
|
||||
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// getting eigenvalues
|
||||
//////////////////////////////////
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k+k1-1];
|
||||
lme2[k] = lme[k+k1-1];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// sorting
|
||||
_sort.push(eval2,Nm);
|
||||
|
||||
//////////////////////////////////
|
||||
eval2_copy = eval2;
|
||||
std::partial_sort(eval2.begin(),eval2.begin()+Nm,eval2.end(),std::greater<RealD>());
|
||||
std::cout<<GridLogIRL <<" evals sorted "<<std::endl;
|
||||
const int chunk=8;
|
||||
for(int io=0; io<k2;io+=chunk){
|
||||
std::cout<<GridLogIRL << "eval "<< std::setw(3) << io ;
|
||||
for(int ii=0;ii<chunk;ii++){
|
||||
if ( (io+ii)<k2 )
|
||||
std::cout<< " "<< std::setw(12)<< eval2[io+ii];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Implicitly shifted QR transformations
|
||||
//////////////////////////////////
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
// Eigen replacement for qr_decomp ???
|
||||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
}
|
||||
|
||||
for(int i=0; i<(Nk+1); ++i) B[i] = 0.0;
|
||||
|
||||
for(int j=k1-1; j<k2+1; ++j){
|
||||
for(int k=0; k<Nm; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
for(int j=k1-1; j<k2+1; ++j) evec[j] = B[j];
|
||||
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
|
||||
|
||||
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
|
||||
|
||||
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
|
||||
std::cout<<GridLogIRL <<"basisRotated by Qt"<<std::endl;
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Compressed vector f and beta(k2)
|
||||
////////////////////////////////////////////////////
|
||||
f *= Qt(k2-1,Nm-1);
|
||||
f += lme[k2-1] * evec[k2];
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<< GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[k2] = betar * f;
|
||||
lme[k2-1] = beta_k;
|
||||
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Convergence test
|
||||
////////////////////////////////////////////////////
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k];
|
||||
lme2[k] = lme[k];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||||
|
||||
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
||||
|
||||
for(int j = 0; j<Nk; ++j){
|
||||
for(int k = 0; k<Nk; ++k){
|
||||
B[j].checkerboard = evec[k].checkerboard;
|
||||
B[j] += Qt(j,k) * evec[k];
|
||||
}
|
||||
}
|
||||
|
||||
std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
|
||||
|
||||
Nconv = 0;
|
||||
for(int i=0; i<Nk; ++i){
|
||||
|
||||
_Linop.HermOp(B[i],v);
|
||||
|
||||
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
||||
RealD vden = norm2(B[i]);
|
||||
eval2[i] = vnum/vden;
|
||||
v -= eval2[i]*B[i];
|
||||
RealD vv = norm2(v);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout << GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||||
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
||||
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
if((vv<eresid*eresid) && (i == Nconv) ){
|
||||
Iconv[Nconv] = i;
|
||||
++Nconv;
|
||||
}
|
||||
|
||||
} // i-loop end
|
||||
|
||||
std::cout<< GridLogMessage <<" #modes converged: "<<Nconv<<std::endl;
|
||||
if (iter >= MinRestart) {
|
||||
|
||||
if( Nconv>=Nstop ){
|
||||
goto converged;
|
||||
}
|
||||
} // end of iter loop
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout<< GridLogError <<" ImplicitlyRestartedLanczos::calc() NOT converged.";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
|
||||
|
||||
Field B(grid); B.checkerboard = evec[0].checkerboard;
|
||||
|
||||
// power of two search pattern; not every evalue in eval2 is assessed.
|
||||
for(int jj = 1; jj<=Nstop; jj*=2){
|
||||
int j = Nstop-jj;
|
||||
RealD e = eval2_copy[j]; // Discard the evalue
|
||||
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
|
||||
if( _Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) {
|
||||
if ( j > Nconv ) {
|
||||
Nconv=j+1;
|
||||
jj=Nstop; // Terminate the scan
|
||||
}
|
||||
}
|
||||
}
|
||||
// Do evec[0] for good measure
|
||||
{
|
||||
int j=0;
|
||||
RealD e = eval2_copy[0];
|
||||
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
|
||||
_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox);
|
||||
}
|
||||
// test if we converged, if so, terminate
|
||||
std::cout<<GridLogIRL<<" #modes converged: >= "<<Nconv<<"/"<<Nstop<<std::endl;
|
||||
// if( Nconv>=Nstop || beta_k < betastp){
|
||||
if( Nconv>=Nstop){
|
||||
goto converged;
|
||||
}
|
||||
|
||||
} else {
|
||||
std::cout << GridLogIRL << "iter < MinRestart: do not yet test for convergence\n";
|
||||
} // end of iter loop
|
||||
}
|
||||
|
||||
std::cout<<GridLogError<<"\n NOT converged.\n";
|
||||
abort();
|
||||
|
||||
converged:
|
||||
// Sorting
|
||||
eval.resize(Nconv);
|
||||
evec.resize(Nconv,grid);
|
||||
for(int i=0; i<Nconv; ++i){
|
||||
eval[i] = eval2[Iconv[i]];
|
||||
evec[i] = B[Iconv[i]];
|
||||
{
|
||||
Field B(grid); B.checkerboard = evec[0].checkerboard;
|
||||
basisRotate(evec,Qt,0,Nk,0,Nk,Nm);
|
||||
std::cout << GridLogIRL << " Rotated basis"<<std::endl;
|
||||
Nconv=0;
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Full final convergence test; unconditionally applied
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
for(int j = 0; j<=Nk; j++){
|
||||
B=evec[j];
|
||||
if( _Tester.ReconstructEval(j,eresid,B,eval2[j],evalMaxApprox) ) {
|
||||
Nconv++;
|
||||
}
|
||||
}
|
||||
|
||||
if ( Nconv < Nstop )
|
||||
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
|
||||
|
||||
eval=eval2;
|
||||
|
||||
//Keep only converged
|
||||
eval.resize(Nconv);// Nstop?
|
||||
evec.resize(Nconv,grid);// Nstop?
|
||||
basisSortInPlace(evec,eval,reverse);
|
||||
|
||||
}
|
||||
_sort.push(eval,evec,Nconv);
|
||||
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogMessage << " -- Iterations = "<< iter << "\n";
|
||||
std::cout << GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout << GridLogMessage << " -- Nconv = "<< Nconv << "\n";
|
||||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||||
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << " -- Iterations = "<< iter << "\n";
|
||||
std::cout << GridLogIRL << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout << GridLogIRL << " -- Nconv = "<< Nconv << "\n";
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
}
|
||||
|
||||
private:
|
||||
private:
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
@ -360,28 +578,38 @@ private:
|
||||
{
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
_poly(_Linop,evec[k],w); // 3. wk:=Avk−βkv_{k−1}
|
||||
|
||||
|
||||
GridStopWatch gsw_op,gsw_o;
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
ComplexD zalph = innerProduct(evec[k],w); // 4. αk:=(wk,vk)
|
||||
|
||||
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
|
||||
w = w - alph * evec[k];// 5. wk:=wk−αkvk
|
||||
|
||||
|
||||
w = w - alph * evec_k;// 5. wk:=wk−αkvk
|
||||
|
||||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
|
||||
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
if ( k > 0 ) orthogonalize(w,evec,k); // orthonormalise
|
||||
if ( k < Nm-1) evec[k+1] = w;
|
||||
|
||||
if ( beta < tiny ) std::cout << GridLogMessage << " beta is tiny "<<beta<<std::endl;
|
||||
|
||||
if (k>0 && k % orth_period == 0) {
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
std::cout<<GridLogIRL << "Orthogonalised " <<std::endl;
|
||||
}
|
||||
|
||||
if(k < Nm-1) evec[k+1] = w;
|
||||
|
||||
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
if ( beta < tiny )
|
||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt, // Nm x Nm
|
||||
@ -404,11 +632,11 @@ private:
|
||||
}
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// File could end here if settle on Eigen ???
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void qr_decomp(std::vector<RealD>& lmd, // Nm
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// File could end here if settle on Eigen ??? !!!
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
void QR_decomp(std::vector<RealD>& lmd, // Nm
|
||||
std::vector<RealD>& lme, // Nm
|
||||
int Nk, int Nm, // Nk, Nm
|
||||
Eigen::MatrixXd& Qt, // Nm x Nm matrix
|
||||
@ -575,51 +803,50 @@ void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
#endif
|
||||
}
|
||||
|
||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
int Niter = 100*Nm;
|
||||
int kmin = 1;
|
||||
int kmax = Nk;
|
||||
|
||||
// (this should be more sophisticated)
|
||||
for(int iter=0; iter<Niter; ++iter){
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
qr_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
Niter = iter;
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
int QRiter = 100*Nm;
|
||||
int kmin = 1;
|
||||
int kmax = Nk;
|
||||
|
||||
// (this should be more sophisticated)
|
||||
for(int iter=0; iter<QRiter; ++iter){
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
QR_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
QRiter = iter;
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
};
|
||||
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<QRiter<<"\n";
|
||||
abort();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
352
lib/algorithms/iterative/LocalCoherenceLanczos.h
Normal file
352
lib/algorithms/iterative/LocalCoherenceLanczos.h
Normal file
@ -0,0 +1,352 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/LocalCoherenceLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LOCAL_COHERENCE_IRL_H
|
||||
#define GRID_LOCAL_COHERENCE_IRL_H
|
||||
namespace Grid {
|
||||
struct LanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParams,
|
||||
ChebyParams, Cheby,/*Chebyshev*/
|
||||
int, Nstop, /*Vecs in Lanczos must converge Nstop < Nk < Nm*/
|
||||
int, Nk, /*Vecs in Lanczos seek converge*/
|
||||
int, Nm, /*Total vecs in Lanczos include restart*/
|
||||
RealD, resid, /*residual*/
|
||||
int, MaxIt,
|
||||
RealD, betastp, /* ? */
|
||||
int, MinRes); // Must restart
|
||||
};
|
||||
|
||||
struct LocalCoherenceLanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||
bool, doFine,
|
||||
bool, doFineRead,
|
||||
bool, doCoarse,
|
||||
bool, doCoarseRead,
|
||||
LanczosParams, FineParams,
|
||||
LanczosParams, CoarseParams,
|
||||
ChebyParams, Smoother,
|
||||
RealD , coarse_relax_tol,
|
||||
std::vector<int>, blockSize,
|
||||
std::string, config,
|
||||
std::vector < std::complex<double> >, omega,
|
||||
RealD, mass,
|
||||
RealD, M5);
|
||||
};
|
||||
|
||||
// Duplicate functionality; ProjectedFunctionHermOp could be used with the trivial function
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
|
||||
|
||||
ProjectedHermOp(LinearOperatorBase<FineField>& linop, Aggregation<Fobj,CComplex,nbasis> &aggregate) :
|
||||
_Linop(linop),
|
||||
_Aggregate(aggregate) { };
|
||||
|
||||
void operator()(const CoarseField& in, CoarseField& out) {
|
||||
|
||||
GridBase *FineGrid = _Aggregate.FineGrid;
|
||||
FineField fin(FineGrid);
|
||||
FineField fout(FineGrid);
|
||||
|
||||
_Aggregate.PromoteFromSubspace(in,fin); std::cout<<GridLogIRL<<"ProjectedHermop : Promote to fine"<<std::endl;
|
||||
_Linop.HermOp(fin,fout); std::cout<<GridLogIRL<<"ProjectedHermop : HermOp (fine) "<<std::endl;
|
||||
_Aggregate.ProjectToSubspace(out,fout); std::cout<<GridLogIRL<<"ProjectedHermop : Project to coarse "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
|
||||
OperatorFunction<FineField> & _poly;
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
|
||||
|
||||
ProjectedFunctionHermOp(OperatorFunction<FineField> & poly,LinearOperatorBase<FineField>& linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> &aggregate) :
|
||||
_poly(poly),
|
||||
_Linop(linop),
|
||||
_Aggregate(aggregate) { };
|
||||
|
||||
void operator()(const CoarseField& in, CoarseField& out) {
|
||||
|
||||
GridBase *FineGrid = _Aggregate.FineGrid;
|
||||
|
||||
FineField fin(FineGrid) ;fin.checkerboard =_Aggregate.checkerboard;
|
||||
FineField fout(FineGrid);fout.checkerboard =_Aggregate.checkerboard;
|
||||
|
||||
_Aggregate.PromoteFromSubspace(in,fin); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Promote to fine"<<std::endl;
|
||||
_poly(_Linop,fin,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Poly "<<std::endl;
|
||||
_Aggregate.ProjectToSubspace(out,fout); std::cout<<GridLogIRL<<"ProjectedFunctionHermop : Project to coarse "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ImplicitlyRestartedLanczosSmoothedTester : public ImplicitlyRestartedLanczosTester<Lattice<iVector<CComplex,nbasis > > >
|
||||
{
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
LinearFunction<CoarseField> & _Poly;
|
||||
OperatorFunction<FineField> & _smoother;
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
Aggregation<Fobj,CComplex,nbasis> &_Aggregate;
|
||||
RealD _coarse_relax_tol;
|
||||
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
||||
OperatorFunction<FineField> &smoother,
|
||||
LinearOperatorBase<FineField> &Linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> &Aggregate,
|
||||
RealD coarse_relax_tol=5.0e3)
|
||||
: _smoother(smoother), _Linop(Linop),_Aggregate(Aggregate), _Poly(Poly), _coarse_relax_tol(coarse_relax_tol) { };
|
||||
|
||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
CoarseField v(B);
|
||||
RealD eval_poly = eval;
|
||||
// Apply operator
|
||||
_Poly(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
eval = vnum/vden;
|
||||
v -= eval*B;
|
||||
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
return conv;
|
||||
}
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
GridBase *FineGrid = _Aggregate.FineGrid;
|
||||
|
||||
int checkerboard = _Aggregate.checkerboard;
|
||||
|
||||
FineField fB(FineGrid);fB.checkerboard =checkerboard;
|
||||
FineField fv(FineGrid);fv.checkerboard =checkerboard;
|
||||
|
||||
_Aggregate.PromoteFromSubspace(B,fv);
|
||||
_smoother(_Linop,fv,fB);
|
||||
|
||||
RealD eval_poly = eval;
|
||||
_Linop.HermOp(fB,fv);
|
||||
|
||||
RealD vnum = real(innerProduct(fB,fv)); // HermOp.
|
||||
RealD vden = norm2(fB);
|
||||
RealD vv0 = norm2(fv);
|
||||
eval = vnum/vden;
|
||||
fv -= eval*fB;
|
||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
if( (vv<eresid*eresid) ) return 1;
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Make serializable Lanczos params
|
||||
////////////////////////////////////////////
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class LocalCoherenceLanczos
|
||||
{
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<Fobj> FineField;
|
||||
|
||||
protected:
|
||||
GridBase *_CoarseGrid;
|
||||
GridBase *_FineGrid;
|
||||
int _checkerboard;
|
||||
LinearOperatorBase<FineField> & _FineOp;
|
||||
|
||||
// FIXME replace Aggregation with vector of fine; the code reuse is too small for
|
||||
// the hassle and complexity of cross coupling.
|
||||
Aggregation<Fobj,CComplex,nbasis> _Aggregate;
|
||||
std::vector<RealD> evals_fine;
|
||||
std::vector<RealD> evals_coarse;
|
||||
std::vector<CoarseField> evec_coarse;
|
||||
public:
|
||||
LocalCoherenceLanczos(GridBase *FineGrid,
|
||||
GridBase *CoarseGrid,
|
||||
LinearOperatorBase<FineField> &FineOp,
|
||||
int checkerboard) :
|
||||
_CoarseGrid(CoarseGrid),
|
||||
_FineGrid(FineGrid),
|
||||
_Aggregate(CoarseGrid,FineGrid,checkerboard),
|
||||
_FineOp(FineOp),
|
||||
_checkerboard(checkerboard)
|
||||
{
|
||||
evals_fine.resize(0);
|
||||
evals_coarse.resize(0);
|
||||
};
|
||||
void Orthogonalise(void ) { _Aggregate.Orthogonalise(); }
|
||||
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = ::sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void fakeFine(void)
|
||||
{
|
||||
int Nk = nbasis;
|
||||
_Aggregate.subspace.resize(Nk,_FineGrid);
|
||||
_Aggregate.subspace[0]=1.0;
|
||||
_Aggregate.subspace[0].checkerboard=_checkerboard;
|
||||
normalise(_Aggregate.subspace[0]);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
for(int k=1;k<Nk;k++){
|
||||
_Aggregate.subspace[k].checkerboard=_checkerboard;
|
||||
Op(_Aggregate.subspace[k-1],_Aggregate.subspace[k]);
|
||||
normalise(_Aggregate.subspace[k]);
|
||||
}
|
||||
}
|
||||
|
||||
void testFine(RealD resid)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
assert(_Aggregate.subspace.size() == nbasis);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
ImplicitlyRestartedLanczosHermOpTester<FineField> SimpleTester(Op);
|
||||
for(int k=0;k<nbasis;k++){
|
||||
assert(SimpleTester.ReconstructEval(k,resid,_Aggregate.subspace[k],evals_fine[k],1.0)==1);
|
||||
}
|
||||
}
|
||||
|
||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
assert(_Aggregate.subspace.size() == nbasis);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (ChebySmooth,_FineOp,_Aggregate);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,_Aggregate,relax);
|
||||
|
||||
for(int k=0;k<evec_coarse.size();k++){
|
||||
if ( k < nbasis ) {
|
||||
assert(ChebySmoothTester.ReconstructEval(k,resid,evec_coarse[k],evals_coarse[k],1.0)==1);
|
||||
} else {
|
||||
assert(ChebySmoothTester.ReconstructEval(k,resid*relax,evec_coarse[k],evals_coarse[k],1.0)==1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void calcFine(ChebyParams cheby_parms,int Nstop,int Nk,int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
assert(nbasis<=Nm);
|
||||
Chebyshev<FineField> Cheby(cheby_parms);
|
||||
FunctionHermOp<FineField> ChebyOp(Cheby,_FineOp);
|
||||
PlainHermOp<FineField> Op(_FineOp);
|
||||
|
||||
evals_fine.resize(Nm);
|
||||
_Aggregate.subspace.resize(Nm,_FineGrid);
|
||||
|
||||
ImplicitlyRestartedLanczos<FineField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
|
||||
FineField src(_FineGrid); src=1.0; src.checkerboard = _checkerboard;
|
||||
|
||||
int Nconv;
|
||||
IRL.calc(evals_fine,_Aggregate.subspace,src,Nconv,false);
|
||||
|
||||
// Shrink down to number saved
|
||||
assert(Nstop>=nbasis);
|
||||
assert(Nconv>=nbasis);
|
||||
evals_fine.resize(nbasis);
|
||||
_Aggregate.subspace.resize(nbasis,_FineGrid);
|
||||
}
|
||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||
int Nstop, int Nk, int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
Chebyshev<FineField> Cheby(cheby_op);
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,_Aggregate);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,_Aggregate);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,_Aggregate,relax);
|
||||
|
||||
evals_coarse.resize(Nm);
|
||||
evec_coarse.resize(Nm,_CoarseGrid);
|
||||
|
||||
CoarseField src(_CoarseGrid); src=1.0;
|
||||
|
||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
int Nconv=0;
|
||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||
assert(Nconv>=Nstop);
|
||||
evals_coarse.resize(Nstop);
|
||||
evec_coarse.resize (Nstop,_CoarseGrid);
|
||||
for (int i=0;i<Nstop;i++){
|
||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
@ -53,16 +53,124 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
* M psi = eta
|
||||
***********************
|
||||
*Odd
|
||||
* i) (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
|
||||
* i) D_oo psi_o = L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* Wilson:
|
||||
* (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
|
||||
* Stag:
|
||||
* D_oo psi_o = L^{-1} eta = (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* L^-1 eta_o= (1 0 ) (e
|
||||
* (-MoeMee^{-1} 1 )
|
||||
*
|
||||
*Even
|
||||
* ii) Mee psi_e + Meo psi_o = src_e
|
||||
*
|
||||
* => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
*
|
||||
*
|
||||
* TODO: Other options:
|
||||
*
|
||||
* a) change checkerboards for Schur e<->o
|
||||
*
|
||||
* Left precon by Moo^-1
|
||||
* b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 = (D_oo)^dag M_oo^-dag Moo^-1 L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* Right precon by Moo^-1
|
||||
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
|
||||
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
* psi_o = M_oo^-1 phi_o
|
||||
* TODO: Deflation
|
||||
*/
|
||||
namespace Grid {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Now make the norm reflect extra factor of Mee
|
||||
template<class Field> class SchurRedBlackStaggeredSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve " <<std::endl;
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve checkerboards picked" <<std::endl;
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
//src_o = tmp; assert(src_o.checkerboard ==Odd);
|
||||
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver calling the Mpc solver" <<std::endl;
|
||||
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver called the Mpc solver" <<std::endl;
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver reconstructed other CB" <<std::endl;
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver inserted solution" <<std::endl;
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
@ -76,12 +184,10 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0) : _HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=cb;
|
||||
};
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
@ -141,5 +247,166 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoMixed {
|
||||
private:
|
||||
LinearFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_HermitianRBSolver(src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -3,9 +3,12 @@
|
||||
|
||||
namespace Grid {
|
||||
|
||||
MemoryStats *MemoryProfiler::stats = nullptr;
|
||||
bool MemoryProfiler::debug = false;
|
||||
|
||||
int PointerCache::victim;
|
||||
|
||||
PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache];
|
||||
PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache];
|
||||
|
||||
void *PointerCache::Insert(void *ptr,size_t bytes) {
|
||||
|
||||
@ -94,4 +97,29 @@ void check_huge_pages(void *Buf,uint64_t BYTES)
|
||||
#endif
|
||||
}
|
||||
|
||||
std::string sizeString(const size_t bytes)
|
||||
{
|
||||
constexpr unsigned int bufSize = 256;
|
||||
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
|
||||
char buf[256];
|
||||
size_t s = 0;
|
||||
double count = bytes;
|
||||
|
||||
while (count >= 1024 && s < 7)
|
||||
{
|
||||
s++;
|
||||
count /= 1024;
|
||||
}
|
||||
if (count - floor(count) == 0.0)
|
||||
{
|
||||
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
|
||||
}
|
||||
else
|
||||
{
|
||||
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
|
||||
}
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -63,6 +63,64 @@ namespace Grid {
|
||||
static void *Lookup(size_t bytes) ;
|
||||
|
||||
};
|
||||
|
||||
std::string sizeString(size_t bytes);
|
||||
|
||||
struct MemoryStats
|
||||
{
|
||||
size_t totalAllocated{0}, maxAllocated{0},
|
||||
currentlyAllocated{0}, totalFreed{0};
|
||||
};
|
||||
|
||||
class MemoryProfiler
|
||||
{
|
||||
public:
|
||||
static MemoryStats *stats;
|
||||
static bool debug;
|
||||
};
|
||||
|
||||
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
|
||||
#define profilerDebugPrint \
|
||||
if (MemoryProfiler::stats)\
|
||||
{\
|
||||
auto s = MemoryProfiler::stats;\
|
||||
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl;\
|
||||
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
|
||||
<< std::endl;\
|
||||
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
|
||||
<< std::endl;\
|
||||
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
|
||||
<< std::endl;\
|
||||
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
|
||||
<< std::endl;\
|
||||
}
|
||||
|
||||
#define profilerAllocate(bytes)\
|
||||
if (MemoryProfiler::stats)\
|
||||
{\
|
||||
auto s = MemoryProfiler::stats;\
|
||||
s->totalAllocated += (bytes);\
|
||||
s->currentlyAllocated += (bytes);\
|
||||
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated);\
|
||||
}\
|
||||
if (MemoryProfiler::debug)\
|
||||
{\
|
||||
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl;\
|
||||
profilerDebugPrint;\
|
||||
}
|
||||
|
||||
#define profilerFree(bytes)\
|
||||
if (MemoryProfiler::stats)\
|
||||
{\
|
||||
auto s = MemoryProfiler::stats;\
|
||||
s->totalFreed += (bytes);\
|
||||
s->currentlyAllocated -= (bytes);\
|
||||
}\
|
||||
if (MemoryProfiler::debug)\
|
||||
{\
|
||||
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl;\
|
||||
profilerDebugPrint;\
|
||||
}
|
||||
|
||||
void check_huge_pages(void *Buf,uint64_t BYTES);
|
||||
|
||||
@ -92,6 +150,7 @@ public:
|
||||
pointer allocate(size_type __n, const void* _p= 0)
|
||||
{
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
|
||||
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
|
||||
// if ( ptr != NULL )
|
||||
@ -122,6 +181,8 @@ public:
|
||||
void deallocate(pointer __p, size_type __n) {
|
||||
size_type bytes = __n * sizeof(_Tp);
|
||||
|
||||
profilerFree(bytes);
|
||||
|
||||
pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
|
||||
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
@ -172,10 +233,13 @@ public:
|
||||
#ifdef GRID_COMMS_SHMEM
|
||||
pointer allocate(size_type __n, const void* _p= 0)
|
||||
{
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
|
||||
profilerAllocate(bytes);
|
||||
#ifdef CRAY
|
||||
_Tp *ptr = (_Tp *) shmem_align(__n*sizeof(_Tp),64);
|
||||
_Tp *ptr = (_Tp *) shmem_align(bytes,64);
|
||||
#else
|
||||
_Tp *ptr = (_Tp *) shmem_align(64,__n*sizeof(_Tp));
|
||||
_Tp *ptr = (_Tp *) shmem_align(64,bytes);
|
||||
#endif
|
||||
#ifdef PARANOID_SYMMETRIC_HEAP
|
||||
static void * bcast;
|
||||
@ -193,18 +257,23 @@ public:
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
void deallocate(pointer __p, size_type) {
|
||||
void deallocate(pointer __p, size_type __n) {
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
|
||||
profilerFree(bytes);
|
||||
shmem_free((void *)__p);
|
||||
}
|
||||
#else
|
||||
pointer allocate(size_type __n, const void* _p= 0)
|
||||
{
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
_Tp * ptr = (_Tp *) _mm_malloc(__n*sizeof(_Tp),GRID_ALLOC_ALIGN);
|
||||
#else
|
||||
_Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,__n*sizeof(_Tp));
|
||||
#endif
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
|
||||
profilerAllocate(bytes);
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
_Tp * ptr = (_Tp *) _mm_malloc(bytes, GRID_ALLOC_ALIGN);
|
||||
#else
|
||||
_Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN, bytes);
|
||||
#endif
|
||||
uint8_t *cp = (uint8_t *)ptr;
|
||||
if ( ptr ) {
|
||||
// One touch per 4k page, static OMP loop to catch same loop order
|
||||
@ -215,7 +284,10 @@ public:
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
void deallocate(pointer __p, size_type) {
|
||||
void deallocate(pointer __p, size_type __n) {
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
|
||||
profilerFree(bytes);
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
_mm_free((void *)__p);
|
||||
#else
|
||||
|
@ -44,13 +44,21 @@ namespace Grid{
|
||||
class GridBase : public CartesianCommunicator , public GridThread {
|
||||
|
||||
public:
|
||||
|
||||
int dummy;
|
||||
// Give Lattice access
|
||||
template<class object> friend class Lattice;
|
||||
|
||||
GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
|
||||
GridBase(const std::vector<int> & processor_grid,
|
||||
const CartesianCommunicator &parent) : CartesianCommunicator(processor_grid,parent) {};
|
||||
const CartesianCommunicator &parent,
|
||||
int &split_rank)
|
||||
: CartesianCommunicator(processor_grid,parent,split_rank) {};
|
||||
GridBase(const std::vector<int> & processor_grid,
|
||||
const CartesianCommunicator &parent)
|
||||
: CartesianCommunicator(processor_grid,parent,dummy) {};
|
||||
|
||||
virtual ~GridBase() = default;
|
||||
|
||||
|
||||
// Physics Grid information.
|
||||
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
|
||||
|
@ -38,7 +38,7 @@ namespace Grid{
|
||||
class GridCartesian: public GridBase {
|
||||
|
||||
public:
|
||||
|
||||
int dummy;
|
||||
virtual int CheckerBoardFromOindexTable (int Oindex) {
|
||||
return 0;
|
||||
}
|
||||
@ -67,7 +67,14 @@ public:
|
||||
GridCartesian(const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid,
|
||||
const GridCartesian &parent) : GridBase(processor_grid,parent)
|
||||
const GridCartesian &parent) : GridBase(processor_grid,parent,dummy)
|
||||
{
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
GridCartesian(const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid,
|
||||
const GridCartesian &parent,int &split_rank) : GridBase(processor_grid,parent,split_rank)
|
||||
{
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
@ -81,6 +88,8 @@ public:
|
||||
Init(dimensions,simd_layout,processor_grid);
|
||||
}
|
||||
|
||||
virtual ~GridCartesian() = default;
|
||||
|
||||
void Init(const std::vector<int> &dimensions,
|
||||
const std::vector<int> &simd_layout,
|
||||
const std::vector<int> &processor_grid)
|
||||
@ -113,6 +122,7 @@ public:
|
||||
|
||||
// Use a reduced simd grid
|
||||
_ldimensions[d] = _gdimensions[d] / _processors[d]; //local dimensions
|
||||
//std::cout << _ldimensions[d] << " " << _gdimensions[d] << " " << _processors[d] << std::endl;
|
||||
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||
|
||||
_rdimensions[d] = _ldimensions[d] / _simd_layout[d]; //overdecomposition
|
||||
@ -157,6 +167,7 @@ public:
|
||||
block = block * _rdimensions[d];
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@ -133,6 +133,8 @@ public:
|
||||
{
|
||||
Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim) ;
|
||||
}
|
||||
|
||||
virtual ~GridRedBlackCartesian() = default;
|
||||
#if 0
|
||||
////////////////////////////////////////////////////////////
|
||||
// Create redblack grid ;; deprecate these. Should not
|
||||
@ -205,6 +207,7 @@ public:
|
||||
{
|
||||
assert((_gdimensions[d] & 0x1) == 0);
|
||||
_gdimensions[d] = _gdimensions[d] / 2; // Remove a checkerboard
|
||||
_gsites /= 2;
|
||||
}
|
||||
_ldimensions[d] = _gdimensions[d] / _processors[d];
|
||||
assert(_ldimensions[d] * _processors[d] == _gdimensions[d]);
|
||||
|
@ -28,6 +28,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#ifndef GRID_COMMUNICATOR_H
|
||||
#define GRID_COMMUNICATOR_H
|
||||
|
||||
#include <Grid/communicator/SharedMemory.h>
|
||||
#include <Grid/communicator/Communicator_base.h>
|
||||
|
||||
#endif
|
||||
|
@ -36,33 +36,9 @@ namespace Grid {
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////
|
||||
void * CartesianCommunicator::ShmCommBuf;
|
||||
uint64_t CartesianCommunicator::MAX_MPI_SHM_BYTES = 1024LL*1024LL*1024LL;
|
||||
CartesianCommunicator::CommunicatorPolicy_t
|
||||
CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
|
||||
int CartesianCommunicator::nCommThreads = -1;
|
||||
int CartesianCommunicator::Hugepages = 0;
|
||||
|
||||
/////////////////////////////////
|
||||
// Alloc, free shmem region
|
||||
/////////////////////////////////
|
||||
void *CartesianCommunicator::ShmBufferMalloc(size_t bytes){
|
||||
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
||||
void *ptr = (void *)heap_top;
|
||||
heap_top += bytes;
|
||||
heap_bytes+= bytes;
|
||||
if (heap_bytes >= MAX_MPI_SHM_BYTES) {
|
||||
std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
||||
std::cout<< " Current value is " << (MAX_MPI_SHM_BYTES/(1024*1024)) <<std::endl;
|
||||
assert(heap_bytes<MAX_MPI_SHM_BYTES);
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
void CartesianCommunicator::ShmBufferFreeAll(void) {
|
||||
heap_top =(size_t)ShmBufferSelf();
|
||||
heap_bytes=0;
|
||||
}
|
||||
|
||||
/////////////////////////////////
|
||||
// Grid information queries
|
||||
@ -95,183 +71,6 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
|
||||
{
|
||||
GlobalSumVector((double *)c,2*N);
|
||||
}
|
||||
|
||||
|
||||
#if defined( GRID_COMMS_MPI) || defined (GRID_COMMS_MPIT)
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent)
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
assert(_ndimension = parent._ndimension);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// split the communicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
int Nparent;
|
||||
MPI_Comm_size(parent.communicator,&Nparent);
|
||||
|
||||
int childsize=1;
|
||||
for(int d=0;d<processors.size();d++) {
|
||||
childsize *= processors[d];
|
||||
}
|
||||
int Nchild = Nparent/childsize;
|
||||
assert (childsize * Nchild == Nparent);
|
||||
|
||||
int prank; MPI_Comm_rank(parent.communicator,&prank);
|
||||
int crank = prank % childsize;
|
||||
int ccomm = prank / childsize;
|
||||
|
||||
MPI_Comm comm_split;
|
||||
if ( Nchild > 1 ) {
|
||||
|
||||
std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
|
||||
std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
|
||||
for(int d=0;d<parent._processors.size();d++) std::cout << parent._processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
int ierr= MPI_Comm_split(parent.communicator, ccomm,crank,&comm_split);
|
||||
assert(ierr==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Declare victory
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
|
||||
<<Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
|
||||
} else {
|
||||
comm_split=parent.communicator;
|
||||
// std::cout << "Passed parental communicator to a new communicator" <<std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set up from the new split communicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
InitFromMPICommunicator(processors,comm_split);
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take an MPI_Comm and self assemble
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base)
|
||||
{
|
||||
// if ( communicator_base != communicator_world ) {
|
||||
// std::cout << "Cartesian communicator created with a non-world communicator"<<std::endl;
|
||||
// }
|
||||
_ndimension = processors.size();
|
||||
_processor_coor.resize(_ndimension);
|
||||
|
||||
/////////////////////////////////
|
||||
// Count the requested nodes
|
||||
/////////////////////////////////
|
||||
_Nprocessors=1;
|
||||
_processors = processors;
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
_Nprocessors*=_processors[i];
|
||||
}
|
||||
|
||||
std::vector<int> periodic(_ndimension,1);
|
||||
MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],1,&communicator);
|
||||
MPI_Comm_rank(communicator,&_processor);
|
||||
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
|
||||
|
||||
int Size;
|
||||
MPI_Comm_size(communicator,&Size);
|
||||
|
||||
#ifdef GRID_COMMS_MPIT
|
||||
communicator_halo.resize (2*_ndimension);
|
||||
for(int i=0;i<_ndimension*2;i++){
|
||||
MPI_Comm_dup(communicator,&communicator_halo[i]);
|
||||
}
|
||||
#endif
|
||||
|
||||
assert(Size==_Nprocessors);
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
InitFromMPICommunicator(processors,communicator_world);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( GRID_COMMS_MPI3)
|
||||
|
||||
int CartesianCommunicator::NodeCount(void) { return ProcessorCount();};
|
||||
int CartesianCommunicator::RankCount(void) { return ProcessorCount();};
|
||||
#endif
|
||||
#if !defined( GRID_COMMS_MPI3) && !defined (GRID_COMMS_MPIT)
|
||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes, int dir)
|
||||
{
|
||||
std::vector<CommsRequest_t> list;
|
||||
// Discard the "dir"
|
||||
SendToRecvFromBegin (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
|
||||
SendToRecvFromComplete(list);
|
||||
return 2.0*bytes;
|
||||
}
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes, int dir)
|
||||
{
|
||||
// Discard the "dir"
|
||||
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
|
||||
return 2.0*bytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
||||
{
|
||||
SendToRecvFromComplete(waitall);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined( GRID_COMMS_MPI3)
|
||||
|
||||
void CartesianCommunicator::StencilBarrier(void){};
|
||||
|
||||
commVector<uint8_t> CartesianCommunicator::ShmBufStorageVector;
|
||||
|
||||
void *CartesianCommunicator::ShmBufferSelf(void) { return ShmCommBuf; }
|
||||
|
||||
void *CartesianCommunicator::ShmBuffer(int rank) {
|
||||
return NULL;
|
||||
}
|
||||
void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p) {
|
||||
return NULL;
|
||||
}
|
||||
void CartesianCommunicator::ShmInitGeneric(void){
|
||||
#if 1
|
||||
int mmap_flag =0;
|
||||
#ifdef MAP_ANONYMOUS
|
||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
|
||||
#endif
|
||||
#ifdef MAP_ANON
|
||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANON;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if ( Hugepages ) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
ShmCommBuf =(void *) mmap(NULL, MAX_MPI_SHM_BYTES, PROT_READ | PROT_WRITE, mmap_flag, -1, 0);
|
||||
if (ShmCommBuf == (void *)MAP_FAILED) {
|
||||
perror("mmap failed ");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
#ifdef MADV_HUGEPAGE
|
||||
if (!Hugepages ) madvise(ShmCommBuf,MAX_MPI_SHM_BYTES,MADV_HUGEPAGE);
|
||||
#endif
|
||||
#else
|
||||
ShmBufStorageVector.resize(MAX_MPI_SHM_BYTES);
|
||||
ShmCommBuf=(void *)&ShmBufStorageVector[0];
|
||||
#endif
|
||||
bzero(ShmCommBuf,MAX_MPI_SHM_BYTES);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
@ -32,117 +32,33 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
///////////////////////////////////
|
||||
// Processor layout information
|
||||
///////////////////////////////////
|
||||
#ifdef GRID_COMMS_MPI
|
||||
#include <mpi.h>
|
||||
#endif
|
||||
#ifdef GRID_COMMS_MPI3
|
||||
#include <mpi.h>
|
||||
#endif
|
||||
#ifdef GRID_COMMS_MPIT
|
||||
#include <mpi.h>
|
||||
#endif
|
||||
#ifdef GRID_COMMS_SHMEM
|
||||
#include <mpp/shmem.h>
|
||||
#endif
|
||||
#include <Grid/communicator/SharedMemory.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
class CartesianCommunicator {
|
||||
public:
|
||||
class CartesianCommunicator : public SharedMemory {
|
||||
|
||||
public:
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Isend/Irecv/Wait, or Sendrecv blocking
|
||||
// Policies
|
||||
////////////////////////////////////////////
|
||||
enum CommunicatorPolicy_t { CommunicatorPolicyConcurrent, CommunicatorPolicySequential };
|
||||
static CommunicatorPolicy_t CommunicatorPolicy;
|
||||
static void SetCommunicatorPolicy(CommunicatorPolicy_t policy ) { CommunicatorPolicy = policy; }
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Up to 65536 ranks per node adequate for now
|
||||
// 128MB shared memory for comms enought for 48^4 local vol comms
|
||||
// Give external control (command line override?) of this
|
||||
///////////////////////////////////////////
|
||||
static const int MAXLOG2RANKSPERNODE = 16;
|
||||
static uint64_t MAX_MPI_SHM_BYTES;
|
||||
static int nCommThreads;
|
||||
// use explicit huge pages
|
||||
static int Hugepages;
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Communicator should know nothing of the physics grid, only processor grid.
|
||||
////////////////////////////////////////////
|
||||
int _Nprocessors; // How many in all
|
||||
std::vector<int> _processors; // Which dimensions get relayed out over processors lanes.
|
||||
int _processor; // linear processor rank
|
||||
std::vector<int> _processor_coor; // linear processor coordinate
|
||||
unsigned long _ndimension;
|
||||
|
||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3) || defined (GRID_COMMS_MPIT)
|
||||
static MPI_Comm communicator_world;
|
||||
|
||||
MPI_Comm communicator;
|
||||
std::vector<MPI_Comm> communicator_halo;
|
||||
|
||||
typedef MPI_Request CommsRequest_t;
|
||||
|
||||
#else
|
||||
typedef int CommsRequest_t;
|
||||
#endif
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Helper functionality for SHM Windows common to all other impls
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Longer term; drop this in favour of a master / slave model with
|
||||
// cartesian communicator on a subset of ranks, slave ranks controlled
|
||||
// by group leader with data xfer via shared memory
|
||||
////////////////////////////////////////////////////////////////////
|
||||
#ifdef GRID_COMMS_MPI3
|
||||
|
||||
static int ShmRank;
|
||||
static int ShmSize;
|
||||
static int GroupRank;
|
||||
static int GroupSize;
|
||||
static int WorldRank;
|
||||
static int WorldSize;
|
||||
|
||||
std::vector<int> WorldDims;
|
||||
std::vector<int> GroupDims;
|
||||
std::vector<int> ShmDims;
|
||||
|
||||
std::vector<int> GroupCoor;
|
||||
std::vector<int> ShmCoor;
|
||||
std::vector<int> WorldCoor;
|
||||
|
||||
static std::vector<int> GroupRanks;
|
||||
static std::vector<int> MyGroup;
|
||||
static int ShmSetup;
|
||||
static MPI_Win ShmWindow;
|
||||
static MPI_Comm ShmComm;
|
||||
|
||||
std::vector<int> LexicographicToWorldRank;
|
||||
|
||||
static std::vector<void *> ShmCommBufs;
|
||||
|
||||
#else
|
||||
static void ShmInitGeneric(void);
|
||||
static commVector<uint8_t> ShmBufStorageVector;
|
||||
#endif
|
||||
|
||||
/////////////////////////////////
|
||||
// Grid information and queries
|
||||
// Implemented in Communicator_base.C
|
||||
/////////////////////////////////
|
||||
static void * ShmCommBuf;
|
||||
|
||||
|
||||
size_t heap_top;
|
||||
size_t heap_bytes;
|
||||
|
||||
void *ShmBufferSelf(void);
|
||||
void *ShmBuffer(int rank);
|
||||
void *ShmBufferTranslate(int rank,void * local_p);
|
||||
void *ShmBufferMalloc(size_t bytes);
|
||||
void ShmBufferFreeAll(void) ;
|
||||
unsigned long _ndimension;
|
||||
static Grid_MPI_Comm communicator_world;
|
||||
Grid_MPI_Comm communicator;
|
||||
std::vector<Grid_MPI_Comm> communicator_halo;
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Must call in Grid startup
|
||||
@ -153,18 +69,20 @@ class CartesianCommunicator {
|
||||
// Constructors to sub-divide a parent communicator
|
||||
// and default to comm world
|
||||
////////////////////////////////////////////////
|
||||
CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent);
|
||||
CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank);
|
||||
CartesianCommunicator(const std::vector<int> &pdimensions_in);
|
||||
virtual ~CartesianCommunicator();
|
||||
|
||||
private:
|
||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPIT)
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Private initialise from an MPI communicator
|
||||
// Can use after an MPI_Comm_split, but hidden from user so private
|
||||
////////////////////////////////////////////////
|
||||
void InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base);
|
||||
#endif
|
||||
void InitFromMPICommunicator(const std::vector<int> &processors, Grid_MPI_Comm communicator_base);
|
||||
|
||||
public:
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Wraps MPI_Cart routines, or implements equivalent on other impls
|
||||
@ -180,8 +98,6 @@ class CartesianCommunicator {
|
||||
const std::vector<int> & ThisProcessorCoor(void) ;
|
||||
const std::vector<int> & ProcessorGrid(void) ;
|
||||
int ProcessorCount(void) ;
|
||||
int NodeCount(void) ;
|
||||
int RankCount(void) ;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// very VERY rarely (Log, serial RNG) we need world without a grid
|
||||
@ -262,6 +178,23 @@ class CartesianCommunicator {
|
||||
// Broadcast a buffer and composite larger
|
||||
////////////////////////////////////////////////////////////
|
||||
void Broadcast(int root,void* data, int bytes);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// All2All down one dimension
|
||||
////////////////////////////////////////////////////////////
|
||||
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
|
||||
assert(dim>=0);
|
||||
assert(dim<_ndimension);
|
||||
assert(in.size()==out.size());
|
||||
int numnode = _processors[dim];
|
||||
uint64_t bytes=sizeof(T);
|
||||
uint64_t words=in.size()/numnode;
|
||||
assert(numnode * words == in.size());
|
||||
assert(words < (1ULL<<31));
|
||||
AllToAll(dim,(void *)&in[0],(void *)&out[0],words,bytes);
|
||||
}
|
||||
void AllToAll(int dim ,void *in,void *out,uint64_t words,uint64_t bytes);
|
||||
void AllToAll(void *in,void *out,uint64_t words ,uint64_t bytes);
|
||||
|
||||
template<class obj> void Broadcast(int root,obj &data)
|
||||
{
|
||||
|
@ -1,211 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/Communicator_mpi.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/GridQCDcore.h>
|
||||
#include <Grid/qcd/action/ActionCore.h>
|
||||
#include <mpi.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Comm CartesianCommunicator::communicator_world;
|
||||
|
||||
// Should error check all MPI calls.
|
||||
void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
int flag;
|
||||
int provided;
|
||||
MPI_Initialized(&flag); // needed to coexist with other libs apparently
|
||||
if ( !flag ) {
|
||||
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
|
||||
if ( provided != MPI_THREAD_MULTIPLE ) {
|
||||
QCD::WilsonKernelsStatic::Comms = QCD::WilsonKernelsStatic::CommsThenCompute;
|
||||
}
|
||||
}
|
||||
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
|
||||
ShmInitGeneric();
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
||||
{
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||
{
|
||||
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
|
||||
assert(ierr==0);
|
||||
}
|
||||
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
|
||||
{
|
||||
int rank;
|
||||
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
|
||||
assert(ierr==0);
|
||||
return rank;
|
||||
}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
|
||||
{
|
||||
coor.resize(_ndimension);
|
||||
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
std::vector<CommsRequest_t> reqs(0);
|
||||
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
|
||||
SendToRecvFromComplete(reqs);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendRecvPacket(void *xmit,
|
||||
void *recv,
|
||||
int sender,
|
||||
int receiver,
|
||||
int bytes)
|
||||
{
|
||||
MPI_Status stat;
|
||||
assert(sender != receiver);
|
||||
int tag = sender;
|
||||
if ( _processor == sender ) {
|
||||
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
|
||||
}
|
||||
if ( _processor == receiver ) {
|
||||
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
|
||||
}
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
|
||||
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
|
||||
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
list.push_back(rrq);
|
||||
} else {
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
|
||||
recv,bytes,MPI_CHAR,from, from,
|
||||
communicator,MPI_STATUS_IGNORE);
|
||||
assert(ierr==0);
|
||||
}
|
||||
}
|
||||
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
|
||||
int nreq=list.size();
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
}
|
||||
}
|
||||
|
||||
void CartesianCommunicator::Barrier(void)
|
||||
{
|
||||
int ierr = MPI_Barrier(communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
{
|
||||
int ierr=MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
///////////////////////////////////////////////////////
|
||||
// Should only be used prior to Grid Init finished.
|
||||
// Check for this?
|
||||
///////////////////////////////////////////////////////
|
||||
int CartesianCommunicator::RankWorld(void){
|
||||
int r;
|
||||
MPI_Comm_rank(communicator_world,&r);
|
||||
return r;
|
||||
}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
{
|
||||
int ierr= MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator_world);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -26,89 +26,20 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
#include <mpi.h>
|
||||
|
||||
#include <semaphore.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <limits.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/ipc.h>
|
||||
#include <sys/shm.h>
|
||||
#include <sys/mman.h>
|
||||
#include <zlib.h>
|
||||
#ifdef HAVE_NUMAIF_H
|
||||
#include <numaif.h>
|
||||
#endif
|
||||
|
||||
#include <Grid/communicator/SharedMemory.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
int CartesianCommunicator::ShmSetup = 0;
|
||||
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
||||
|
||||
int CartesianCommunicator::ShmRank;
|
||||
int CartesianCommunicator::ShmSize;
|
||||
int CartesianCommunicator::GroupRank;
|
||||
int CartesianCommunicator::GroupSize;
|
||||
int CartesianCommunicator::WorldRank;
|
||||
int CartesianCommunicator::WorldSize;
|
||||
|
||||
MPI_Comm CartesianCommunicator::communicator_world;
|
||||
MPI_Comm CartesianCommunicator::ShmComm;
|
||||
MPI_Win CartesianCommunicator::ShmWindow;
|
||||
|
||||
std::vector<int> CartesianCommunicator::GroupRanks;
|
||||
std::vector<int> CartesianCommunicator::MyGroup;
|
||||
std::vector<void *> CartesianCommunicator::ShmCommBufs;
|
||||
|
||||
int CartesianCommunicator::NodeCount(void) { return GroupSize;};
|
||||
int CartesianCommunicator::RankCount(void) { return WorldSize;};
|
||||
|
||||
|
||||
#undef FORCE_COMMS
|
||||
void *CartesianCommunicator::ShmBufferSelf(void)
|
||||
////////////////////////////////////////////
|
||||
// First initialise of comms system
|
||||
////////////////////////////////////////////
|
||||
void CartesianCommunicator::Init(int *argc, char ***argv)
|
||||
{
|
||||
return ShmCommBufs[ShmRank];
|
||||
}
|
||||
void *CartesianCommunicator::ShmBuffer(int rank)
|
||||
{
|
||||
int gpeer = GroupRanks[rank];
|
||||
#ifdef FORCE_COMMS
|
||||
return NULL;
|
||||
#endif
|
||||
if (gpeer == MPI_UNDEFINED){
|
||||
return NULL;
|
||||
} else {
|
||||
return ShmCommBufs[gpeer];
|
||||
}
|
||||
}
|
||||
void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p)
|
||||
{
|
||||
static int count =0;
|
||||
int gpeer = GroupRanks[rank];
|
||||
assert(gpeer!=ShmRank); // never send to self
|
||||
assert(rank!=WorldRank);// never send to self
|
||||
#ifdef FORCE_COMMS
|
||||
return NULL;
|
||||
#endif
|
||||
if (gpeer == MPI_UNDEFINED){
|
||||
return NULL;
|
||||
} else {
|
||||
uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
|
||||
uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
|
||||
return (void *) remote;
|
||||
}
|
||||
}
|
||||
|
||||
void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
|
||||
int flag;
|
||||
int provided;
|
||||
// mtrace();
|
||||
|
||||
MPI_Initialized(&flag); // needed to coexist with other libs apparently
|
||||
if ( !flag ) {
|
||||
@ -119,483 +50,213 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
Grid_quiesce_nodes();
|
||||
|
||||
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
|
||||
MPI_Comm_rank(communicator_world,&WorldRank);
|
||||
MPI_Comm_size(communicator_world,&WorldSize);
|
||||
|
||||
if ( WorldRank == 0 ) {
|
||||
std::cout << GridLogMessage<< "Initialising MPI "<< WorldRank <<"/"<<WorldSize <<std::endl;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Split into groups that can share memory
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Comm_split_type(communicator_world, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
|
||||
MPI_Comm_rank(ShmComm ,&ShmRank);
|
||||
MPI_Comm_size(ShmComm ,&ShmSize);
|
||||
GroupSize = WorldSize/ShmSize;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find world ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Group WorldGroup, ShmGroup;
|
||||
MPI_Comm_group (communicator_world, &WorldGroup);
|
||||
MPI_Comm_group (ShmComm, &ShmGroup);
|
||||
|
||||
std::vector<int> world_ranks(WorldSize);
|
||||
GroupRanks.resize(WorldSize);
|
||||
for(int r=0;r<WorldSize;r++) world_ranks[r]=r;
|
||||
|
||||
MPI_Group_translate_ranks (WorldGroup,WorldSize,&world_ranks[0],ShmGroup, &GroupRanks[0]);
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Identify who is in my group and noninate the leader
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int g=0;
|
||||
MyGroup.resize(ShmSize);
|
||||
for(int rank=0;rank<WorldSize;rank++){
|
||||
if(GroupRanks[rank]!=MPI_UNDEFINED){
|
||||
assert(g<ShmSize);
|
||||
MyGroup[g++] = rank;
|
||||
}
|
||||
}
|
||||
|
||||
std::sort(MyGroup.begin(),MyGroup.end(),std::less<int>());
|
||||
int myleader = MyGroup[0];
|
||||
|
||||
std::vector<int> leaders_1hot(WorldSize,0);
|
||||
std::vector<int> leaders_group(GroupSize,0);
|
||||
leaders_1hot [ myleader ] = 1;
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// global sum leaders over comm world
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,communicator_world);
|
||||
assert(ierr==0);
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// find the group leaders world rank
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int group=0;
|
||||
for(int l=0;l<WorldSize;l++){
|
||||
if(leaders_1hot[l]){
|
||||
leaders_group[group++] = l;
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Identify the rank of the group in which I (and my leader) live
|
||||
///////////////////////////////////////////////////////////////////
|
||||
GroupRank=-1;
|
||||
for(int g=0;g<GroupSize;g++){
|
||||
if (myleader == leaders_group[g]){
|
||||
GroupRank=g;
|
||||
}
|
||||
}
|
||||
assert(GroupRank!=-1);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the shared window for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(ShmComm);
|
||||
|
||||
ShmCommBuf = 0;
|
||||
ShmCommBufs.resize(ShmSize);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbf and others map filesystems as mappable huge pages
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef GRID_MPI3_SHMMMAP
|
||||
char shm_name [NAME_MAX];
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
|
||||
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
|
||||
sprintf(shm_name,GRID_SHM_PATH "/Grid_mpi3_shm_%d_%d",GroupRank,r);
|
||||
//sprintf(shm_name,"/var/lib/hugetlbfs/group/wheel/pagesize-2MB/" "Grid_mpi3_shm_%d_%d",GroupRank,r);
|
||||
// printf("Opening file %s \n",shm_name);
|
||||
int fd=open(shm_name,O_RDWR|O_CREAT,0666);
|
||||
if ( fd == -1) {
|
||||
printf("open %s failed\n",shm_name);
|
||||
perror("open hugetlbfs");
|
||||
exit(0);
|
||||
}
|
||||
int mmap_flag = MAP_SHARED ;
|
||||
#ifdef MAP_POPULATE
|
||||
mmap_flag|=MAP_POPULATE;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if ( Hugepages ) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
void *ptr = (void *) mmap(NULL, MAX_MPI_SHM_BYTES, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
||||
if ( ptr == (void *)MAP_FAILED ) {
|
||||
printf("mmap %s failed\n",shm_name);
|
||||
perror("failed mmap"); assert(0);
|
||||
}
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
ShmCommBufs[r] =ptr;
|
||||
|
||||
}
|
||||
#endif
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// POSIX SHMOPEN ; as far as I know Linux does not allow EXPLICIT HugePages with this case
|
||||
// tmpfs (Larry Meadows says) does not support explicit huge page, and this is used for
|
||||
// the posix shm virtual file system
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef GRID_MPI3_SHMOPEN
|
||||
char shm_name [NAME_MAX];
|
||||
if ( ShmRank == 0 ) {
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
|
||||
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
|
||||
|
||||
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",GroupRank,r);
|
||||
|
||||
shm_unlink(shm_name);
|
||||
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0666);
|
||||
if ( fd < 0 ) { perror("failed shm_open"); assert(0); }
|
||||
ftruncate(fd, size);
|
||||
|
||||
int mmap_flag = MAP_SHARED;
|
||||
#ifdef MAP_POPULATE
|
||||
mmap_flag |= MAP_POPULATE;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if (Hugepages) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
|
||||
|
||||
if ( ptr == (void * )MAP_FAILED ) { perror("failed mmap"); assert(0); }
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
|
||||
// Experiments; Experiments; Try to force numa domain on the shm segment if we have numaif.h
|
||||
#if 0
|
||||
//#ifdef HAVE_NUMAIF_H
|
||||
int status;
|
||||
int flags=MPOL_MF_MOVE;
|
||||
#ifdef KNL
|
||||
int nodes=1; // numa domain == MCDRAM
|
||||
// Find out if in SNC2,SNC4 mode ?
|
||||
#else
|
||||
int nodes=r; // numa domain == MPI ID
|
||||
#endif
|
||||
unsigned long count=1;
|
||||
for(uint64_t page=0;page<size;page+=4096){
|
||||
void *pages = (void *) ( page + (uint64_t)ptr );
|
||||
uint64_t *cow_it = (uint64_t *)pages; *cow_it = 1;
|
||||
ierr= move_pages(0,count, &pages,&nodes,&status,flags);
|
||||
if (ierr && (page==0)) perror("numa relocate command failed");
|
||||
}
|
||||
#endif
|
||||
ShmCommBufs[r] =ptr;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
MPI_Barrier(ShmComm);
|
||||
|
||||
if ( ShmRank != 0 ) {
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES ;
|
||||
|
||||
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",GroupRank,r);
|
||||
|
||||
int fd=shm_open(shm_name,O_RDWR,0666);
|
||||
if ( fd<0 ) { perror("failed shm_open"); assert(0); }
|
||||
|
||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
||||
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
ShmCommBufs[r] =ptr;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SHMGET SHMAT and SHM_HUGETLB flag
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef GRID_MPI3_SHMGET
|
||||
std::vector<int> shmids(ShmSize);
|
||||
|
||||
if ( ShmRank == 0 ) {
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
|
||||
key_t key = IPC_PRIVATE;
|
||||
int flags = IPC_CREAT | SHM_R | SHM_W;
|
||||
#ifdef SHM_HUGETLB
|
||||
if (Hugepages) flags|=SHM_HUGETLB;
|
||||
#endif
|
||||
if ((shmids[r]= shmget(key,size, flags)) ==-1) {
|
||||
int errsv = errno;
|
||||
printf("Errno %d\n",errsv);
|
||||
printf("key %d\n",key);
|
||||
printf("size %lld\n",size);
|
||||
printf("flags %d\n",flags);
|
||||
perror("shmget");
|
||||
exit(1);
|
||||
} else {
|
||||
printf("shmid: 0x%x\n", shmids[r]);
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Barrier(ShmComm);
|
||||
MPI_Bcast(&shmids[0],ShmSize*sizeof(int),MPI_BYTE,0,ShmComm);
|
||||
MPI_Barrier(ShmComm);
|
||||
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
ShmCommBufs[r] = (uint64_t *)shmat(shmids[r], NULL,0);
|
||||
if (ShmCommBufs[r] == (uint64_t *)-1) {
|
||||
perror("Shared memory attach failure");
|
||||
shmctl(shmids[r], IPC_RMID, NULL);
|
||||
exit(2);
|
||||
}
|
||||
printf("shmaddr: %p\n", ShmCommBufs[r]);
|
||||
}
|
||||
MPI_Barrier(ShmComm);
|
||||
// Mark for clean up
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
shmctl(shmids[r], IPC_RMID,(struct shmid_ds *)NULL);
|
||||
}
|
||||
MPI_Barrier(ShmComm);
|
||||
|
||||
#endif
|
||||
ShmCommBuf = ShmCommBufs[ShmRank];
|
||||
|
||||
MPI_Barrier(ShmComm);
|
||||
if ( ShmRank == 0 ) {
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
uint64_t * check = (uint64_t *) ShmCommBufs[r];
|
||||
check[0] = GroupRank;
|
||||
check[1] = r;
|
||||
check[2] = 0x5A5A5A;
|
||||
}
|
||||
}
|
||||
|
||||
MPI_Barrier(ShmComm);
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
uint64_t * check = (uint64_t *) ShmCommBufs[r];
|
||||
|
||||
assert(check[0]==GroupRank);
|
||||
assert(check[1]==r);
|
||||
assert(check[2]==0x5A5A5A);
|
||||
|
||||
}
|
||||
MPI_Barrier(ShmComm);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Verbose for now
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
if (WorldRank == 0){
|
||||
std::cout<<GridLogMessage<< "Grid MPI-3 configuration: detected ";
|
||||
std::cout<< WorldSize << " Ranks " ;
|
||||
std::cout<< GroupSize << " Nodes " ;
|
||||
std::cout<< " with "<< ShmSize << " ranks-per-node "<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage <<"Grid MPI-3 configuration: allocated shared memory region of size ";
|
||||
std::cout<<std::hex << MAX_MPI_SHM_BYTES <<" ShmCommBuf address = "<<ShmCommBuf << std::dec<<std::endl;
|
||||
|
||||
for(int g=0;g<GroupSize;g++){
|
||||
std::cout<<GridLogMessage<<" Node "<<g<<" led by MPI rank "<<leaders_group[g]<<std::endl;
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<<" Boss Node Shm Pointers are {";
|
||||
for(int g=0;g<ShmSize;g++){
|
||||
std::cout<<std::hex<<ShmCommBufs[g]<<std::dec;
|
||||
if(g!=ShmSize-1) std::cout<<",";
|
||||
else std::cout<<"}"<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
for(int g=0;g<GroupSize;g++){
|
||||
if ( (ShmRank == 0) && (GroupRank==g) ) std::cout<<GridLogMessage<<"["<<g<<"] Node Group "<<g<<" is ranks {";
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
if ( (ShmRank == 0) && (GroupRank==g) ) {
|
||||
std::cout<<MyGroup[r];
|
||||
if(r<ShmSize-1) std::cout<<",";
|
||||
else std::cout<<"}"<<std::endl<<std::flush;
|
||||
}
|
||||
MPI_Barrier(communicator_world);
|
||||
}
|
||||
}
|
||||
|
||||
assert(ShmSetup==0); ShmSetup=1;
|
||||
GlobalSharedMemory::Init(communicator_world);
|
||||
GlobalSharedMemory::SharedMemoryAllocate(
|
||||
GlobalSharedMemory::MAX_MPI_SHM_BYTES,
|
||||
GlobalSharedMemory::Hugepages);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Want to implement some magic ... Group sub-cubes into those on same node
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &dest,int &source)
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Use cartesian communicators now even in MPI3
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||
{
|
||||
std::vector<int> coor = _processor_coor; // my coord
|
||||
assert(std::abs(shift) <_processors[dim]);
|
||||
|
||||
coor[dim] = (_processor_coor[dim] + shift + _processors[dim])%_processors[dim];
|
||||
Lexicographic::IndexFromCoor(coor,source,_processors);
|
||||
source = LexicographicToWorldRank[source];
|
||||
|
||||
coor[dim] = (_processor_coor[dim] - shift + _processors[dim])%_processors[dim];
|
||||
Lexicographic::IndexFromCoor(coor,dest,_processors);
|
||||
dest = LexicographicToWorldRank[dest];
|
||||
|
||||
}// rank is world rank.
|
||||
|
||||
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
|
||||
assert(ierr==0);
|
||||
}
|
||||
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
|
||||
{
|
||||
int rank;
|
||||
Lexicographic::IndexFromCoor(coor,rank,_processors);
|
||||
rank = LexicographicToWorldRank[rank];
|
||||
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
|
||||
assert(ierr==0);
|
||||
return rank;
|
||||
}// rank is world rank
|
||||
|
||||
}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
|
||||
{
|
||||
int lr=-1;
|
||||
for(int r=0;r<WorldSize;r++){// map world Rank to lexico and then to coor
|
||||
if( LexicographicToWorldRank[r]==rank) lr = r;
|
||||
}
|
||||
assert(lr!=-1);
|
||||
Lexicographic::CoorFromIndex(coor,lr,_processors);
|
||||
coor.resize(_ndimension);
|
||||
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Initialises from communicator_world
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
MPI_Comm optimal_comm;
|
||||
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm); // Remap using the shared memory optimising routine
|
||||
InitFromMPICommunicator(processors,optimal_comm);
|
||||
SetCommunicator(optimal_comm);
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Try to subdivide communicator
|
||||
//////////////////////////////////
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent)
|
||||
: CartesianCommunicator(processors)
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
|
||||
{
|
||||
std::cout << "Attempts to split MPI3 communicators will fail until implemented" <<std::endl;
|
||||
}
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
int ierr;
|
||||
communicator=communicator_world;
|
||||
|
||||
_ndimension = processors.size();
|
||||
|
||||
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
|
||||
std::vector<int> parent_processor_coor(_ndimension,0);
|
||||
std::vector<int> parent_processors (_ndimension,1);
|
||||
|
||||
// Can make 5d grid from 4d etc...
|
||||
int pad = _ndimension-parent_ndimension;
|
||||
for(int d=0;d<parent_ndimension;d++){
|
||||
parent_processor_coor[pad+d]=parent._processor_coor[d];
|
||||
parent_processors [pad+d]=parent._processors[d];
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// split the communicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// int Nparent = parent._processors ;
|
||||
// std::cout << " splitting from communicator "<<parent.communicator <<std::endl;
|
||||
int Nparent;
|
||||
MPI_Comm_size(parent.communicator,&Nparent);
|
||||
// std::cout << " Parent size "<<Nparent <<std::endl;
|
||||
|
||||
int childsize=1;
|
||||
for(int d=0;d<processors.size();d++) {
|
||||
childsize *= processors[d];
|
||||
}
|
||||
int Nchild = Nparent/childsize;
|
||||
assert (childsize * Nchild == Nparent);
|
||||
|
||||
// std::cout << " child size "<<childsize <<std::endl;
|
||||
|
||||
std::vector<int> ccoor(_ndimension); // coor within subcommunicator
|
||||
std::vector<int> scoor(_ndimension); // coor of split within parent
|
||||
std::vector<int> ssize(_ndimension); // coor of split within parent
|
||||
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
ccoor[d] = parent_processor_coor[d] % processors[d];
|
||||
scoor[d] = parent_processor_coor[d] / processors[d];
|
||||
ssize[d] = parent_processors[d] / processors[d];
|
||||
}
|
||||
|
||||
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
|
||||
int crank;
|
||||
// Mpi uses the reverse Lexico convention to us; so reversed routines called
|
||||
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
|
||||
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize); // ssize is the number of split grids
|
||||
|
||||
MPI_Comm comm_split;
|
||||
if ( Nchild > 1 ) {
|
||||
|
||||
if(0){
|
||||
std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
|
||||
std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
|
||||
for(int d=0;d<parent._ndimension;d++) std::cout << parent._processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" old rank "<< parent._processor<<" coor ["<< parent._ndimension <<"] ";
|
||||
for(int d=0;d<parent._ndimension;d++) std::cout << parent._processor_coor[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" new split "<< srank<<" scoor ["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << scoor[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" new rank "<< crank<<" coor ["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << ccoor[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Declare victory
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
|
||||
<< Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
|
||||
std::cout << " Split communicator " <<comm_split <<std::endl;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Split the communicator
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
|
||||
assert(ierr==0);
|
||||
|
||||
} else {
|
||||
srank = 0;
|
||||
comm_split = parent.communicator;
|
||||
// std::cout << " Inherited communicator " <<comm_split <<std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set up from the new split communicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
InitFromMPICommunicator(processors,comm_split);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take the right SHM buffers
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
SetCommunicator(comm_split);
|
||||
|
||||
if(0){
|
||||
std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
|
||||
for(int d=0;d<processors.size();d++){
|
||||
std::cout << d<< " " << _processor_coor[d] <<" " << ccoor[d]<<std::endl;
|
||||
}
|
||||
}
|
||||
for(int d=0;d<processors.size();d++){
|
||||
assert(_processor_coor[d] == ccoor[d] );
|
||||
}
|
||||
}
|
||||
|
||||
void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base)
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
_processor_coor.resize(_ndimension);
|
||||
|
||||
/////////////////////////////////
|
||||
// Count the requested nodes
|
||||
/////////////////////////////////
|
||||
_Nprocessors=1;
|
||||
_processors = processors;
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
_Nprocessors*=_processors[i];
|
||||
}
|
||||
|
||||
std::vector<int> periodic(_ndimension,1);
|
||||
MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],0,&communicator);
|
||||
MPI_Comm_rank(communicator,&_processor);
|
||||
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
|
||||
|
||||
if ( 0 && (communicator_base != communicator_world) ) {
|
||||
std::cout << "InitFromMPICommunicator Cartesian communicator created with a non-world communicator"<<std::endl;
|
||||
std::cout << " new communicator rank "<<_processor<< " coor ["<<_ndimension<<"] ";
|
||||
for(int d=0;d<_processors.size();d++){
|
||||
std::cout << _processor_coor[d]<<" ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
int Size;
|
||||
MPI_Comm_size(communicator,&Size);
|
||||
|
||||
communicator_halo.resize (2*_ndimension);
|
||||
for(int i=0;i<_ndimension*2;i++){
|
||||
MPI_Comm_dup(communicator,&communicator_halo[i]);
|
||||
}
|
||||
assert(Size==_Nprocessors);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Assert power of two shm_size.
|
||||
////////////////////////////////////////////////////////////////
|
||||
int log2size = -1;
|
||||
for(int i=0;i<=MAXLOG2RANKSPERNODE;i++){
|
||||
if ( (0x1<<i) == ShmSize ) {
|
||||
log2size = i;
|
||||
break;
|
||||
CartesianCommunicator::~CartesianCommunicator()
|
||||
{
|
||||
int MPI_is_finalised;
|
||||
MPI_Finalized(&MPI_is_finalised);
|
||||
if (communicator && !MPI_is_finalised) {
|
||||
MPI_Comm_free(&communicator);
|
||||
for(int i=0;i<communicator_halo.size();i++){
|
||||
MPI_Comm_free(&communicator_halo[i]);
|
||||
}
|
||||
}
|
||||
assert(log2size != -1);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Identify subblock of ranks on node spreading across dims
|
||||
// in a maximally symmetrical way
|
||||
////////////////////////////////////////////////////////////////
|
||||
std::vector<int> WorldDims = processors;
|
||||
|
||||
ShmDims.resize (_ndimension,1);
|
||||
GroupDims.resize(_ndimension);
|
||||
ShmCoor.resize (_ndimension);
|
||||
GroupCoor.resize(_ndimension);
|
||||
WorldCoor.resize(_ndimension);
|
||||
|
||||
int dim = 0;
|
||||
for(int l2=0;l2<log2size;l2++){
|
||||
while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%_ndimension;
|
||||
ShmDims[dim]*=2;
|
||||
dim=(dim+1)%_ndimension;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish torus of processes and nodes with sub-blockings
|
||||
////////////////////////////////////////////////////////////////
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
GroupDims[d] = WorldDims[d]/ShmDims[d];
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Verbose
|
||||
////////////////////////////////////////////////////////////////
|
||||
#if 0
|
||||
std::cout<< GridLogMessage << "MPI-3 usage "<<std::endl;
|
||||
std::cout<< GridLogMessage << "SHM ";
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
std::cout<< ShmDims[d] <<" ";
|
||||
}
|
||||
std::cout<< std::endl;
|
||||
|
||||
std::cout<< GridLogMessage << "Group ";
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
std::cout<< GroupDims[d] <<" ";
|
||||
}
|
||||
std::cout<< std::endl;
|
||||
|
||||
std::cout<< GridLogMessage<<"World ";
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
std::cout<< WorldDims[d] <<" ";
|
||||
}
|
||||
std::cout<< std::endl;
|
||||
#endif
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Check processor counts match
|
||||
////////////////////////////////////////////////////////////////
|
||||
_Nprocessors=1;
|
||||
_processors = processors;
|
||||
_processor_coor.resize(_ndimension);
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
_Nprocessors*=_processors[i];
|
||||
}
|
||||
assert(WorldSize==_Nprocessors);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish mapping between lexico physics coord and WorldRank
|
||||
////////////////////////////////////////////////////////////////
|
||||
Lexicographic::CoorFromIndex(GroupCoor,GroupRank,GroupDims);
|
||||
Lexicographic::CoorFromIndex(ShmCoor,ShmRank,ShmDims);
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
WorldCoor[d] = GroupCoor[d]*ShmDims[d]+ShmCoor[d];
|
||||
}
|
||||
_processor_coor = WorldCoor;
|
||||
_processor = WorldRank;
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// global sum Lexico to World mapping
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int lexico;
|
||||
LexicographicToWorldRank.resize(WorldSize,0);
|
||||
Lexicographic::IndexFromCoor(WorldCoor,lexico,WorldDims);
|
||||
LexicographicToWorldRank[lexico] = WorldRank;
|
||||
ierr=MPI_Allreduce(MPI_IN_PLACE,&LexicographicToWorldRank[0],WorldSize,MPI_INT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
|
||||
for(int i=0;i<WorldSize;i++){
|
||||
|
||||
int wr = LexicographicToWorldRank[i];
|
||||
// int wr = i;
|
||||
|
||||
std::vector<int> coor(_ndimension);
|
||||
ProcessorCoorFromRank(wr,coor); // from world rank
|
||||
int ck = RankFromProcessorCoor(coor);
|
||||
assert(ck==wr);
|
||||
|
||||
if ( wr == WorldRank ) {
|
||||
for(int j=0;j<coor.size();j++) {
|
||||
assert(coor[j] == _processor_coor[j]);
|
||||
}
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogMessage<< " Lexicographic "<<i;
|
||||
std::cout << " MPI rank "<<wr;
|
||||
std::cout << " Coor ";
|
||||
for(int j=0;j<coor.size();j++) std::cout << coor[j];
|
||||
std::cout<< std::endl;
|
||||
*/
|
||||
/////////////////////////////////////////////////////
|
||||
// Check everyone agrees on everyone elses coords
|
||||
/////////////////////////////////////////////////////
|
||||
std::vector<int> mcoor = coor;
|
||||
this->Broadcast(0,(void *)&mcoor[0],mcoor.size()*sizeof(int));
|
||||
for(int d = 0 ; d< _ndimension; d++) {
|
||||
assert(coor[d] == mcoor[d]);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
@ -712,34 +373,31 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
assert(dir < communicator_halo.size());
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
int ierr;
|
||||
int gdest = GroupRanks[dest];
|
||||
int gfrom = GroupRanks[from];
|
||||
int gme = GroupRanks[_processor];
|
||||
int gdest = ShmRanks[dest];
|
||||
int gfrom = ShmRanks[from];
|
||||
int gme = ShmRanks[_processor];
|
||||
|
||||
assert(dest != _processor);
|
||||
assert(from != _processor);
|
||||
assert(gme == ShmRank);
|
||||
double off_node_bytes=0.0;
|
||||
|
||||
#ifdef FORCE_COMMS
|
||||
gdest = MPI_UNDEFINED;
|
||||
gfrom = MPI_UNDEFINED;
|
||||
#endif
|
||||
if ( gfrom ==MPI_UNDEFINED) {
|
||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[dir],&rrq);
|
||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=bytes;
|
||||
}
|
||||
|
||||
if ( gdest == MPI_UNDEFINED ) {
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[dir],&xrq);
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=bytes;
|
||||
@ -799,5 +457,38 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
std::vector<int> row(_ndimension,1);
|
||||
assert(dim>=0 && dim<_ndimension);
|
||||
|
||||
// Split the communicator
|
||||
row[dim] = _processors[dim];
|
||||
|
||||
int me;
|
||||
CartesianCommunicator Comm(row,*this,me);
|
||||
Comm.AllToAll(in,out,words,bytes);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
// MPI is a pain and uses "int" arguments
|
||||
// 64*64*64*128*16 == 500Million elements of data.
|
||||
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
|
||||
// (Turns up on 32^3 x 64 Gparity too)
|
||||
MPI_Datatype object;
|
||||
int iwords;
|
||||
int ibytes;
|
||||
iwords = words;
|
||||
ibytes = bytes;
|
||||
assert(words == iwords); // safe to cast to int ?
|
||||
assert(bytes == ibytes); // safe to cast to int ?
|
||||
MPI_Type_contiguous(ibytes,MPI_BYTE,&object);
|
||||
MPI_Type_commit(&object);
|
||||
MPI_Alltoall(in,iwords,object,out,iwords,object,communicator);
|
||||
MPI_Type_free(&object);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,988 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/Communicator_mpi.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include "Grid.h"
|
||||
#include <mpi.h>
|
||||
//#include <numaif.h>
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// Workarounds:
|
||||
/// i) bloody mac os doesn't implement unnamed semaphores since it is "optional" posix.
|
||||
/// darwin dispatch semaphores don't seem to be multiprocess.
|
||||
///
|
||||
/// ii) openmpi under --mca shmem posix works with two squadrons per node;
|
||||
/// openmpi under default mca settings (I think --mca shmem mmap) on MacOS makes two squadrons map the SAME
|
||||
/// memory as each other, despite their living on different communicators. This appears to be a bug in OpenMPI.
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#include <semaphore.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <limits.h>
|
||||
typedef sem_t *Grid_semaphore;
|
||||
|
||||
|
||||
#error /*THis is deprecated*/
|
||||
|
||||
#if 0
|
||||
#define SEM_INIT(S) S = sem_open(sem_name,0,0600,0); assert ( S != SEM_FAILED );
|
||||
#define SEM_INIT_EXCL(S) sem_unlink(sem_name); S = sem_open(sem_name,O_CREAT|O_EXCL,0600,0); assert ( S != SEM_FAILED );
|
||||
#define SEM_POST(S) assert ( sem_post(S) == 0 );
|
||||
#define SEM_WAIT(S) assert ( sem_wait(S) == 0 );
|
||||
#else
|
||||
#define SEM_INIT(S) ;
|
||||
#define SEM_INIT_EXCL(S) ;
|
||||
#define SEM_POST(S) ;
|
||||
#define SEM_WAIT(S) ;
|
||||
#endif
|
||||
#include <sys/mman.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
enum { COMMAND_ISEND, COMMAND_IRECV, COMMAND_WAITALL, COMMAND_SENDRECV };
|
||||
|
||||
struct Descriptor {
|
||||
uint64_t buf;
|
||||
size_t bytes;
|
||||
int rank;
|
||||
int tag;
|
||||
int command;
|
||||
uint64_t xbuf;
|
||||
uint64_t rbuf;
|
||||
int xtag;
|
||||
int rtag;
|
||||
int src;
|
||||
int dest;
|
||||
MPI_Request request;
|
||||
};
|
||||
|
||||
const int pool = 48;
|
||||
|
||||
class SlaveState {
|
||||
public:
|
||||
volatile int head;
|
||||
volatile int start;
|
||||
volatile int tail;
|
||||
volatile Descriptor Descrs[pool];
|
||||
};
|
||||
|
||||
class Slave {
|
||||
public:
|
||||
Grid_semaphore sem_head;
|
||||
Grid_semaphore sem_tail;
|
||||
SlaveState *state;
|
||||
MPI_Comm squadron;
|
||||
uint64_t base;
|
||||
int universe_rank;
|
||||
int vertical_rank;
|
||||
char sem_name [NAME_MAX];
|
||||
////////////////////////////////////////////////////////////
|
||||
// Descriptor circular pointers
|
||||
////////////////////////////////////////////////////////////
|
||||
Slave() {};
|
||||
|
||||
void Init(SlaveState * _state,MPI_Comm _squadron,int _universe_rank,int _vertical_rank);
|
||||
|
||||
void SemInit(void) {
|
||||
sprintf(sem_name,"/Grid_mpi3_sem_head_%d",universe_rank);
|
||||
SEM_INIT(sem_head);
|
||||
sprintf(sem_name,"/Grid_mpi3_sem_tail_%d",universe_rank);
|
||||
SEM_INIT(sem_tail);
|
||||
}
|
||||
void SemInitExcl(void) {
|
||||
sprintf(sem_name,"/Grid_mpi3_sem_head_%d",universe_rank);
|
||||
SEM_INIT_EXCL(sem_head);
|
||||
sprintf(sem_name,"/Grid_mpi3_sem_tail_%d",universe_rank);
|
||||
SEM_INIT_EXCL(sem_tail);
|
||||
}
|
||||
void WakeUpDMA(void) {
|
||||
SEM_POST(sem_head);
|
||||
};
|
||||
void WakeUpCompute(void) {
|
||||
SEM_POST(sem_tail);
|
||||
};
|
||||
void WaitForCommand(void) {
|
||||
SEM_WAIT(sem_head);
|
||||
};
|
||||
void WaitForComplete(void) {
|
||||
SEM_WAIT(sem_tail);
|
||||
};
|
||||
void EventLoop (void) {
|
||||
// std::cout<< " Entering event loop "<<std::endl;
|
||||
while(1){
|
||||
WaitForCommand();
|
||||
// std::cout << "Getting command "<<std::endl;
|
||||
#if 0
|
||||
_mm_monitor((void *)&state->head,0,0);
|
||||
int s=state->start;
|
||||
if ( s != state->head ) {
|
||||
_mm_mwait(0,0);
|
||||
}
|
||||
#endif
|
||||
Event();
|
||||
}
|
||||
}
|
||||
|
||||
int Event (void) ;
|
||||
|
||||
uint64_t QueueCommand(int command,void *buf, int bytes, int hashtag, MPI_Comm comm,int u_rank) ;
|
||||
void QueueSendRecv(void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src) ;
|
||||
|
||||
void WaitAll() {
|
||||
// std::cout << "Queueing WAIT command "<<std::endl;
|
||||
QueueCommand(COMMAND_WAITALL,0,0,0,squadron,0);
|
||||
// std::cout << "Waking up DMA "<<std::endl;
|
||||
WakeUpDMA();
|
||||
// std::cout << "Waiting from semaphore "<<std::endl;
|
||||
WaitForComplete();
|
||||
// std::cout << "Checking FIFO is empty "<<std::endl;
|
||||
while ( state->tail != state->head );
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// One instance of a data mover.
|
||||
// Master and Slave must agree on location in shared memory
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class MPIoffloadEngine {
|
||||
public:
|
||||
|
||||
static std::vector<Slave> Slaves;
|
||||
|
||||
static int ShmSetup;
|
||||
|
||||
static int UniverseRank;
|
||||
static int UniverseSize;
|
||||
|
||||
static MPI_Comm communicator_universe;
|
||||
static MPI_Comm communicator_cached;
|
||||
|
||||
static MPI_Comm HorizontalComm;
|
||||
static int HorizontalRank;
|
||||
static int HorizontalSize;
|
||||
|
||||
static MPI_Comm VerticalComm;
|
||||
static MPI_Win VerticalWindow;
|
||||
static int VerticalSize;
|
||||
static int VerticalRank;
|
||||
|
||||
static std::vector<void *> VerticalShmBufs;
|
||||
static std::vector<std::vector<int> > UniverseRanks;
|
||||
static std::vector<int> UserCommunicatorToWorldRanks;
|
||||
|
||||
static MPI_Group WorldGroup, CachedGroup;
|
||||
|
||||
static void CommunicatorInit (MPI_Comm &communicator_world,
|
||||
MPI_Comm &ShmComm,
|
||||
void * &ShmCommBuf);
|
||||
|
||||
static void MapCommRankToWorldRank(int &hashtag, int & comm_world_peer,int tag, MPI_Comm comm,int commrank);
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// routines for master proc must handle any communicator
|
||||
/////////////////////////////////////////////////////////
|
||||
|
||||
static void QueueSend(int slave,void *buf, int bytes, int tag, MPI_Comm comm,int rank) {
|
||||
// std::cout<< " Queueing send "<< bytes<< " slave "<< slave << " to comm "<<rank <<std::endl;
|
||||
Slaves[slave].QueueCommand(COMMAND_ISEND,buf,bytes,tag,comm,rank);
|
||||
// std::cout << "Queued send command to rank "<< rank<< " via "<<slave <<std::endl;
|
||||
Slaves[slave].WakeUpDMA();
|
||||
// std::cout << "Waking up DMA "<< slave<<std::endl;
|
||||
};
|
||||
|
||||
static void QueueSendRecv(int slave,void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src)
|
||||
{
|
||||
Slaves[slave].QueueSendRecv(xbuf,rbuf,bytes,xtag,rtag,comm,dest,src);
|
||||
Slaves[slave].WakeUpDMA();
|
||||
}
|
||||
|
||||
static void QueueRecv(int slave, void *buf, int bytes, int tag, MPI_Comm comm,int rank) {
|
||||
// std::cout<< " Queueing recv "<< bytes<< " slave "<< slave << " from comm "<<rank <<std::endl;
|
||||
Slaves[slave].QueueCommand(COMMAND_IRECV,buf,bytes,tag,comm,rank);
|
||||
// std::cout << "Queued recv command from rank "<< rank<< " via "<<slave <<std::endl;
|
||||
Slaves[slave].WakeUpDMA();
|
||||
// std::cout << "Waking up DMA "<< slave<<std::endl;
|
||||
};
|
||||
|
||||
static void WaitAll() {
|
||||
for(int s=1;s<VerticalSize;s++) {
|
||||
// std::cout << "Waiting for slave "<< s<<std::endl;
|
||||
Slaves[s].WaitAll();
|
||||
}
|
||||
// std::cout << " Wait all Complete "<<std::endl;
|
||||
};
|
||||
|
||||
static void GetWork(int nwork, int me, int & mywork, int & myoff,int units){
|
||||
int basework = nwork/units;
|
||||
int backfill = units-(nwork%units);
|
||||
if ( me >= units ) {
|
||||
mywork = myoff = 0;
|
||||
} else {
|
||||
mywork = (nwork+me)/units;
|
||||
myoff = basework * me;
|
||||
if ( me > backfill )
|
||||
myoff+= (me-backfill);
|
||||
}
|
||||
return;
|
||||
};
|
||||
|
||||
static void QueueRoundRobinSendRecv(void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src) {
|
||||
uint8_t * cxbuf = (uint8_t *) xbuf;
|
||||
uint8_t * crbuf = (uint8_t *) rbuf;
|
||||
static int rrp=0;
|
||||
int procs = VerticalSize-1;
|
||||
int myoff=0;
|
||||
int mywork=bytes;
|
||||
QueueSendRecv(rrp+1,&cxbuf[myoff],&crbuf[myoff],mywork,xtag,rtag,comm,dest,src);
|
||||
rrp = rrp+1;
|
||||
if ( rrp == (VerticalSize-1) ) rrp = 0;
|
||||
}
|
||||
|
||||
static void QueueMultiplexedSendRecv(void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src) {
|
||||
uint8_t * cxbuf = (uint8_t *) xbuf;
|
||||
uint8_t * crbuf = (uint8_t *) rbuf;
|
||||
int mywork, myoff, procs;
|
||||
procs = VerticalSize-1;
|
||||
for(int s=0;s<procs;s++) {
|
||||
GetWork(bytes,s,mywork,myoff,procs);
|
||||
QueueSendRecv(s+1,&cxbuf[myoff],&crbuf[myoff],mywork,xtag,rtag,comm,dest,src);
|
||||
}
|
||||
};
|
||||
static void QueueMultiplexedSend(void *buf, int bytes, int tag, MPI_Comm comm,int rank) {
|
||||
uint8_t * cbuf = (uint8_t *) buf;
|
||||
int mywork, myoff, procs;
|
||||
procs = VerticalSize-1;
|
||||
for(int s=0;s<procs;s++) {
|
||||
GetWork(bytes,s,mywork,myoff,procs);
|
||||
QueueSend(s+1,&cbuf[myoff],mywork,tag,comm,rank);
|
||||
}
|
||||
};
|
||||
|
||||
static void QueueMultiplexedRecv(void *buf, int bytes, int tag, MPI_Comm comm,int rank) {
|
||||
uint8_t * cbuf = (uint8_t *) buf;
|
||||
int mywork, myoff, procs;
|
||||
procs = VerticalSize-1;
|
||||
for(int s=0;s<procs;s++) {
|
||||
GetWork(bytes,s,mywork,myoff,procs);
|
||||
QueueRecv(s+1,&cbuf[myoff],mywork,tag,comm,rank);
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
std::vector<Slave> MPIoffloadEngine::Slaves;
|
||||
|
||||
int MPIoffloadEngine::UniverseRank;
|
||||
int MPIoffloadEngine::UniverseSize;
|
||||
|
||||
MPI_Comm MPIoffloadEngine::communicator_universe;
|
||||
MPI_Comm MPIoffloadEngine::communicator_cached;
|
||||
MPI_Group MPIoffloadEngine::WorldGroup;
|
||||
MPI_Group MPIoffloadEngine::CachedGroup;
|
||||
|
||||
MPI_Comm MPIoffloadEngine::HorizontalComm;
|
||||
int MPIoffloadEngine::HorizontalRank;
|
||||
int MPIoffloadEngine::HorizontalSize;
|
||||
|
||||
MPI_Comm MPIoffloadEngine::VerticalComm;
|
||||
int MPIoffloadEngine::VerticalSize;
|
||||
int MPIoffloadEngine::VerticalRank;
|
||||
MPI_Win MPIoffloadEngine::VerticalWindow;
|
||||
std::vector<void *> MPIoffloadEngine::VerticalShmBufs;
|
||||
std::vector<std::vector<int> > MPIoffloadEngine::UniverseRanks;
|
||||
std::vector<int> MPIoffloadEngine::UserCommunicatorToWorldRanks;
|
||||
|
||||
int CartesianCommunicator::NodeCount(void) { return HorizontalSize;};
|
||||
int MPIoffloadEngine::ShmSetup = 0;
|
||||
|
||||
void MPIoffloadEngine::CommunicatorInit (MPI_Comm &communicator_world,
|
||||
MPI_Comm &ShmComm,
|
||||
void * &ShmCommBuf)
|
||||
{
|
||||
int flag;
|
||||
assert(ShmSetup==0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Universe is all nodes prior to squadron grouping
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_universe);
|
||||
MPI_Comm_rank(communicator_universe,&UniverseRank);
|
||||
MPI_Comm_size(communicator_universe,&UniverseSize);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Split into groups that can share memory (Verticals)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
#undef MPI_SHARED_MEM_DEBUG
|
||||
#ifdef MPI_SHARED_MEM_DEBUG
|
||||
MPI_Comm_split(communicator_universe,(UniverseRank/4),UniverseRank,&VerticalComm);
|
||||
#else
|
||||
MPI_Comm_split_type(communicator_universe, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&VerticalComm);
|
||||
#endif
|
||||
MPI_Comm_rank(VerticalComm ,&VerticalRank);
|
||||
MPI_Comm_size(VerticalComm ,&VerticalSize);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Split into horizontal groups by rank in squadron
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
MPI_Comm_split(communicator_universe,VerticalRank,UniverseRank,&HorizontalComm);
|
||||
MPI_Comm_rank(HorizontalComm,&HorizontalRank);
|
||||
MPI_Comm_size(HorizontalComm,&HorizontalSize);
|
||||
assert(HorizontalSize*VerticalSize==UniverseSize);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// What is my place in the world
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
int WorldRank=0;
|
||||
if(VerticalRank==0) WorldRank = HorizontalRank;
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&WorldRank,1,MPI_INT,MPI_SUM,VerticalComm);
|
||||
assert(ierr==0);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Where is the world in the universe?
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
UniverseRanks = std::vector<std::vector<int> >(HorizontalSize,std::vector<int>(VerticalSize,0));
|
||||
UniverseRanks[WorldRank][VerticalRank] = UniverseRank;
|
||||
for(int w=0;w<HorizontalSize;w++){
|
||||
ierr=MPI_Allreduce(MPI_IN_PLACE,&UniverseRanks[w][0],VerticalSize,MPI_INT,MPI_SUM,communicator_universe);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the shared window for our group, pass back Shm info to CartesianCommunicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
VerticalShmBufs.resize(VerticalSize);
|
||||
|
||||
#undef MPI_SHARED_MEM
|
||||
#ifdef MPI_SHARED_MEM
|
||||
ierr = MPI_Win_allocate_shared(CartesianCommunicator::MAX_MPI_SHM_BYTES,1,MPI_INFO_NULL,VerticalComm,&ShmCommBuf,&VerticalWindow);
|
||||
ierr|= MPI_Win_lock_all (MPI_MODE_NOCHECK, VerticalWindow);
|
||||
assert(ierr==0);
|
||||
// std::cout<<"SHM "<<ShmCommBuf<<std::endl;
|
||||
|
||||
for(int r=0;r<VerticalSize;r++){
|
||||
MPI_Aint sz;
|
||||
int dsp_unit;
|
||||
MPI_Win_shared_query (VerticalWindow, r, &sz, &dsp_unit, &VerticalShmBufs[r]);
|
||||
// std::cout<<"SHM "<<r<<" " <<VerticalShmBufs[r]<<std::endl;
|
||||
}
|
||||
#else
|
||||
char shm_name [NAME_MAX];
|
||||
MPI_Barrier(VerticalComm);
|
||||
|
||||
if ( VerticalRank == 0 ) {
|
||||
for(int r=0;r<VerticalSize;r++){
|
||||
|
||||
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
|
||||
if ( r>0 ) size = sizeof(SlaveState);
|
||||
|
||||
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",WorldRank,r);
|
||||
|
||||
shm_unlink(shm_name);
|
||||
|
||||
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0600);
|
||||
if ( fd < 0 ) {
|
||||
perror("failed shm_open");
|
||||
assert(0);
|
||||
}
|
||||
|
||||
ftruncate(fd, size);
|
||||
|
||||
VerticalShmBufs[r] = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
||||
if ( VerticalShmBufs[r] == MAP_FAILED ) {
|
||||
perror("failed mmap");
|
||||
assert(0);
|
||||
}
|
||||
|
||||
/*
|
||||
for(uint64_t page=0;page<size;page+=4096){
|
||||
void *pages = (void *) ( page + (uint64_t)VerticalShmBufs[r] );
|
||||
int status;
|
||||
int flags=MPOL_MF_MOVE_ALL;
|
||||
int nodes=1; // numa domain == MCDRAM
|
||||
unsigned long count=1;
|
||||
ierr= move_pages(0,count, &pages,&nodes,&status,flags);
|
||||
if (ierr && (page==0)) perror("numa relocate command failed");
|
||||
}
|
||||
*/
|
||||
uint64_t * check = (uint64_t *) VerticalShmBufs[r];
|
||||
check[0] = WorldRank;
|
||||
check[1] = r;
|
||||
|
||||
// std::cout<<"SHM "<<r<<" " <<VerticalShmBufs[r]<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
MPI_Barrier(VerticalComm);
|
||||
|
||||
if ( VerticalRank != 0 ) {
|
||||
for(int r=0;r<VerticalSize;r++){
|
||||
|
||||
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES ;
|
||||
if ( r>0 ) size = sizeof(SlaveState);
|
||||
|
||||
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",WorldRank,r);
|
||||
|
||||
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0600);
|
||||
if ( fd<0 ) {
|
||||
perror("failed shm_open");
|
||||
assert(0);
|
||||
}
|
||||
VerticalShmBufs[r] = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
||||
|
||||
uint64_t * check = (uint64_t *) VerticalShmBufs[r];
|
||||
assert(check[0]== WorldRank);
|
||||
assert(check[1]== r);
|
||||
// std::cerr<<"SHM "<<r<<" " <<VerticalShmBufs[r]<<std::endl;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
MPI_Barrier(VerticalComm);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Map rank of leader on node in their in new world, to the
|
||||
// rank in this vertical plane's horizontal communicator
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
communicator_world = HorizontalComm;
|
||||
ShmComm = VerticalComm;
|
||||
ShmCommBuf = VerticalShmBufs[0];
|
||||
MPI_Comm_group (communicator_world, &WorldGroup);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Start the slave data movers
|
||||
///////////////////////////////////////////////////////////
|
||||
if ( VerticalRank != 0 ) {
|
||||
Slave indentured;
|
||||
indentured.Init( (SlaveState *) VerticalShmBufs[VerticalRank], VerticalComm, UniverseRank,VerticalRank);
|
||||
indentured.SemInitExcl();// init semaphore in shared memory
|
||||
MPI_Barrier(VerticalComm);
|
||||
MPI_Barrier(VerticalComm);
|
||||
indentured.EventLoop();
|
||||
assert(0);
|
||||
} else {
|
||||
Slaves.resize(VerticalSize);
|
||||
for(int i=1;i<VerticalSize;i++){
|
||||
Slaves[i].Init((SlaveState *)VerticalShmBufs[i],VerticalComm, UniverseRanks[HorizontalRank][i],i);
|
||||
}
|
||||
MPI_Barrier(VerticalComm);
|
||||
for(int i=1;i<VerticalSize;i++){
|
||||
Slaves[i].SemInit();// init semaphore in shared memory
|
||||
}
|
||||
MPI_Barrier(VerticalComm);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Verbose for now
|
||||
///////////////////////////////////////////////////////////
|
||||
|
||||
ShmSetup=1;
|
||||
|
||||
if (UniverseRank == 0){
|
||||
|
||||
std::cout<<GridLogMessage << "Grid MPI-3 configuration: detected ";
|
||||
std::cout<<UniverseSize << " Ranks " ;
|
||||
std::cout<<HorizontalSize << " Nodes " ;
|
||||
std::cout<<VerticalSize << " with ranks-per-node "<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage << "Grid MPI-3 configuration: using one lead process per node " << std::endl;
|
||||
std::cout<<GridLogMessage << "Grid MPI-3 configuration: reduced communicator has size " << HorizontalSize << std::endl;
|
||||
|
||||
for(int g=0;g<HorizontalSize;g++){
|
||||
std::cout<<GridLogMessage<<" Node "<<g<<" led by MPI rank "<< UniverseRanks[g][0]<<std::endl;
|
||||
}
|
||||
|
||||
for(int g=0;g<HorizontalSize;g++){
|
||||
std::cout<<GridLogMessage<<" { ";
|
||||
for(int s=0;s<VerticalSize;s++){
|
||||
std::cout<< UniverseRanks[g][s];
|
||||
if ( s<VerticalSize-1 ) {
|
||||
std::cout<<",";
|
||||
}
|
||||
}
|
||||
std::cout<<" } "<<std::endl;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Map the communicator into communicator_world, and find the neighbour.
|
||||
// Cache the mappings; cache size is 1.
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void MPIoffloadEngine::MapCommRankToWorldRank(int &hashtag, int & comm_world_peer,int tag, MPI_Comm comm,int rank) {
|
||||
|
||||
if ( comm == HorizontalComm ) {
|
||||
comm_world_peer = rank;
|
||||
// std::cout << " MapCommRankToWorldRank horiz " <<rank<<"->"<<comm_world_peer<<std::endl;
|
||||
} else if ( comm == communicator_cached ) {
|
||||
comm_world_peer = UserCommunicatorToWorldRanks[rank];
|
||||
// std::cout << " MapCommRankToWorldRank cached " <<rank<<"->"<<comm_world_peer<<std::endl;
|
||||
} else {
|
||||
|
||||
int size;
|
||||
|
||||
MPI_Comm_size(comm,&size);
|
||||
|
||||
UserCommunicatorToWorldRanks.resize(size);
|
||||
|
||||
std::vector<int> cached_ranks(size);
|
||||
|
||||
for(int r=0;r<size;r++) {
|
||||
cached_ranks[r]=r;
|
||||
}
|
||||
|
||||
communicator_cached=comm;
|
||||
|
||||
MPI_Comm_group(communicator_cached, &CachedGroup);
|
||||
|
||||
MPI_Group_translate_ranks(CachedGroup,size,&cached_ranks[0],WorldGroup, &UserCommunicatorToWorldRanks[0]);
|
||||
|
||||
comm_world_peer = UserCommunicatorToWorldRanks[rank];
|
||||
// std::cout << " MapCommRankToWorldRank cache miss " <<rank<<"->"<<comm_world_peer<<std::endl;
|
||||
|
||||
assert(comm_world_peer != MPI_UNDEFINED);
|
||||
}
|
||||
|
||||
assert( (tag & (~0xFFFFL)) ==0);
|
||||
|
||||
uint64_t icomm = (uint64_t)comm;
|
||||
int comm_hash = ((icomm>>0 )&0xFFFF)^((icomm>>16)&0xFFFF)
|
||||
^ ((icomm>>32)&0xFFFF)^((icomm>>48)&0xFFFF);
|
||||
|
||||
// hashtag = (comm_hash<<15) | tag;
|
||||
hashtag = tag;
|
||||
|
||||
};
|
||||
|
||||
void Slave::Init(SlaveState * _state,MPI_Comm _squadron,int _universe_rank,int _vertical_rank)
|
||||
{
|
||||
squadron=_squadron;
|
||||
universe_rank=_universe_rank;
|
||||
vertical_rank=_vertical_rank;
|
||||
state =_state;
|
||||
// std::cout << "state "<<_state<<" comm "<<_squadron<<" universe_rank"<<universe_rank <<std::endl;
|
||||
state->head = state->tail = state->start = 0;
|
||||
base = (uint64_t)MPIoffloadEngine::VerticalShmBufs[0];
|
||||
int rank; MPI_Comm_rank(_squadron,&rank);
|
||||
}
|
||||
#define PERI_PLUS(A) ( (A+1)%pool )
|
||||
int Slave::Event (void) {
|
||||
|
||||
static int tail_last;
|
||||
static int head_last;
|
||||
static int start_last;
|
||||
int ierr;
|
||||
MPI_Status stat;
|
||||
static int i=0;
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Try to advance the start pointers
|
||||
////////////////////////////////////////////////////
|
||||
int s=state->start;
|
||||
if ( s != state->head ) {
|
||||
switch ( state->Descrs[s].command ) {
|
||||
case COMMAND_ISEND:
|
||||
ierr = MPI_Isend((void *)(state->Descrs[s].buf+base),
|
||||
state->Descrs[s].bytes,
|
||||
MPI_CHAR,
|
||||
state->Descrs[s].rank,
|
||||
state->Descrs[s].tag,
|
||||
MPIoffloadEngine::communicator_universe,
|
||||
(MPI_Request *)&state->Descrs[s].request);
|
||||
assert(ierr==0);
|
||||
state->start = PERI_PLUS(s);
|
||||
return 1;
|
||||
break;
|
||||
|
||||
case COMMAND_IRECV:
|
||||
ierr=MPI_Irecv((void *)(state->Descrs[s].buf+base),
|
||||
state->Descrs[s].bytes,
|
||||
MPI_CHAR,
|
||||
state->Descrs[s].rank,
|
||||
state->Descrs[s].tag,
|
||||
MPIoffloadEngine::communicator_universe,
|
||||
(MPI_Request *)&state->Descrs[s].request);
|
||||
|
||||
// std::cout<< " Request is "<<state->Descrs[s].request<<std::endl;
|
||||
// std::cout<< " Request0 is "<<state->Descrs[0].request<<std::endl;
|
||||
assert(ierr==0);
|
||||
state->start = PERI_PLUS(s);
|
||||
return 1;
|
||||
break;
|
||||
|
||||
case COMMAND_SENDRECV:
|
||||
|
||||
// fprintf(stderr,"Sendrecv ->%d %d : <-%d %d \n",state->Descrs[s].dest, state->Descrs[s].xtag+i*10,state->Descrs[s].src, state->Descrs[s].rtag+i*10);
|
||||
|
||||
ierr=MPI_Sendrecv((void *)(state->Descrs[s].xbuf+base), state->Descrs[s].bytes, MPI_CHAR, state->Descrs[s].dest, state->Descrs[s].xtag+i*10,
|
||||
(void *)(state->Descrs[s].rbuf+base), state->Descrs[s].bytes, MPI_CHAR, state->Descrs[s].src , state->Descrs[s].rtag+i*10,
|
||||
MPIoffloadEngine::communicator_universe,MPI_STATUS_IGNORE);
|
||||
|
||||
assert(ierr==0);
|
||||
|
||||
// fprintf(stderr,"Sendrecv done %d %d\n",ierr,i);
|
||||
// MPI_Barrier(MPIoffloadEngine::HorizontalComm);
|
||||
// fprintf(stderr,"Barrier\n");
|
||||
i++;
|
||||
|
||||
state->start = PERI_PLUS(s);
|
||||
|
||||
return 1;
|
||||
break;
|
||||
|
||||
case COMMAND_WAITALL:
|
||||
|
||||
for(int t=state->tail;t!=s; t=PERI_PLUS(t) ){
|
||||
if ( state->Descrs[t].command != COMMAND_SENDRECV ) {
|
||||
MPI_Wait((MPI_Request *)&state->Descrs[t].request,MPI_STATUS_IGNORE);
|
||||
}
|
||||
};
|
||||
s=PERI_PLUS(s);
|
||||
state->start = s;
|
||||
state->tail = s;
|
||||
|
||||
WakeUpCompute();
|
||||
|
||||
return 1;
|
||||
break;
|
||||
|
||||
default:
|
||||
assert(0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// External interaction with the queue
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void Slave::QueueSendRecv(void *xbuf, void *rbuf, int bytes, int xtag, int rtag, MPI_Comm comm,int dest,int src)
|
||||
{
|
||||
int head =state->head;
|
||||
int next = PERI_PLUS(head);
|
||||
|
||||
// Set up descriptor
|
||||
int worldrank;
|
||||
int hashtag;
|
||||
MPI_Comm communicator;
|
||||
MPI_Request request;
|
||||
uint64_t relative;
|
||||
|
||||
relative = (uint64_t)xbuf - base;
|
||||
state->Descrs[head].xbuf = relative;
|
||||
|
||||
relative= (uint64_t)rbuf - base;
|
||||
state->Descrs[head].rbuf = relative;
|
||||
|
||||
state->Descrs[head].bytes = bytes;
|
||||
|
||||
MPIoffloadEngine::MapCommRankToWorldRank(hashtag,worldrank,xtag,comm,dest);
|
||||
state->Descrs[head].dest = MPIoffloadEngine::UniverseRanks[worldrank][vertical_rank];
|
||||
state->Descrs[head].xtag = hashtag;
|
||||
|
||||
MPIoffloadEngine::MapCommRankToWorldRank(hashtag,worldrank,rtag,comm,src);
|
||||
state->Descrs[head].src = MPIoffloadEngine::UniverseRanks[worldrank][vertical_rank];
|
||||
state->Descrs[head].rtag = hashtag;
|
||||
|
||||
state->Descrs[head].command= COMMAND_SENDRECV;
|
||||
|
||||
// Block until FIFO has space
|
||||
while( state->tail==next );
|
||||
|
||||
// Msync on weak order architectures
|
||||
|
||||
// Advance pointer
|
||||
state->head = next;
|
||||
|
||||
};
|
||||
uint64_t Slave::QueueCommand(int command,void *buf, int bytes, int tag, MPI_Comm comm,int commrank)
|
||||
{
|
||||
/////////////////////////////////////////
|
||||
// Spin; if FIFO is full until not full
|
||||
/////////////////////////////////////////
|
||||
int head =state->head;
|
||||
int next = PERI_PLUS(head);
|
||||
|
||||
// Set up descriptor
|
||||
int worldrank;
|
||||
int hashtag;
|
||||
MPI_Comm communicator;
|
||||
MPI_Request request;
|
||||
|
||||
MPIoffloadEngine::MapCommRankToWorldRank(hashtag,worldrank,tag,comm,commrank);
|
||||
|
||||
uint64_t relative= (uint64_t)buf - base;
|
||||
state->Descrs[head].buf = relative;
|
||||
state->Descrs[head].bytes = bytes;
|
||||
state->Descrs[head].rank = MPIoffloadEngine::UniverseRanks[worldrank][vertical_rank];
|
||||
state->Descrs[head].tag = hashtag;
|
||||
state->Descrs[head].command= command;
|
||||
|
||||
/*
|
||||
if ( command == COMMAND_ISEND ) {
|
||||
std::cout << "QueueSend from "<< universe_rank <<" to commrank " << commrank
|
||||
<< " to worldrank " << worldrank <<std::endl;
|
||||
std::cout << " via VerticalRank "<< vertical_rank <<" to universerank " << MPIoffloadEngine::UniverseRanks[worldrank][vertical_rank]<<std::endl;
|
||||
std::cout << " QueueCommand "<<buf<<"["<<bytes<<"]" << std::endl;
|
||||
}
|
||||
if ( command == COMMAND_IRECV ) {
|
||||
std::cout << "QueueRecv on "<< universe_rank <<" from commrank " << commrank
|
||||
<< " from worldrank " << worldrank <<std::endl;
|
||||
std::cout << " via VerticalRank "<< vertical_rank <<" from universerank " << MPIoffloadEngine::UniverseRanks[worldrank][vertical_rank]<<std::endl;
|
||||
std::cout << " QueueSend "<<buf<<"["<<bytes<<"]" << std::endl;
|
||||
}
|
||||
*/
|
||||
// Block until FIFO has space
|
||||
while( state->tail==next );
|
||||
|
||||
// Msync on weak order architectures
|
||||
// Advance pointer
|
||||
state->head = next;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
MPI_Comm CartesianCommunicator::communicator_world;
|
||||
|
||||
void CartesianCommunicator::Init(int *argc, char ***argv)
|
||||
{
|
||||
int flag;
|
||||
MPI_Initialized(&flag); // needed to coexist with other libs apparently
|
||||
if ( !flag ) {
|
||||
MPI_Init(argc,argv);
|
||||
}
|
||||
communicator_world = MPI_COMM_WORLD;
|
||||
MPI_Comm ShmComm;
|
||||
MPIoffloadEngine::CommunicatorInit (communicator_world,ShmComm,ShmCommBuf);
|
||||
}
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||
{
|
||||
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
|
||||
assert(ierr==0);
|
||||
}
|
||||
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
|
||||
{
|
||||
int rank;
|
||||
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
|
||||
assert(ierr==0);
|
||||
return rank;
|
||||
}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
|
||||
{
|
||||
coor.resize(_ndimension);
|
||||
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
std::vector<int> periodic(_ndimension,1);
|
||||
|
||||
_Nprocessors=1;
|
||||
_processors = processors;
|
||||
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
_Nprocessors*=_processors[i];
|
||||
}
|
||||
|
||||
int Size;
|
||||
MPI_Comm_size(communicator_world,&Size);
|
||||
assert(Size==_Nprocessors);
|
||||
|
||||
_processor_coor.resize(_ndimension);
|
||||
MPI_Cart_create(communicator_world, _ndimension,&_processors[0],&periodic[0],1,&communicator);
|
||||
MPI_Comm_rank (communicator,&_processor);
|
||||
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
|
||||
};
|
||||
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
||||
{
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
std::vector<CommsRequest_t> reqs(0);
|
||||
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
|
||||
SendToRecvFromComplete(reqs);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendRecvPacket(void *xmit,
|
||||
void *recv,
|
||||
int sender,
|
||||
int receiver,
|
||||
int bytes)
|
||||
{
|
||||
MPI_Status stat;
|
||||
assert(sender != receiver);
|
||||
int tag = sender;
|
||||
if ( _processor == sender ) {
|
||||
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
|
||||
}
|
||||
if ( _processor == receiver ) {
|
||||
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
|
||||
}
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
int rank = _processor;
|
||||
int ierr;
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
|
||||
ierr|=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
|
||||
|
||||
assert(ierr==0);
|
||||
|
||||
list.push_back(xrq);
|
||||
list.push_back(rrq);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
uint64_t xmit_i = (uint64_t) xmit;
|
||||
uint64_t recv_i = (uint64_t) recv;
|
||||
uint64_t shm = (uint64_t) ShmCommBuf;
|
||||
// assert xmit and recv lie in shared memory region
|
||||
assert( (xmit_i >= shm) && (xmit_i+bytes <= shm+MAX_MPI_SHM_BYTES) );
|
||||
assert( (recv_i >= shm) && (recv_i+bytes <= shm+MAX_MPI_SHM_BYTES) );
|
||||
assert(from!=_processor);
|
||||
assert(dest!=_processor);
|
||||
|
||||
MPIoffloadEngine::QueueMultiplexedSendRecv(xmit,recv,bytes,_processor,from,communicator,dest,from);
|
||||
|
||||
//MPIoffloadEngine::QueueRoundRobinSendRecv(xmit,recv,bytes,_processor,from,communicator,dest,from);
|
||||
|
||||
//MPIoffloadEngine::QueueMultiplexedSend(xmit,bytes,_processor,communicator,dest);
|
||||
//MPIoffloadEngine::QueueMultiplexedRecv(recv,bytes,from,communicator,from);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
MPIoffloadEngine::WaitAll();
|
||||
//this->Barrier();
|
||||
}
|
||||
|
||||
void CartesianCommunicator::StencilBarrier(void) { }
|
||||
|
||||
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
int nreq=list.size();
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::Barrier(void)
|
||||
{
|
||||
int ierr = MPI_Barrier(communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
{
|
||||
int ierr=MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
{
|
||||
int ierr= MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator_world);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void *CartesianCommunicator::ShmBufferSelf(void) { return ShmCommBuf; }
|
||||
|
||||
void *CartesianCommunicator::ShmBuffer(int rank) {
|
||||
return NULL;
|
||||
}
|
||||
void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
@ -1,259 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/Communicator_mpi.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/GridQCDcore.h>
|
||||
#include <Grid/qcd/action/ActionCore.h>
|
||||
#include <mpi.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Comm CartesianCommunicator::communicator_world;
|
||||
|
||||
// Should error check all MPI calls.
|
||||
void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
int flag;
|
||||
int provided;
|
||||
MPI_Initialized(&flag); // needed to coexist with other libs apparently
|
||||
if ( !flag ) {
|
||||
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
|
||||
if ( provided != MPI_THREAD_MULTIPLE ) {
|
||||
QCD::WilsonKernelsStatic::Comms = QCD::WilsonKernelsStatic::CommsThenCompute;
|
||||
}
|
||||
}
|
||||
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
|
||||
ShmInitGeneric();
|
||||
}
|
||||
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
||||
{
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||
{
|
||||
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
|
||||
assert(ierr==0);
|
||||
}
|
||||
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
|
||||
{
|
||||
int rank;
|
||||
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
|
||||
assert(ierr==0);
|
||||
return rank;
|
||||
}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
|
||||
{
|
||||
coor.resize(_ndimension);
|
||||
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
std::vector<CommsRequest_t> reqs(0);
|
||||
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
|
||||
SendToRecvFromComplete(reqs);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendRecvPacket(void *xmit,
|
||||
void *recv,
|
||||
int sender,
|
||||
int receiver,
|
||||
int bytes)
|
||||
{
|
||||
MPI_Status stat;
|
||||
assert(sender != receiver);
|
||||
int tag = sender;
|
||||
if ( _processor == sender ) {
|
||||
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
|
||||
}
|
||||
if ( _processor == receiver ) {
|
||||
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
|
||||
}
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
|
||||
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
|
||||
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
list.push_back(rrq);
|
||||
} else {
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
|
||||
recv,bytes,MPI_CHAR,from, from,
|
||||
communicator,MPI_STATUS_IGNORE);
|
||||
assert(ierr==0);
|
||||
}
|
||||
}
|
||||
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
|
||||
int nreq=list.size();
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
}
|
||||
}
|
||||
|
||||
void CartesianCommunicator::Barrier(void)
|
||||
{
|
||||
int ierr = MPI_Barrier(communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
{
|
||||
int ierr=MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
///////////////////////////////////////////////////////
|
||||
// Should only be used prior to Grid Init finished.
|
||||
// Check for this?
|
||||
///////////////////////////////////////////////////////
|
||||
int CartesianCommunicator::RankWorld(void){
|
||||
int r;
|
||||
MPI_Comm_rank(communicator_world,&r);
|
||||
return r;
|
||||
}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
{
|
||||
int ierr= MPI_Bcast(data,
|
||||
bytes,
|
||||
MPI_BYTE,
|
||||
root,
|
||||
communicator_world);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes,int dir)
|
||||
{
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
assert(dir < communicator_halo.size());
|
||||
|
||||
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
MPI_Request req[2];
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
|
||||
|
||||
list.push_back(req[0]);
|
||||
list.push_back(req[1]);
|
||||
return 2.0*bytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
||||
{
|
||||
int nreq=waitall.size();
|
||||
MPI_Waitall(nreq, &waitall[0], MPI_STATUSES_IGNORE);
|
||||
};
|
||||
double CartesianCommunicator::StencilSendToRecvFrom(void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes,int dir)
|
||||
{
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
assert(dir < communicator_halo.size());
|
||||
|
||||
// std::cout << " sending on communicator "<<dir<<" " <<communicator_halo[dir]<<std::endl;
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
MPI_Request req[2];
|
||||
MPI_Irecv(recv,bytes,MPI_CHAR,recv_from_rank,recv_from_rank, communicator_halo[dir],&req[1]);
|
||||
MPI_Isend(xmit,bytes,MPI_CHAR,xmit_to_rank ,myrank , communicator_halo[dir],&req[0]);
|
||||
MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
|
||||
return 2.0*bytes;
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
@ -32,14 +32,22 @@ namespace Grid {
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
||||
|
||||
void CartesianCommunicator::Init(int *argc, char *** arv)
|
||||
{
|
||||
ShmInitGeneric();
|
||||
GlobalSharedMemory::Init(communicator_world);
|
||||
GlobalSharedMemory::SharedMemoryAllocate(
|
||||
GlobalSharedMemory::MAX_MPI_SHM_BYTES,
|
||||
GlobalSharedMemory::Hugepages);
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent)
|
||||
: CartesianCommunicator(processors) {}
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent,int &srank)
|
||||
: CartesianCommunicator(processors)
|
||||
{
|
||||
srank=0;
|
||||
SetCommunicator(communicator_world);
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
@ -54,8 +62,11 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
assert(_processors[d]==1);
|
||||
_processor_coor[d] = 0;
|
||||
}
|
||||
SetCommunicator(communicator_world);
|
||||
}
|
||||
|
||||
CartesianCommunicator::~CartesianCommunicator(){}
|
||||
|
||||
void CartesianCommunicator::GlobalSum(float &){}
|
||||
void CartesianCommunicator::GlobalSumVector(float *,int N){}
|
||||
void CartesianCommunicator::GlobalSum(double &){}
|
||||
@ -98,6 +109,14 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
bcopy(in,out,bytes*words);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
bcopy(in,out,bytes*words);
|
||||
}
|
||||
|
||||
int CartesianCommunicator::RankWorld(void){return 0;}
|
||||
void CartesianCommunicator::Barrier(void){}
|
||||
@ -111,6 +130,36 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
|
||||
dest=0;
|
||||
}
|
||||
|
||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes, int dir)
|
||||
{
|
||||
std::vector<CommsRequest_t> list;
|
||||
// Discard the "dir"
|
||||
SendToRecvFromBegin (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
|
||||
SendToRecvFromComplete(list);
|
||||
return 2.0*bytes;
|
||||
}
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes, int dir)
|
||||
{
|
||||
// Discard the "dir"
|
||||
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
|
||||
return 2.0*bytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
||||
{
|
||||
SendToRecvFromComplete(waitall);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::StencilBarrier(void){};
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,355 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/Communicator_shmem.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <mpp/shmem.h>
|
||||
#include <array>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
// Should error check all MPI calls.
|
||||
#define SHMEM_VET(addr)
|
||||
|
||||
#define SHMEM_VET_DEBUG(addr) { \
|
||||
if ( ! shmem_addr_accessible(addr,_processor) ) {\
|
||||
std::fprintf(stderr,"%d Inaccessible shmem address %lx %s %s\n",_processor,addr,__FUNCTION__,#addr); \
|
||||
BACKTRACEFILE(); \
|
||||
}\
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
typedef struct HandShake_t {
|
||||
uint64_t seq_local;
|
||||
uint64_t seq_remote;
|
||||
} HandShake;
|
||||
|
||||
std::array<long,_SHMEM_REDUCE_SYNC_SIZE> make_psync_init(void) {
|
||||
std::array<long,_SHMEM_REDUCE_SYNC_SIZE> ret;
|
||||
ret.fill(SHMEM_SYNC_VALUE);
|
||||
return ret;
|
||||
}
|
||||
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync_init = make_psync_init();
|
||||
|
||||
static Vector< HandShake > XConnections;
|
||||
static Vector< HandShake > RConnections;
|
||||
|
||||
void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
shmem_init();
|
||||
XConnections.resize(shmem_n_pes());
|
||||
RConnections.resize(shmem_n_pes());
|
||||
for(int pe =0 ; pe<shmem_n_pes();pe++){
|
||||
XConnections[pe].seq_local = 0;
|
||||
XConnections[pe].seq_remote= 0;
|
||||
RConnections[pe].seq_local = 0;
|
||||
RConnections[pe].seq_remote= 0;
|
||||
}
|
||||
shmem_barrier_all();
|
||||
ShmInitGeneric();
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent)
|
||||
: CartesianCommunicator(processors)
|
||||
{
|
||||
std::cout << "Attempts to split SHMEM communicators will fail " <<std::endl;
|
||||
}
|
||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
|
||||
{
|
||||
_ndimension = processors.size();
|
||||
std::vector<int> periodic(_ndimension,1);
|
||||
|
||||
_Nprocessors=1;
|
||||
_processors = processors;
|
||||
_processor_coor.resize(_ndimension);
|
||||
|
||||
_processor = shmem_my_pe();
|
||||
|
||||
Lexicographic::CoorFromIndex(_processor_coor,_processor,_processors);
|
||||
|
||||
for(int i=0;i<_ndimension;i++){
|
||||
_Nprocessors*=_processors[i];
|
||||
}
|
||||
|
||||
int Size = shmem_n_pes();
|
||||
|
||||
|
||||
assert(Size==_Nprocessors);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
static long long source ;
|
||||
static long long dest ;
|
||||
static long long llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
|
||||
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync = psync_init;
|
||||
|
||||
// int nreduce=1;
|
||||
// int pestart=0;
|
||||
// int logStride=0;
|
||||
|
||||
source = u;
|
||||
dest = 0;
|
||||
shmem_longlong_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
|
||||
shmem_barrier_all(); // necessary?
|
||||
u = dest;
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||
static long long source ;
|
||||
static long long dest ;
|
||||
static long long llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
|
||||
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync = psync_init;
|
||||
|
||||
// int nreduce=1;
|
||||
// int pestart=0;
|
||||
// int logStride=0;
|
||||
|
||||
source = u;
|
||||
dest = 0;
|
||||
shmem_longlong_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
|
||||
shmem_barrier_all(); // necessary?
|
||||
u = dest;
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
static float source ;
|
||||
static float dest ;
|
||||
static float llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
|
||||
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync = psync_init;
|
||||
|
||||
source = f;
|
||||
dest =0.0;
|
||||
shmem_float_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
|
||||
shmem_barrier_all();
|
||||
f = dest;
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(float *f,int N)
|
||||
{
|
||||
static float source ;
|
||||
static float dest = 0 ;
|
||||
static float llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
|
||||
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync = psync_init;
|
||||
|
||||
if ( shmem_addr_accessible(f,_processor) ){
|
||||
shmem_float_sum_to_all(f,f,N,0,0,_Nprocessors,llwrk,psync.data());
|
||||
shmem_barrier_all();
|
||||
return;
|
||||
}
|
||||
|
||||
for(int i=0;i<N;i++){
|
||||
dest =0.0;
|
||||
source = f[i];
|
||||
shmem_float_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
|
||||
shmem_barrier_all();
|
||||
f[i] = dest;
|
||||
}
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(double &d)
|
||||
{
|
||||
static double source;
|
||||
static double dest ;
|
||||
static double llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
|
||||
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync = psync_init;
|
||||
|
||||
source = d;
|
||||
dest = 0;
|
||||
shmem_double_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
|
||||
shmem_barrier_all();
|
||||
d = dest;
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
{
|
||||
static double source ;
|
||||
static double dest ;
|
||||
static double llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
|
||||
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync = psync_init;
|
||||
|
||||
|
||||
if ( shmem_addr_accessible(d,_processor) ){
|
||||
shmem_double_sum_to_all(d,d,N,0,0,_Nprocessors,llwrk,psync.data());
|
||||
shmem_barrier_all();
|
||||
return;
|
||||
}
|
||||
|
||||
for(int i=0;i<N;i++){
|
||||
source = d[i];
|
||||
dest =0.0;
|
||||
shmem_double_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync.data());
|
||||
shmem_barrier_all();
|
||||
d[i] = dest;
|
||||
}
|
||||
}
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||
{
|
||||
std::vector<int> coor = _processor_coor;
|
||||
|
||||
assert(std::abs(shift) <_processors[dim]);
|
||||
|
||||
coor[dim] = (_processor_coor[dim] + shift + _processors[dim])%_processors[dim];
|
||||
Lexicographic::IndexFromCoor(coor,source,_processors);
|
||||
|
||||
coor[dim] = (_processor_coor[dim] - shift + _processors[dim])%_processors[dim];
|
||||
Lexicographic::IndexFromCoor(coor,dest,_processors);
|
||||
|
||||
}
|
||||
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
|
||||
{
|
||||
int rank;
|
||||
Lexicographic::IndexFromCoor(coor,rank,_processors);
|
||||
return rank;
|
||||
}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
|
||||
{
|
||||
Lexicographic::CoorFromIndex(coor,rank,_processors);
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
SHMEM_VET(xmit);
|
||||
SHMEM_VET(recv);
|
||||
std::vector<CommsRequest_t> reqs(0);
|
||||
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
|
||||
SendToRecvFromComplete(reqs);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendRecvPacket(void *xmit,
|
||||
void *recv,
|
||||
int sender,
|
||||
int receiver,
|
||||
int bytes)
|
||||
{
|
||||
static uint64_t seq;
|
||||
|
||||
assert(recv!=xmit);
|
||||
volatile HandShake *RecvSeq = (volatile HandShake *) & RConnections[sender];
|
||||
volatile HandShake *SendSeq = (volatile HandShake *) & XConnections[receiver];
|
||||
|
||||
if ( _processor == sender ) {
|
||||
|
||||
// Check he has posted a receive
|
||||
while(SendSeq->seq_remote == SendSeq->seq_local);
|
||||
|
||||
// Advance our send count
|
||||
seq = ++(SendSeq->seq_local);
|
||||
|
||||
// Send this packet
|
||||
SHMEM_VET(recv);
|
||||
shmem_putmem(recv,xmit,bytes,receiver);
|
||||
shmem_fence();
|
||||
|
||||
//Notify him we're done
|
||||
shmem_putmem((void *)&(RecvSeq->seq_remote),&seq,sizeof(seq),receiver);
|
||||
shmem_fence();
|
||||
}
|
||||
if ( _processor == receiver ) {
|
||||
|
||||
// Post a receive
|
||||
seq = ++(RecvSeq->seq_local);
|
||||
shmem_putmem((void *)&(SendSeq->seq_remote),&seq,sizeof(seq),sender);
|
||||
|
||||
// Now wait until he has advanced our reception counter
|
||||
while(RecvSeq->seq_remote != RecvSeq->seq_local);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
SHMEM_VET(xmit);
|
||||
SHMEM_VET(recv);
|
||||
// shmem_putmem_nb(recv,xmit,bytes,dest,NULL);
|
||||
shmem_putmem(recv,xmit,bytes,dest);
|
||||
|
||||
if ( CommunicatorPolicy == CommunicatorPolicySequential ) shmem_barrier_all();
|
||||
}
|
||||
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
// shmem_quiet(); // I'm done
|
||||
if( CommunicatorPolicy == CommunicatorPolicyConcurrent ) shmem_barrier_all();// He's done too
|
||||
}
|
||||
void CartesianCommunicator::Barrier(void)
|
||||
{
|
||||
shmem_barrier_all();
|
||||
}
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
{
|
||||
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync = psync_init;
|
||||
static uint32_t word;
|
||||
uint32_t *array = (uint32_t *) data;
|
||||
assert( (bytes % 4)==0);
|
||||
int words = bytes/4;
|
||||
|
||||
if ( shmem_addr_accessible(data,_processor) ){
|
||||
shmem_broadcast32(data,data,words,root,0,0,shmem_n_pes(),psync.data());
|
||||
return;
|
||||
}
|
||||
|
||||
for(int w=0;w<words;w++){
|
||||
word = array[w];
|
||||
shmem_broadcast32((void *)&word,(void *)&word,1,root,0,0,shmem_n_pes(),psync.data());
|
||||
if ( shmem_my_pe() != root ) {
|
||||
array[w] = word;
|
||||
}
|
||||
shmem_barrier_all();
|
||||
}
|
||||
|
||||
}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
{
|
||||
static std::array<long,_SHMEM_REDUCE_SYNC_SIZE> psync = psync_init;
|
||||
static uint32_t word;
|
||||
uint32_t *array = (uint32_t *) data;
|
||||
assert( (bytes % 4)==0);
|
||||
int words = bytes/4;
|
||||
|
||||
for(int w=0;w<words;w++){
|
||||
word = array[w];
|
||||
shmem_broadcast32((void *)&word,(void *)&word,1,root,0,0,shmem_n_pes(),psync.data());
|
||||
if ( shmem_my_pe() != root ) {
|
||||
array[w]= word;
|
||||
}
|
||||
shmem_barrier_all();
|
||||
}
|
||||
}
|
||||
|
||||
int CartesianCommunicator::RankWorld(void){
|
||||
return shmem_my_pe();
|
||||
}
|
||||
|
||||
}
|
||||
|
92
lib/communicator/SharedMemory.cc
Normal file
92
lib/communicator/SharedMemory.cc
Normal file
@ -0,0 +1,92 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/SharedMemory.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
// static data
|
||||
|
||||
uint64_t GlobalSharedMemory::MAX_MPI_SHM_BYTES = 1024LL*1024LL*1024LL;
|
||||
int GlobalSharedMemory::Hugepages = 0;
|
||||
int GlobalSharedMemory::_ShmSetup;
|
||||
int GlobalSharedMemory::_ShmAlloc;
|
||||
uint64_t GlobalSharedMemory::_ShmAllocBytes;
|
||||
|
||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
|
||||
|
||||
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
|
||||
int GlobalSharedMemory::WorldShmRank;
|
||||
int GlobalSharedMemory::WorldShmSize;
|
||||
std::vector<int> GlobalSharedMemory::WorldShmRanks;
|
||||
|
||||
Grid_MPI_Comm GlobalSharedMemory::WorldComm;
|
||||
int GlobalSharedMemory::WorldSize;
|
||||
int GlobalSharedMemory::WorldRank;
|
||||
|
||||
int GlobalSharedMemory::WorldNodes;
|
||||
int GlobalSharedMemory::WorldNode;
|
||||
|
||||
void GlobalSharedMemory::SharedMemoryFree(void)
|
||||
{
|
||||
assert(_ShmAlloc);
|
||||
assert(_ShmAllocBytes>0);
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
munmap(WorldShmCommBufs[r],_ShmAllocBytes);
|
||||
}
|
||||
_ShmAlloc = 0;
|
||||
_ShmAllocBytes = 0;
|
||||
}
|
||||
/////////////////////////////////
|
||||
// Alloc, free shmem region
|
||||
/////////////////////////////////
|
||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
||||
void *ptr = (void *)heap_top;
|
||||
heap_top += bytes;
|
||||
heap_bytes+= bytes;
|
||||
if (heap_bytes >= heap_size) {
|
||||
std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
||||
std::cout<< " Current value is " << (heap_size/(1024*1024)) <<std::endl;
|
||||
assert(heap_bytes<heap_size);
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
void SharedMemory::ShmBufferFreeAll(void) {
|
||||
heap_top =(size_t)ShmBufferSelf();
|
||||
heap_bytes=0;
|
||||
}
|
||||
void *SharedMemory::ShmBufferSelf(void)
|
||||
{
|
||||
return ShmCommBufs[ShmRank];
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
164
lib/communicator/SharedMemory.h
Normal file
164
lib/communicator/SharedMemory.h
Normal file
@ -0,0 +1,164 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/SharedMemory.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
|
||||
// TODO
|
||||
// 1) move includes into SharedMemory.cc
|
||||
//
|
||||
// 2) split shared memory into a) optimal communicator creation from comm world
|
||||
//
|
||||
// b) shared memory buffers container
|
||||
// -- static globally shared; init once
|
||||
// -- per instance set of buffers.
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
#if defined (GRID_COMMS_MPI3)
|
||||
#include <mpi.h>
|
||||
#endif
|
||||
#include <semaphore.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <limits.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/ipc.h>
|
||||
#include <sys/shm.h>
|
||||
#include <sys/mman.h>
|
||||
#include <zlib.h>
|
||||
#ifdef HAVE_NUMAIF_H
|
||||
#include <numaif.h>
|
||||
#endif
|
||||
|
||||
namespace Grid {
|
||||
|
||||
#if defined (GRID_COMMS_MPI3)
|
||||
typedef MPI_Comm Grid_MPI_Comm;
|
||||
typedef MPI_Request CommsRequest_t;
|
||||
#else
|
||||
typedef int CommsRequest_t;
|
||||
typedef int Grid_MPI_Comm;
|
||||
#endif
|
||||
|
||||
class GlobalSharedMemory {
|
||||
private:
|
||||
static const int MAXLOG2RANKSPERNODE = 16;
|
||||
|
||||
// Init once lock on the buffer allocation
|
||||
static int _ShmSetup;
|
||||
static int _ShmAlloc;
|
||||
static uint64_t _ShmAllocBytes;
|
||||
|
||||
public:
|
||||
static int ShmSetup(void) { return _ShmSetup; }
|
||||
static int ShmAlloc(void) { return _ShmAlloc; }
|
||||
static uint64_t ShmAllocBytes(void) { return _ShmAllocBytes; }
|
||||
static uint64_t MAX_MPI_SHM_BYTES;
|
||||
static int Hugepages;
|
||||
|
||||
static std::vector<void *> WorldShmCommBufs;
|
||||
|
||||
static Grid_MPI_Comm WorldComm;
|
||||
static int WorldRank;
|
||||
static int WorldSize;
|
||||
|
||||
static Grid_MPI_Comm WorldShmComm;
|
||||
static int WorldShmRank;
|
||||
static int WorldShmSize;
|
||||
|
||||
static int WorldNodes;
|
||||
static int WorldNode;
|
||||
|
||||
static std::vector<int> WorldShmRanks;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
|
||||
static void OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
///////////////////////////////////////////////////
|
||||
// Provide shared memory facilities off comm world
|
||||
///////////////////////////////////////////////////
|
||||
static void SharedMemoryAllocate(uint64_t bytes, int flags);
|
||||
static void SharedMemoryFree(void);
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////
|
||||
// one per communicator
|
||||
//////////////////////////////
|
||||
class SharedMemory
|
||||
{
|
||||
private:
|
||||
static const int MAXLOG2RANKSPERNODE = 16;
|
||||
|
||||
size_t heap_top;
|
||||
size_t heap_bytes;
|
||||
size_t heap_size;
|
||||
|
||||
protected:
|
||||
|
||||
Grid_MPI_Comm ShmComm; // for barriers
|
||||
int ShmRank;
|
||||
int ShmSize;
|
||||
std::vector<void *> ShmCommBufs;
|
||||
std::vector<int> ShmRanks;// Mapping comm ranks to Shm ranks
|
||||
|
||||
public:
|
||||
SharedMemory() {};
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
// set the buffers & sizes
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
void SetCommunicator(Grid_MPI_Comm comm);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// For this instance ; disjoint buffer sets between splits if split grid
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
void ShmBarrier(void);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// Call on any instance
|
||||
///////////////////////////////////////////////////
|
||||
void SharedMemoryTest(void);
|
||||
void *ShmBufferSelf(void);
|
||||
void *ShmBuffer (int rank);
|
||||
void *ShmBufferTranslate(int rank,void * local_p);
|
||||
void *ShmBufferMalloc(size_t bytes);
|
||||
void ShmBufferFreeAll(void) ;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Make info on Nodes & ranks and Shared memory available
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
int NodeCount(void) { return GlobalSharedMemory::WorldNodes;};
|
||||
int RankCount(void) { return GlobalSharedMemory::WorldSize;};
|
||||
|
||||
};
|
||||
|
||||
}
|
395
lib/communicator/SharedMemoryMPI.cc
Normal file
395
lib/communicator/SharedMemoryMPI.cc
Normal file
@ -0,0 +1,395 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/SharedMemory.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
{
|
||||
assert(_ShmSetup==0);
|
||||
WorldComm = comm;
|
||||
MPI_Comm_rank(WorldComm,&WorldRank);
|
||||
MPI_Comm_size(WorldComm,&WorldSize);
|
||||
// WorldComm, WorldSize, WorldRank
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Split into groups that can share memory
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
|
||||
MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
|
||||
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
|
||||
// WorldShmComm, WorldShmSize, WorldShmRank
|
||||
|
||||
// WorldNodes
|
||||
WorldNodes = WorldSize/WorldShmSize;
|
||||
assert( (WorldNodes * WorldShmSize) == WorldSize );
|
||||
|
||||
// FIXME: Check all WorldShmSize are the same ?
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find world ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Group WorldGroup, ShmGroup;
|
||||
MPI_Comm_group (WorldComm, &WorldGroup);
|
||||
MPI_Comm_group (WorldShmComm, &ShmGroup);
|
||||
|
||||
std::vector<int> world_ranks(WorldSize); for(int r=0;r<WorldSize;r++) world_ranks[r]=r;
|
||||
|
||||
WorldShmRanks.resize(WorldSize);
|
||||
MPI_Group_translate_ranks (WorldGroup,WorldSize,&world_ranks[0],ShmGroup, &WorldShmRanks[0]);
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Identify who is in my group and nominate the leader
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int g=0;
|
||||
std::vector<int> MyGroup;
|
||||
MyGroup.resize(WorldShmSize);
|
||||
for(int rank=0;rank<WorldSize;rank++){
|
||||
if(WorldShmRanks[rank]!=MPI_UNDEFINED){
|
||||
assert(g<WorldShmSize);
|
||||
MyGroup[g++] = rank;
|
||||
}
|
||||
}
|
||||
|
||||
std::sort(MyGroup.begin(),MyGroup.end(),std::less<int>());
|
||||
int myleader = MyGroup[0];
|
||||
|
||||
std::vector<int> leaders_1hot(WorldSize,0);
|
||||
std::vector<int> leaders_group(WorldNodes,0);
|
||||
leaders_1hot [ myleader ] = 1;
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// global sum leaders over comm world
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,WorldComm);
|
||||
assert(ierr==0);
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// find the group leaders world rank
|
||||
///////////////////////////////////////////////////////////////////
|
||||
int group=0;
|
||||
for(int l=0;l<WorldSize;l++){
|
||||
if(leaders_1hot[l]){
|
||||
leaders_group[group++] = l;
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Identify the node of the group in which I (and my leader) live
|
||||
///////////////////////////////////////////////////////////////////
|
||||
WorldNode=-1;
|
||||
for(int g=0;g<WorldNodes;g++){
|
||||
if (myleader == leaders_group[g]){
|
||||
WorldNode=g;
|
||||
}
|
||||
}
|
||||
assert(WorldNode!=-1);
|
||||
_ShmSetup=1;
|
||||
}
|
||||
|
||||
void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Assert power of two shm_size.
|
||||
////////////////////////////////////////////////////////////////
|
||||
int log2size = -1;
|
||||
for(int i=0;i<=MAXLOG2RANKSPERNODE;i++){
|
||||
if ( (0x1<<i) == WorldShmSize ) {
|
||||
log2size = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(log2size != -1);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Identify subblock of ranks on node spreading across dims
|
||||
// in a maximally symmetrical way
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ndimension = processors.size();
|
||||
std::vector<int> processor_coor(ndimension);
|
||||
std::vector<int> WorldDims = processors; std::vector<int> ShmDims (ndimension,1); std::vector<int> NodeDims (ndimension);
|
||||
std::vector<int> ShmCoor (ndimension); std::vector<int> NodeCoor (ndimension); std::vector<int> WorldCoor(ndimension);
|
||||
int dim = 0;
|
||||
for(int l2=0;l2<log2size;l2++){
|
||||
while ( (WorldDims[dim] / ShmDims[dim]) <= 1 ) dim=(dim+1)%ndimension;
|
||||
ShmDims[dim]*=2;
|
||||
dim=(dim+1)%ndimension;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish torus of processes and nodes with sub-blockings
|
||||
////////////////////////////////////////////////////////////////
|
||||
for(int d=0;d<ndimension;d++){
|
||||
NodeDims[d] = WorldDims[d]/ShmDims[d];
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Check processor counts match
|
||||
////////////////////////////////////////////////////////////////
|
||||
int Nprocessors=1;
|
||||
for(int i=0;i<ndimension;i++){
|
||||
Nprocessors*=processors[i];
|
||||
}
|
||||
assert(WorldSize==Nprocessors);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish mapping between lexico physics coord and WorldRank
|
||||
////////////////////////////////////////////////////////////////
|
||||
int rank;
|
||||
|
||||
Lexicographic::CoorFromIndexReversed(NodeCoor,WorldNode ,NodeDims);
|
||||
Lexicographic::CoorFromIndexReversed(ShmCoor ,WorldShmRank,ShmDims);
|
||||
for(int d=0;d<ndimension;d++) WorldCoor[d] = NodeCoor[d]*ShmDims[d]+ShmCoor[d];
|
||||
Lexicographic::IndexFromCoorReversed(WorldCoor,rank,WorldDims);
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Build the new communicator
|
||||
/////////////////////////////////////////////////////////////////
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbfs mapping intended
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef GRID_MPI3_SHMMMAP
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbf and others map filesystems as mappable huge pages
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
char shm_name [NAME_MAX];
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
sprintf(shm_name,GRID_SHM_PATH "/Grid_mpi3_shm_%d_%d",WorldNode,r);
|
||||
int fd=open(shm_name,O_RDWR|O_CREAT,0666);
|
||||
if ( fd == -1) {
|
||||
printf("open %s failed\n",shm_name);
|
||||
perror("open hugetlbfs");
|
||||
exit(0);
|
||||
}
|
||||
int mmap_flag = MAP_SHARED ;
|
||||
#ifdef MAP_POPULATE
|
||||
mmap_flag|=MAP_POPULATE;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if ( flags ) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
|
||||
if ( ptr == (void *)MAP_FAILED ) {
|
||||
printf("mmap %s failed\n",shm_name);
|
||||
perror("failed mmap"); assert(0);
|
||||
}
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
close(fd);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
}
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
};
|
||||
#endif // MMAP
|
||||
|
||||
#ifdef GRID_MPI3_SHMOPEN
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// POSIX SHMOPEN ; as far as I know Linux does not allow EXPLICIT HugePages with this case
|
||||
// tmpfs (Larry Meadows says) does not support explicit huge page, and this is used for
|
||||
// the posix shm virtual file system
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
char shm_name [NAME_MAX];
|
||||
if ( WorldShmRank == 0 ) {
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
size_t size = bytes;
|
||||
|
||||
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",WorldNode,r);
|
||||
|
||||
shm_unlink(shm_name);
|
||||
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0666);
|
||||
if ( fd < 0 ) { perror("failed shm_open"); assert(0); }
|
||||
ftruncate(fd, size);
|
||||
|
||||
int mmap_flag = MAP_SHARED;
|
||||
#ifdef MAP_POPULATE
|
||||
mmap_flag |= MAP_POPULATE;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if (flags) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
|
||||
|
||||
if ( ptr == (void * )MAP_FAILED ) { perror("failed mmap"); assert(0); }
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
close(fd);
|
||||
}
|
||||
}
|
||||
|
||||
MPI_Barrier(WorldShmComm);
|
||||
|
||||
if ( WorldShmRank != 0 ) {
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
size_t size = bytes ;
|
||||
|
||||
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",WorldNode,r);
|
||||
|
||||
int fd=shm_open(shm_name,O_RDWR,0666);
|
||||
if ( fd<0 ) { perror("failed shm_open"); assert(0); }
|
||||
|
||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
||||
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
|
||||
close(fd);
|
||||
}
|
||||
}
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
}
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Global shared functionality finished
|
||||
// Now move to per communicator functionality
|
||||
////////////////////////////////////////////////////////
|
||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
{
|
||||
int rank, size;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&size);
|
||||
ShmRanks.resize(size);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Split into groups that can share memory
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
|
||||
MPI_Comm_rank(ShmComm ,&ShmRank);
|
||||
MPI_Comm_size(ShmComm ,&ShmSize);
|
||||
ShmCommBufs.resize(ShmSize);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Map ShmRank to WorldShmRank and use the right buffer
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
assert (GlobalSharedMemory::ShmAlloc()==1);
|
||||
heap_size = GlobalSharedMemory::ShmAllocBytes();
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
|
||||
uint32_t sr = (r==ShmRank) ? GlobalSharedMemory::WorldRank : 0 ;
|
||||
|
||||
MPI_Allreduce(MPI_IN_PLACE,&sr,1,MPI_UINT32_T,MPI_SUM,comm);
|
||||
|
||||
ShmCommBufs[r] = GlobalSharedMemory::WorldShmCommBufs[sr];
|
||||
}
|
||||
ShmBufferFreeAll();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find comm ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
MPI_Group FullGroup, ShmGroup;
|
||||
MPI_Comm_group (comm , &FullGroup);
|
||||
MPI_Comm_group (ShmComm, &ShmGroup);
|
||||
|
||||
std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r;
|
||||
MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// On node barrier
|
||||
//////////////////////////////////////////////////////////////////
|
||||
void SharedMemory::ShmBarrier(void)
|
||||
{
|
||||
MPI_Barrier (ShmComm);
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Test the shared memory is working
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void SharedMemory::SharedMemoryTest(void)
|
||||
{
|
||||
ShmBarrier();
|
||||
if ( ShmRank == 0 ) {
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
uint64_t * check = (uint64_t *) ShmCommBufs[r];
|
||||
check[0] = GlobalSharedMemory::WorldNode;
|
||||
check[1] = r;
|
||||
check[2] = 0x5A5A5A;
|
||||
}
|
||||
}
|
||||
ShmBarrier();
|
||||
for(int r=0;r<ShmSize;r++){
|
||||
uint64_t * check = (uint64_t *) ShmCommBufs[r];
|
||||
|
||||
assert(check[0]==GlobalSharedMemory::WorldNode);
|
||||
assert(check[1]==r);
|
||||
assert(check[2]==0x5A5A5A);
|
||||
|
||||
}
|
||||
ShmBarrier();
|
||||
}
|
||||
|
||||
void *SharedMemory::ShmBuffer(int rank)
|
||||
{
|
||||
int gpeer = ShmRanks[rank];
|
||||
if (gpeer == MPI_UNDEFINED){
|
||||
return NULL;
|
||||
} else {
|
||||
return ShmCommBufs[gpeer];
|
||||
}
|
||||
}
|
||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
|
||||
{
|
||||
static int count =0;
|
||||
int gpeer = ShmRanks[rank];
|
||||
assert(gpeer!=ShmRank); // never send to self
|
||||
if (gpeer == MPI_UNDEFINED){
|
||||
return NULL;
|
||||
} else {
|
||||
uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
|
||||
uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
|
||||
return (void *) remote;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
126
lib/communicator/SharedMemoryNone.cc
Normal file
126
lib/communicator/SharedMemoryNone.cc
Normal file
@ -0,0 +1,126 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/SharedMemory.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
{
|
||||
assert(_ShmSetup==0);
|
||||
WorldComm = 0;
|
||||
WorldRank = 0;
|
||||
WorldSize = 1;
|
||||
WorldShmComm = 0 ;
|
||||
WorldShmRank = 0 ;
|
||||
WorldShmSize = 1 ;
|
||||
WorldNodes = 1 ;
|
||||
WorldNode = 0 ;
|
||||
WorldShmRanks.resize(WorldSize); WorldShmRanks[0] = 0;
|
||||
WorldShmCommBufs.resize(1);
|
||||
_ShmSetup=1;
|
||||
}
|
||||
|
||||
void GlobalSharedMemory::OptimalCommunicator(const std::vector<int> &processors,Grid_MPI_Comm & optimal_comm)
|
||||
{
|
||||
optimal_comm = WorldComm;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbfs mapping intended, use anonymous mmap
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
int mmap_flag =0;
|
||||
#ifdef MAP_ANONYMOUS
|
||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
|
||||
#endif
|
||||
#ifdef MAP_ANON
|
||||
mmap_flag = mmap_flag| MAP_SHARED | MAP_ANON;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
if ( flags ) mmap_flag |= MAP_HUGETLB;
|
||||
#endif
|
||||
ShmCommBuf =(void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag, -1, 0);
|
||||
if (ShmCommBuf == (void *)MAP_FAILED) {
|
||||
perror("mmap failed ");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
#ifdef MADV_HUGEPAGE
|
||||
if (!Hugepages ) madvise(ShmCommBuf,bytes,MADV_HUGEPAGE);
|
||||
#endif
|
||||
bzero(ShmCommBuf,bytes);
|
||||
WorldShmCommBufs[0] = ShmCommBuf;
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Global shared functionality finished
|
||||
// Now move to per communicator functionality
|
||||
////////////////////////////////////////////////////////
|
||||
void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
{
|
||||
assert(GlobalSharedMemory::ShmAlloc()==1);
|
||||
ShmRanks.resize(1);
|
||||
ShmCommBufs.resize(1);
|
||||
ShmRanks[0] = 0;
|
||||
ShmRank = 0;
|
||||
ShmSize = 1;
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Map ShmRank to WorldShmRank and use the right buffer
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
ShmCommBufs[0] = GlobalSharedMemory::WorldShmCommBufs[0];
|
||||
heap_size = GlobalSharedMemory::ShmAllocBytes();
|
||||
ShmBufferFreeAll();
|
||||
return;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// On node barrier
|
||||
//////////////////////////////////////////////////////////////////
|
||||
void SharedMemory::ShmBarrier(void){ return ; }
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Test the shared memory is working
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void SharedMemory::SharedMemoryTest(void) { return; }
|
||||
|
||||
void *SharedMemory::ShmBuffer(int rank)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
}
|
@ -77,9 +77,6 @@ namespace Grid {
|
||||
|
||||
|
||||
// merge of April 11 2017
|
||||
//<<<<<<< HEAD
|
||||
|
||||
|
||||
// this function is necessary for the LS vectorised field
|
||||
inline int RNGfillable_general(GridBase *coarse,GridBase *fine)
|
||||
{
|
||||
@ -91,7 +88,6 @@ namespace Grid {
|
||||
// all further divisions are local
|
||||
for(int d=0;d<lowerdims;d++) assert(fine->_processors[d]==1);
|
||||
for(int d=0;d<rngdims;d++) assert(coarse->_processors[d] == fine->_processors[d+lowerdims]);
|
||||
|
||||
|
||||
// then divide the number of local sites
|
||||
// check that the total number of sims agree, meanse the iSites are the same
|
||||
@ -102,27 +98,6 @@ namespace Grid {
|
||||
|
||||
return fine->lSites() / coarse->lSites();
|
||||
}
|
||||
|
||||
/*
|
||||
// Wrap seed_seq to give common interface with random_device
|
||||
class fixedSeed {
|
||||
public:
|
||||
typedef std::seed_seq::result_type result_type;
|
||||
std::seed_seq src;
|
||||
|
||||
fixedSeed(const std::vector<int> &seeds) : src(seeds.begin(),seeds.end()) {};
|
||||
|
||||
result_type operator () (void){
|
||||
std::vector<result_type> list(1);
|
||||
src.generate(list.begin(),list.end());
|
||||
return list[0];
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
=======
|
||||
>>>>>>> develop
|
||||
*/
|
||||
|
||||
// real scalars are one component
|
||||
template<class scalar,class distribution,class generator>
|
||||
@ -171,7 +146,7 @@ namespace Grid {
|
||||
// support for parallel init
|
||||
///////////////////////
|
||||
#ifdef RNG_FAST_DISCARD
|
||||
static void Skip(RngEngine &eng)
|
||||
static void Skip(RngEngine &eng,uint64_t site)
|
||||
{
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// Skip by 2^40 elements between successive lattice sites
|
||||
@ -184,8 +159,11 @@ namespace Grid {
|
||||
// and margin of safety is orders of magnitude.
|
||||
// We could hack Sitmo to skip in the higher order words of state if necessary
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
uint64_t skip = 0x1; skip = skip<<40;
|
||||
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
|
||||
uint64_t skip = site;
|
||||
skip = skip<<40;
|
||||
eng.discard(skip);
|
||||
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
|
||||
}
|
||||
#endif
|
||||
static RngEngine Reseed(RngEngine &eng)
|
||||
@ -407,15 +385,14 @@ namespace Grid {
|
||||
// MT implementation does not implement fast discard even though
|
||||
// in principle this is possible
|
||||
////////////////////////////////////////////////
|
||||
std::vector<int> gcoor;
|
||||
int rank,o_idx,i_idx;
|
||||
|
||||
// Everybody loops over global volume.
|
||||
for(int gidx=0;gidx<_grid->_gsites;gidx++){
|
||||
|
||||
Skip(master_engine); // Skip to next RNG sequence
|
||||
parallel_for(int gidx=0;gidx<_grid->_gsites;gidx++){
|
||||
|
||||
// Where is it?
|
||||
int rank,o_idx,i_idx;
|
||||
std::vector<int> gcoor;
|
||||
|
||||
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
@ -423,6 +400,7 @@ namespace Grid {
|
||||
if( rank == _grid->ThisRank() ){
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -50,26 +50,22 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full){
|
||||
half.checkerboard = cb;
|
||||
int ssh=0;
|
||||
//parallel_for
|
||||
for(int ss=0;ss<full._grid->oSites();ss++){
|
||||
std::vector<int> coor;
|
||||
|
||||
parallel_for(int ss=0;ss<full._grid->oSites();ss++){
|
||||
int cbos;
|
||||
|
||||
std::vector<int> coor;
|
||||
full._grid->oCoorFromOindex(coor,ss);
|
||||
cbos=half._grid->CheckerBoard(coor);
|
||||
|
||||
if (cbos==cb) {
|
||||
int ssh=half._grid->oIndex(coor);
|
||||
half._odata[ssh] = full._odata[ss];
|
||||
ssh++;
|
||||
}
|
||||
}
|
||||
}
|
||||
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half){
|
||||
int cb = half.checkerboard;
|
||||
int ssh=0;
|
||||
//parallel_for
|
||||
for(int ss=0;ss<full._grid->oSites();ss++){
|
||||
parallel_for(int ss=0;ss<full._grid->oSites();ss++){
|
||||
std::vector<int> coor;
|
||||
int cbos;
|
||||
|
||||
@ -77,8 +73,8 @@ inline void subdivides(GridBase *coarse,GridBase *fine)
|
||||
cbos=half._grid->CheckerBoard(coor);
|
||||
|
||||
if (cbos==cb) {
|
||||
int ssh=half._grid->oIndex(coor);
|
||||
full._odata[ss]=half._odata[ssh];
|
||||
ssh++;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -109,8 +105,8 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
|
||||
coarseData=zero;
|
||||
|
||||
// Loop with a cache friendly loop ordering
|
||||
for(int sf=0;sf<fine->oSites();sf++){
|
||||
// Loop over coars parallel, and then loop over fine associated with coarse.
|
||||
parallel_for(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
int sc;
|
||||
std::vector<int> coor_c(_ndimension);
|
||||
@ -119,8 +115,9 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
PARALLEL_CRITICAL
|
||||
for(int i=0;i<nbasis;i++) {
|
||||
|
||||
|
||||
coarseData._odata[sc](i)=coarseData._odata[sc](i)
|
||||
+ innerProduct(Basis[i]._odata[sf],fineData._odata[sf]);
|
||||
|
||||
@ -139,6 +136,7 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
|
||||
GridBase * coarse= coarseA._grid;
|
||||
|
||||
fineZ.checkerboard=fineX.checkerboard;
|
||||
assert(fineX.checkerboard==fineY.checkerboard);
|
||||
subdivides(coarse,fine); // require they map
|
||||
conformable(fineX,fineY);
|
||||
conformable(fineX,fineZ);
|
||||
@ -180,9 +178,10 @@ template<class vobj,class CComplex>
|
||||
GridBase *coarse(CoarseInner._grid);
|
||||
GridBase *fine (fineX._grid);
|
||||
|
||||
Lattice<dotp> fine_inner(fine);
|
||||
Lattice<dotp> fine_inner(fine); fine_inner.checkerboard = fineX.checkerboard;
|
||||
Lattice<dotp> coarse_inner(coarse);
|
||||
|
||||
// Precision promotion?
|
||||
fine_inner = localInnerProduct(fineX,fineY);
|
||||
blockSum(coarse_inner,fine_inner);
|
||||
parallel_for(int ss=0;ss<coarse->oSites();ss++){
|
||||
@ -193,7 +192,7 @@ template<class vobj,class CComplex>
|
||||
inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
|
||||
{
|
||||
GridBase *coarse = ip._grid;
|
||||
Lattice<vobj> zz(fineX._grid); zz=zero;
|
||||
Lattice<vobj> zz(fineX._grid); zz=zero; zz.checkerboard=fineX.checkerboard;
|
||||
blockInnerProduct(ip,fineX,fineX);
|
||||
ip = pow(ip,-0.5);
|
||||
blockZAXPY(fineX,ip,fineX,zz);
|
||||
@ -216,19 +215,25 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
|
||||
}
|
||||
|
||||
// Turn this around to loop threaded over sc and interior loop
|
||||
// over sf would thread better
|
||||
coarseData=zero;
|
||||
for(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
parallel_region {
|
||||
|
||||
int sc;
|
||||
std::vector<int> coor_c(_ndimension);
|
||||
std::vector<int> coor_f(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
coarseData._odata[sc]=coarseData._odata[sc]+fineData._odata[sf];
|
||||
parallel_for_internal(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
PARALLEL_CRITICAL
|
||||
coarseData._odata[sc]=coarseData._odata[sc]+fineData._odata[sf];
|
||||
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
@ -238,7 +243,7 @@ inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vob
|
||||
{
|
||||
GridBase * fine = unpicked._grid;
|
||||
|
||||
Lattice<vobj> zz(fine);
|
||||
Lattice<vobj> zz(fine); zz.checkerboard = unpicked.checkerboard;
|
||||
Lattice<iScalar<vInteger> > fcoor(fine);
|
||||
|
||||
zz = zero;
|
||||
@ -303,20 +308,21 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
}
|
||||
|
||||
// Loop with a cache friendly loop ordering
|
||||
for(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
parallel_region {
|
||||
int sc;
|
||||
std::vector<int> coor_c(_ndimension);
|
||||
std::vector<int> coor_f(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
for(int i=0;i<nbasis;i++) {
|
||||
if(i==0) fineData._odata[sf]=coarseData._odata[sc](i) * Basis[i]._odata[sf];
|
||||
else fineData._odata[sf]=fineData._odata[sf]+coarseData._odata[sc](i)*Basis[i]._odata[sf];
|
||||
parallel_for_internal(int sf=0;sf<fine->oSites();sf++){
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
|
||||
for(int i=0;i<nbasis;i++) {
|
||||
if(i==0) fineData._odata[sf]=coarseData._odata[sc](i) * Basis[i]._odata[sf];
|
||||
else fineData._odata[sf]=fineData._odata[sf]+coarseData._odata[sc](i)*Basis[i]._odata[sf];
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
@ -684,6 +690,302 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
|
||||
merge(out._odata[out_oidx], ptrs, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Communicate between grids
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SIMPLE CASE:
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Mesh of nodes (2x2) ; subdivide to 1x1 subdivisions
|
||||
//
|
||||
// Lex ord:
|
||||
// N0 va0 vb0 vc0 vd0 N1 va1 vb1 vc1 vd1
|
||||
// N2 va2 vb2 vc2 vd2 N3 va3 vb3 vc3 vd3
|
||||
//
|
||||
// Ratio = full[dim] / split[dim]
|
||||
//
|
||||
// For each dimension do an all to all; get Nvec -> Nvec / ratio
|
||||
// Ldim -> Ldim * ratio
|
||||
// LocalVol -> LocalVol * ratio
|
||||
// full AllToAll(0)
|
||||
// N0 va0 vb0 va1 vb1 N1 vc0 vd0 vc1 vd1
|
||||
// N2 va2 vb2 va3 vb3 N3 vc2 vd2 vc3 vd3
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va01 vb01 N1 vc01 vd01
|
||||
// N2 va23 vb23 N3 vc23 vd23
|
||||
//
|
||||
// full AllToAll(1) // Not what is wanted. FIXME
|
||||
// N0 va01 va23 N1 vc01 vc23
|
||||
// N2 vb01 vb23 N3 vd01 vd23
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va0123 N1 vc0123
|
||||
// N2 vb0123 N3 vd0123
|
||||
//
|
||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
|
||||
// NB: Easiest to programme if keep in lex order.
|
||||
/*
|
||||
* Let chunk = (fvol*nvec)/sP be size of a chunk. ( Divide lexico vol * nvec into fP/sP = M chunks )
|
||||
*
|
||||
* 2nd A2A (over sP nodes; subdivide the fP into sP chunks of M)
|
||||
*
|
||||
* node 0 1st chunk of node 0M..(1M-1); 2nd chunk of node 0M..(1M-1).. data chunk x M x sP = fL / sP * M * sP = fL * M growth
|
||||
* node 1 1st chunk of node 1M..(2M-1); 2nd chunk of node 1M..(2M-1)..
|
||||
* node 2 1st chunk of node 2M..(3M-1); 2nd chunk of node 2M..(3M-1)..
|
||||
* node 3 1st chunk of node 3M..(3M-1); 2nd chunk of node 2M..(3M-1)..
|
||||
* etc...
|
||||
*/
|
||||
template<class Vobj>
|
||||
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
{
|
||||
typedef typename Vobj::scalar_object Sobj;
|
||||
|
||||
int full_vecs = full.size();
|
||||
|
||||
assert(full_vecs>=1);
|
||||
|
||||
GridBase * full_grid = full[0]._grid;
|
||||
GridBase *split_grid = split._grid;
|
||||
|
||||
int ndim = full_grid->_ndimension;
|
||||
int full_nproc = full_grid->_Nprocessors;
|
||||
int split_nproc =split_grid->_Nprocessors;
|
||||
|
||||
////////////////////////////////
|
||||
// Checkerboard management
|
||||
////////////////////////////////
|
||||
int cb = full[0].checkerboard;
|
||||
split.checkerboard = cb;
|
||||
|
||||
//////////////////////////////
|
||||
// Checks
|
||||
//////////////////////////////
|
||||
assert(full_grid->_ndimension==split_grid->_ndimension);
|
||||
for(int n=0;n<full_vecs;n++){
|
||||
assert(full[n].checkerboard == cb);
|
||||
for(int d=0;d<ndim;d++){
|
||||
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
|
||||
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
int nvector =full_nproc/split_nproc;
|
||||
assert(nvector*split_nproc==full_nproc);
|
||||
assert(nvector == full_vecs);
|
||||
|
||||
std::vector<int> ratio(ndim);
|
||||
for(int d=0;d<ndim;d++){
|
||||
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
|
||||
}
|
||||
|
||||
uint64_t lsites = full_grid->lSites();
|
||||
uint64_t sz = lsites * nvector;
|
||||
std::vector<Sobj> tmpdata(sz);
|
||||
std::vector<Sobj> alldata(sz);
|
||||
std::vector<Sobj> scalardata(lsites);
|
||||
|
||||
for(int v=0;v<nvector;v++){
|
||||
unvectorizeToLexOrdArray(scalardata,full[v]);
|
||||
parallel_for(int site=0;site<lsites;site++){
|
||||
alldata[v*lsites+site] = scalardata[site];
|
||||
}
|
||||
}
|
||||
|
||||
int nvec = nvector; // Counts down to 1 as we collapse dims
|
||||
std::vector<int> ldims = full_grid->_ldimensions;
|
||||
|
||||
for(int d=ndim-1;d>=0;d--){
|
||||
|
||||
if ( ratio[d] != 1 ) {
|
||||
|
||||
full_grid ->AllToAll(d,alldata,tmpdata);
|
||||
if ( split_grid->_processors[d] > 1 ) {
|
||||
alldata=tmpdata;
|
||||
split_grid->AllToAll(d,alldata,tmpdata);
|
||||
}
|
||||
|
||||
auto rdims = ldims;
|
||||
auto M = ratio[d];
|
||||
auto rsites= lsites*M;// increases rsites by M
|
||||
nvec /= M; // Reduce nvec by subdivision factor
|
||||
rdims[d] *= M; // increase local dim by same factor
|
||||
|
||||
int sP = split_grid->_processors[d];
|
||||
int fP = full_grid->_processors[d];
|
||||
|
||||
int fvol = lsites;
|
||||
|
||||
int chunk = (nvec*fvol)/sP; assert(chunk*sP == nvec*fvol);
|
||||
|
||||
// Loop over reordered data post A2A
|
||||
parallel_for(int c=0;c<chunk;c++){
|
||||
std::vector<int> coor(ndim);
|
||||
for(int m=0;m<M;m++){
|
||||
for(int s=0;s<sP;s++){
|
||||
|
||||
// addressing; use lexico
|
||||
int lex_r;
|
||||
uint64_t lex_c = c+chunk*m+chunk*M*s;
|
||||
uint64_t lex_fvol_vec = c+chunk*s;
|
||||
uint64_t lex_fvol = lex_fvol_vec%fvol;
|
||||
uint64_t lex_vec = lex_fvol_vec/fvol;
|
||||
|
||||
// which node sets an adder to the coordinate
|
||||
Lexicographic::CoorFromIndex(coor, lex_fvol, ldims);
|
||||
coor[d] += m*ldims[d];
|
||||
Lexicographic::IndexFromCoor(coor, lex_r, rdims);
|
||||
lex_r += lex_vec * rsites;
|
||||
|
||||
// LexicoFind coordinate & vector number within split lattice
|
||||
alldata[lex_r] = tmpdata[lex_c];
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
ldims[d]*= ratio[d];
|
||||
lsites *= ratio[d];
|
||||
|
||||
}
|
||||
}
|
||||
vectorizeFromLexOrdArray(alldata,split);
|
||||
}
|
||||
|
||||
template<class Vobj>
|
||||
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj> & split)
|
||||
{
|
||||
int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors;
|
||||
std::vector<Lattice<Vobj> > full_v(nvector,full._grid);
|
||||
for(int n=0;n<nvector;n++){
|
||||
full_v[n] = full;
|
||||
}
|
||||
Grid_split(full_v,split);
|
||||
}
|
||||
|
||||
template<class Vobj>
|
||||
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
{
|
||||
typedef typename Vobj::scalar_object Sobj;
|
||||
|
||||
int full_vecs = full.size();
|
||||
|
||||
assert(full_vecs>=1);
|
||||
|
||||
GridBase * full_grid = full[0]._grid;
|
||||
GridBase *split_grid = split._grid;
|
||||
|
||||
int ndim = full_grid->_ndimension;
|
||||
int full_nproc = full_grid->_Nprocessors;
|
||||
int split_nproc =split_grid->_Nprocessors;
|
||||
|
||||
////////////////////////////////
|
||||
// Checkerboard management
|
||||
////////////////////////////////
|
||||
int cb = full[0].checkerboard;
|
||||
split.checkerboard = cb;
|
||||
|
||||
//////////////////////////////
|
||||
// Checks
|
||||
//////////////////////////////
|
||||
assert(full_grid->_ndimension==split_grid->_ndimension);
|
||||
for(int n=0;n<full_vecs;n++){
|
||||
assert(full[n].checkerboard == cb);
|
||||
for(int d=0;d<ndim;d++){
|
||||
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
|
||||
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
int nvector =full_nproc/split_nproc;
|
||||
assert(nvector*split_nproc==full_nproc);
|
||||
assert(nvector == full_vecs);
|
||||
|
||||
std::vector<int> ratio(ndim);
|
||||
for(int d=0;d<ndim;d++){
|
||||
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
|
||||
}
|
||||
|
||||
uint64_t lsites = full_grid->lSites();
|
||||
uint64_t sz = lsites * nvector;
|
||||
std::vector<Sobj> tmpdata(sz);
|
||||
std::vector<Sobj> alldata(sz);
|
||||
std::vector<Sobj> scalardata(lsites);
|
||||
|
||||
unvectorizeToLexOrdArray(alldata,split);
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Start from split grid and work towards full grid
|
||||
/////////////////////////////////////////////////////////////////
|
||||
|
||||
int nvec = 1;
|
||||
uint64_t rsites = split_grid->lSites();
|
||||
std::vector<int> rdims = split_grid->_ldimensions;
|
||||
|
||||
for(int d=0;d<ndim;d++){
|
||||
|
||||
if ( ratio[d] != 1 ) {
|
||||
|
||||
auto M = ratio[d];
|
||||
|
||||
int sP = split_grid->_processors[d];
|
||||
int fP = full_grid->_processors[d];
|
||||
|
||||
auto ldims = rdims; ldims[d] /= M; // Decrease local dims by same factor
|
||||
auto lsites= rsites/M; // Decreases rsites by M
|
||||
|
||||
int fvol = lsites;
|
||||
int chunk = (nvec*fvol)/sP; assert(chunk*sP == nvec*fvol);
|
||||
|
||||
{
|
||||
// Loop over reordered data post A2A
|
||||
parallel_for(int c=0;c<chunk;c++){
|
||||
std::vector<int> coor(ndim);
|
||||
for(int m=0;m<M;m++){
|
||||
for(int s=0;s<sP;s++){
|
||||
|
||||
// addressing; use lexico
|
||||
int lex_r;
|
||||
uint64_t lex_c = c+chunk*m+chunk*M*s;
|
||||
uint64_t lex_fvol_vec = c+chunk*s;
|
||||
uint64_t lex_fvol = lex_fvol_vec%fvol;
|
||||
uint64_t lex_vec = lex_fvol_vec/fvol;
|
||||
|
||||
// which node sets an adder to the coordinate
|
||||
Lexicographic::CoorFromIndex(coor, lex_fvol, ldims);
|
||||
coor[d] += m*ldims[d];
|
||||
Lexicographic::IndexFromCoor(coor, lex_r, rdims);
|
||||
lex_r += lex_vec * rsites;
|
||||
|
||||
// LexicoFind coordinate & vector number within split lattice
|
||||
tmpdata[lex_c] = alldata[lex_r];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ( split_grid->_processors[d] > 1 ) {
|
||||
split_grid->AllToAll(d,tmpdata,alldata);
|
||||
tmpdata=alldata;
|
||||
}
|
||||
full_grid ->AllToAll(d,tmpdata,alldata);
|
||||
rdims[d]/= M;
|
||||
rsites /= M;
|
||||
nvec *= M; // Increase nvec by subdivision factor
|
||||
}
|
||||
}
|
||||
|
||||
lsites = full_grid->lSites();
|
||||
for(int v=0;v<nvector;v++){
|
||||
// assert(v<full.size());
|
||||
parallel_for(int site=0;site<lsites;site++){
|
||||
// assert(v*lsites+site < alldata.size());
|
||||
scalardata[site] = alldata[v*lsites+site];
|
||||
}
|
||||
vectorizeFromLexOrdArray(scalardata,full[v]);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -50,7 +50,7 @@ namespace Grid {
|
||||
return (status==0) ? res.get() : name ;
|
||||
}
|
||||
|
||||
GridStopWatch Logger::StopWatch;
|
||||
GridStopWatch Logger::GlobalStopWatch;
|
||||
int Logger::timestamp;
|
||||
std::ostream Logger::devnull(0);
|
||||
|
||||
@ -59,13 +59,15 @@ void GridLogTimestamp(int on){
|
||||
}
|
||||
|
||||
Colours GridLogColours(0);
|
||||
GridLogger GridLogError(1, "Error", GridLogColours, "RED");
|
||||
GridLogger GridLogIRL (1, "IRL" , GridLogColours, "NORMAL");
|
||||
GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL");
|
||||
GridLogger GridLogError (1, "Error" , GridLogColours, "RED");
|
||||
GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW");
|
||||
GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL");
|
||||
GridLogger GridLogDebug(1, "Debug", GridLogColours, "PURPLE");
|
||||
GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
|
||||
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
|
||||
GridLogger GridLogIterative(1, "Iterative", GridLogColours, "BLUE");
|
||||
GridLogger GridLogIntegrator(1, "Integrator", GridLogColours, "BLUE");
|
||||
GridLogger GridLogIterative (1, "Iterative", GridLogColours, "BLUE");
|
||||
GridLogger GridLogIntegrator (1, "Integrator", GridLogColours, "BLUE");
|
||||
|
||||
void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
GridLogError.Active(0);
|
||||
|
@ -85,12 +85,16 @@ class Logger {
|
||||
protected:
|
||||
Colours &Painter;
|
||||
int active;
|
||||
int timing_mode;
|
||||
int topWidth{-1};
|
||||
static int timestamp;
|
||||
std::string name, topName;
|
||||
std::string COLOUR;
|
||||
|
||||
public:
|
||||
static GridStopWatch StopWatch;
|
||||
static GridStopWatch GlobalStopWatch;
|
||||
GridStopWatch LocalStopWatch;
|
||||
GridStopWatch *StopWatch;
|
||||
static std::ostream devnull;
|
||||
|
||||
std::string background() {return Painter.colour["NORMAL"];}
|
||||
@ -101,22 +105,44 @@ public:
|
||||
name(nm),
|
||||
topName(topNm),
|
||||
Painter(col_class),
|
||||
COLOUR(col) {} ;
|
||||
timing_mode(0),
|
||||
COLOUR(col)
|
||||
{
|
||||
StopWatch = & GlobalStopWatch;
|
||||
};
|
||||
|
||||
void Active(int on) {active = on;};
|
||||
int isActive(void) {return active;};
|
||||
static void Timestamp(int on) {timestamp = on;};
|
||||
|
||||
void Reset(void) {
|
||||
StopWatch->Reset();
|
||||
StopWatch->Start();
|
||||
}
|
||||
void TimingMode(int on) {
|
||||
timing_mode = on;
|
||||
if(on) {
|
||||
StopWatch = &LocalStopWatch;
|
||||
Reset();
|
||||
}
|
||||
}
|
||||
void setTopWidth(const int w) {topWidth = w;}
|
||||
|
||||
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
|
||||
|
||||
if ( log.active ) {
|
||||
stream << log.background()<< std::setw(8) << std::left << log.topName << log.background()<< " : ";
|
||||
stream << log.colour() << std::setw(10) << std::left << log.name << log.background() << " : ";
|
||||
stream << log.background()<< std::left;
|
||||
if (log.topWidth > 0)
|
||||
{
|
||||
stream << std::setw(log.topWidth);
|
||||
}
|
||||
stream << log.topName << log.background()<< " : ";
|
||||
stream << log.colour() << std::left << log.name << log.background() << " : ";
|
||||
if ( log.timestamp ) {
|
||||
StopWatch.Stop();
|
||||
GridTime now = StopWatch.Elapsed();
|
||||
StopWatch.Start();
|
||||
stream << log.evidence()<< now << log.background() << " : " ;
|
||||
log.StopWatch->Stop();
|
||||
GridTime now = log.StopWatch->Elapsed();
|
||||
if ( log.timing_mode==1 ) log.StopWatch->Reset();
|
||||
log.StopWatch->Start();
|
||||
stream << log.evidence()<< std::setw(6)<<now << log.background() << " : " ;
|
||||
}
|
||||
stream << log.colour();
|
||||
return stream;
|
||||
@ -135,6 +161,8 @@ public:
|
||||
|
||||
void GridLogConfigure(std::vector<std::string> &logstreams);
|
||||
|
||||
extern GridLogger GridLogIRL;
|
||||
extern GridLogger GridLogSolver;
|
||||
extern GridLogger GridLogError;
|
||||
extern GridLogger GridLogWarning;
|
||||
extern GridLogger GridLogMessage;
|
||||
|
@ -261,7 +261,7 @@ class BinaryIO {
|
||||
GridBase *grid,
|
||||
std::vector<fobj> &iodata,
|
||||
std::string file,
|
||||
int offset,
|
||||
Integer offset,
|
||||
const std::string &format, int control,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
@ -356,7 +356,7 @@ class BinaryIO {
|
||||
|
||||
if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
|
||||
#ifdef USE_MPI_IO
|
||||
std::cout<< GridLogMessage<< "MPI read I/O "<< file<< std::endl;
|
||||
std::cout<< GridLogMessage<<"IOobject: MPI read I/O "<< file<< std::endl;
|
||||
ierr=MPI_File_open(grid->communicator,(char *) file.c_str(), MPI_MODE_RDONLY, MPI_INFO_NULL, &fh); assert(ierr==0);
|
||||
ierr=MPI_File_set_view(fh, disp, mpiObject, fileArray, "native", MPI_INFO_NULL); assert(ierr==0);
|
||||
ierr=MPI_File_read_all(fh, &iodata[0], 1, localArray, &status); assert(ierr==0);
|
||||
@ -367,7 +367,7 @@ class BinaryIO {
|
||||
assert(0);
|
||||
#endif
|
||||
} else {
|
||||
std::cout << GridLogMessage << "C++ read I/O " << file << " : "
|
||||
std::cout << GridLogMessage <<"IOobject: C++ read I/O " << file << " : "
|
||||
<< iodata.size() * sizeof(fobj) << " bytes" << std::endl;
|
||||
std::ifstream fin;
|
||||
fin.open(file, std::ios::binary | std::ios::in);
|
||||
@ -413,9 +413,9 @@ class BinaryIO {
|
||||
timer.Start();
|
||||
if ( (control & BINARYIO_LEXICOGRAPHIC) && (nrank > 1) ) {
|
||||
#ifdef USE_MPI_IO
|
||||
std::cout << GridLogMessage << "MPI write I/O " << file << std::endl;
|
||||
std::cout << GridLogMessage <<"IOobject: MPI write I/O " << file << std::endl;
|
||||
ierr = MPI_File_open(grid->communicator, (char *)file.c_str(), MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);
|
||||
std::cout << GridLogMessage << "Checking for errors" << std::endl;
|
||||
// std::cout << GridLogMessage << "Checking for errors" << std::endl;
|
||||
if (ierr != MPI_SUCCESS)
|
||||
{
|
||||
char error_string[BUFSIZ];
|
||||
@ -444,48 +444,56 @@ class BinaryIO {
|
||||
assert(0);
|
||||
#endif
|
||||
} else {
|
||||
|
||||
std::cout << GridLogMessage << "IOobject: C++ write I/O " << file << " : "
|
||||
<< iodata.size() * sizeof(fobj) << " bytes" << std::endl;
|
||||
|
||||
std::ofstream fout;
|
||||
fout.exceptions ( std::fstream::failbit | std::fstream::badbit );
|
||||
try {
|
||||
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
|
||||
} catch (const std::fstream::failure& exc) {
|
||||
std::cout << GridLogError << "Error in opening the file " << file << " for output" <<std::endl;
|
||||
std::cout << GridLogError << "Exception description: " << exc.what() << std::endl;
|
||||
std::cout << GridLogError << "Probable cause: wrong path, inaccessible location "<< std::endl;
|
||||
#ifdef USE_MPI_IO
|
||||
MPI_Abort(MPI_COMM_WORLD,1);
|
||||
#else
|
||||
exit(1);
|
||||
#endif
|
||||
}
|
||||
std::cout << GridLogMessage<< "C++ write I/O "<< file<<" : "
|
||||
<< iodata.size()*sizeof(fobj)<<" bytes"<<std::endl;
|
||||
|
||||
if ( control & BINARYIO_MASTER_APPEND ) {
|
||||
fout.seekp(0,fout.end);
|
||||
} else {
|
||||
fout.seekp(offset+myrank*lsites*sizeof(fobj));
|
||||
fout.exceptions ( std::fstream::failbit | std::fstream::badbit );
|
||||
try {
|
||||
fout.open(file,std::ios::binary|std::ios::out|std::ios::in);
|
||||
} catch (const std::fstream::failure& exc) {
|
||||
std::cout << GridLogError << "Error in opening the file " << file << " for output" <<std::endl;
|
||||
std::cout << GridLogError << "Exception description: " << exc.what() << std::endl;
|
||||
std::cout << GridLogError << "Probable cause: wrong path, inaccessible location "<< std::endl;
|
||||
#ifdef USE_MPI_IO
|
||||
MPI_Abort(MPI_COMM_WORLD,1);
|
||||
#else
|
||||
exit(1);
|
||||
#endif
|
||||
}
|
||||
|
||||
if ( control & BINARYIO_MASTER_APPEND ) {
|
||||
try {
|
||||
fout.seekp(0,fout.end);
|
||||
} catch (const std::fstream::failure& exc) {
|
||||
std::cout << "Exception in seeking file end " << file << std::endl;
|
||||
}
|
||||
} else {
|
||||
try {
|
||||
fout.seekp(offset+myrank*lsites*sizeof(fobj));
|
||||
} catch (const std::fstream::failure& exc) {
|
||||
std::cout << "Exception in seeking file " << file <<" offset "<< offset << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
fout.write((char *)&iodata[0],iodata.size()*sizeof(fobj));//assert( fout.fail()==0);
|
||||
}
|
||||
catch (const std::fstream::failure& exc) {
|
||||
std::cout << "Exception in writing file " << file << std::endl;
|
||||
std::cout << GridLogError << "Exception description: "<< exc.what() << std::endl;
|
||||
#ifdef USE_MPI_IO
|
||||
MPI_Abort(MPI_COMM_WORLD,1);
|
||||
#else
|
||||
exit(1);
|
||||
#endif
|
||||
}
|
||||
|
||||
try {
|
||||
fout.write((char *)&iodata[0],iodata.size()*sizeof(fobj));//assert( fout.fail()==0);
|
||||
}
|
||||
catch (const std::fstream::failure& exc) {
|
||||
std::cout << "Exception in writing file " << file << std::endl;
|
||||
std::cout << GridLogError << "Exception description: "<< exc.what() << std::endl;
|
||||
#ifdef USE_MPI_IO
|
||||
MPI_Abort(MPI_COMM_WORLD,1);
|
||||
#else
|
||||
exit(1);
|
||||
#endif
|
||||
}
|
||||
fout.close();
|
||||
}
|
||||
timer.Stop();
|
||||
}
|
||||
|
||||
}
|
||||
timer.Stop();
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<<"IOobject: ";
|
||||
if ( control & BINARYIO_READ) std::cout << " read ";
|
||||
else std::cout << " write ";
|
||||
@ -515,7 +523,7 @@ class BinaryIO {
|
||||
static inline void readLatticeObject(Lattice<vobj> &Umu,
|
||||
std::string file,
|
||||
munger munge,
|
||||
int offset,
|
||||
Integer offset,
|
||||
const std::string &format,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
@ -552,7 +560,7 @@ class BinaryIO {
|
||||
static inline void writeLatticeObject(Lattice<vobj> &Umu,
|
||||
std::string file,
|
||||
munger munge,
|
||||
int offset,
|
||||
Integer offset,
|
||||
const std::string &format,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
@ -589,7 +597,7 @@ class BinaryIO {
|
||||
static inline void readRNG(GridSerialRNG &serial,
|
||||
GridParallelRNG ¶llel,
|
||||
std::string file,
|
||||
int offset,
|
||||
Integer offset,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
uint32_t &scidac_csumb)
|
||||
@ -651,7 +659,7 @@ class BinaryIO {
|
||||
static inline void writeRNG(GridSerialRNG &serial,
|
||||
GridParallelRNG ¶llel,
|
||||
std::string file,
|
||||
int offset,
|
||||
Integer offset,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
uint32_t &scidac_csumb)
|
||||
|
@ -147,7 +147,7 @@ namespace QCD {
|
||||
|
||||
_scidacRecord = sr;
|
||||
|
||||
std::cout << GridLogMessage << "Build SciDAC datatype " <<sr.datatype<<std::endl;
|
||||
// std::cout << GridLogMessage << "Build SciDAC datatype " <<sr.datatype<<std::endl;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
@ -159,7 +159,7 @@ namespace QCD {
|
||||
uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
|
||||
if ( scidac_csuma !=scidac_checksuma) return 0;
|
||||
if ( scidac_csumb !=scidac_checksumb) return 0;
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -224,7 +224,7 @@ class GridLimeReader : public BinaryIO {
|
||||
|
||||
assert(PayloadSize == file_bytes);// Must match or user error
|
||||
|
||||
off_t offset= ftell(File);
|
||||
uint64_t offset= ftello(File);
|
||||
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
|
||||
BinarySimpleMunger<sobj,sobj> munge;
|
||||
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
@ -237,7 +237,7 @@ class GridLimeReader : public BinaryIO {
|
||||
/////////////////////////////////////////////
|
||||
// Verify checksums
|
||||
/////////////////////////////////////////////
|
||||
scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
|
||||
assert(scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb)==1);
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -253,16 +253,13 @@ class GridLimeReader : public BinaryIO {
|
||||
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
|
||||
|
||||
// std::cout << GridLogMessage<< " readLimeObject seeking "<< record_name <<" found record :" <<limeReaderType(LimeR) <<std::endl;
|
||||
|
||||
uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
|
||||
|
||||
if ( !strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
|
||||
|
||||
// std::cout << GridLogMessage<< " readLimeObject matches ! " << record_name <<std::endl;
|
||||
|
||||
std::vector<char> xmlc(nbytes+1,'\0');
|
||||
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
|
||||
|
||||
// std::cout << GridLogMessage<< " readLimeObject matches XML " << &xmlc[0] <<std::endl;
|
||||
|
||||
XmlReader RD(&xmlc[0],"");
|
||||
@ -332,7 +329,7 @@ class GridLimeWriter : public BinaryIO {
|
||||
err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0);
|
||||
err=limeWriterCloseRecord(LimeW); assert(err>=0);
|
||||
limeDestroyHeader(h);
|
||||
// std::cout << " File offset is now"<<ftell(File) << std::endl;
|
||||
// std::cout << " File offset is now"<<ftello(File) << std::endl;
|
||||
}
|
||||
////////////////////////////////////////////
|
||||
// Write a generic lattice field and csum
|
||||
@ -349,7 +346,6 @@ class GridLimeWriter : public BinaryIO {
|
||||
uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
|
||||
createLimeRecordHeader(record_name, 0, 0, PayloadSize);
|
||||
|
||||
|
||||
// std::cout << "W sizeof(sobj)" <<sizeof(sobj)<<std::endl;
|
||||
// std::cout << "W Gsites " <<field._grid->_gsites<<std::endl;
|
||||
// std::cout << "W Payload expected " <<PayloadSize<<std::endl;
|
||||
@ -361,18 +357,20 @@ class GridLimeWriter : public BinaryIO {
|
||||
// These are both buffered, so why I think this code is right is as follows.
|
||||
//
|
||||
// i) write record header to FILE *File, telegraphing the size.
|
||||
// ii) ftell reads the offset from FILE *File .
|
||||
// ii) ftello reads the offset from FILE *File .
|
||||
// iii) iostream / MPI Open independently seek this offset. Write sequence direct to disk.
|
||||
// Closes iostream and flushes.
|
||||
// iv) fseek on FILE * to end of this disjoint section.
|
||||
// v) Continue writing scidac record.
|
||||
////////////////////////////////////////////////////////////////////
|
||||
off_t offset = ftell(File);
|
||||
uint64_t offset = ftello(File);
|
||||
// std::cout << " Writing to offset "<<offset << std::endl;
|
||||
std::string format = getFormatString<vobj>();
|
||||
BinarySimpleMunger<sobj,sobj> munge;
|
||||
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
// fseek(File,0,SEEK_END); offset = ftello(File);std::cout << " offset now "<<offset << std::endl;
|
||||
err=limeWriterCloseRecord(LimeW); assert(err>=0);
|
||||
|
||||
////////////////////////////////////////
|
||||
// Write checksum element, propagaing forward from the BinaryIO
|
||||
// Always pair a checksum with a binary object, and close message
|
||||
@ -382,7 +380,7 @@ class GridLimeWriter : public BinaryIO {
|
||||
std::stringstream streamb; streamb << std::hex << scidac_csumb;
|
||||
checksum.suma= streama.str();
|
||||
checksum.sumb= streamb.str();
|
||||
std::cout << GridLogMessage<<" writing scidac checksums "<<std::hex<<scidac_csuma<<"/"<<scidac_csumb<<std::dec<<std::endl;
|
||||
// std::cout << GridLogMessage<<" writing scidac checksums "<<std::hex<<scidac_csuma<<"/"<<scidac_csumb<<std::dec<<std::endl;
|
||||
writeLimeObject(0,1,checksum,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
|
||||
}
|
||||
};
|
||||
@ -642,7 +640,7 @@ class IldgReader : public GridLimeReader {
|
||||
// Copy out the string
|
||||
std::vector<char> xmlc(nbytes+1,'\0');
|
||||
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
|
||||
std::cout << GridLogMessage<< "Non binary record :" <<limeReaderType(LimeR) <<std::endl; //<<"\n"<<(&xmlc[0])<<std::endl;
|
||||
// std::cout << GridLogMessage<< "Non binary record :" <<limeReaderType(LimeR) <<std::endl; //<<"\n"<<(&xmlc[0])<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// ILDG format record
|
||||
@ -686,7 +684,7 @@ class IldgReader : public GridLimeReader {
|
||||
std::string xmls(&xmlc[0]);
|
||||
// is it a USQCD info field
|
||||
if ( xmls.find(std::string("usqcdInfo")) != std::string::npos ) {
|
||||
std::cout << GridLogMessage<<"...found a usqcdInfo field"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"...found a usqcdInfo field"<<std::endl;
|
||||
XmlReader RD(&xmlc[0],"");
|
||||
read(RD,"usqcdInfo",usqcdInfo_);
|
||||
found_usqcdInfo = 1;
|
||||
@ -704,8 +702,7 @@ class IldgReader : public GridLimeReader {
|
||||
// Binary data
|
||||
/////////////////////////////////
|
||||
std::cout << GridLogMessage << "ILDG Binary record found : " ILDG_BINARY_DATA << std::endl;
|
||||
off_t offset= ftell(File);
|
||||
|
||||
uint64_t offset= ftello(File);
|
||||
if ( format == std::string("IEEE64BIG") ) {
|
||||
GaugeSimpleMunger<dobj, sobj> munge;
|
||||
BinaryIO::readLatticeObject< vobj, dobj >(Umu, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
|
@ -61,10 +61,10 @@ namespace QCD {
|
||||
}
|
||||
|
||||
/***************************************************************
|
||||
/* Additional EOFA operators only called outside the inverter.
|
||||
/* Since speed is not essential, simple axpby-style
|
||||
/* implementations should be fine.
|
||||
/***************************************************************/
|
||||
* Additional EOFA operators only called outside the inverter.
|
||||
* Since speed is not essential, simple axpby-style
|
||||
* implementations should be fine.
|
||||
***************************************************************/
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
|
||||
{
|
||||
@ -116,8 +116,8 @@ namespace QCD {
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
/* Performance critical fermion operators called inside the inverter
|
||||
/********************************************************************/
|
||||
* Performance critical fermion operators called inside the inverter
|
||||
********************************************************************/
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
|
||||
|
@ -47,6 +47,7 @@ namespace Grid {
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
FermionOperator(const ImplParams &p= ImplParams()) : Impl(p) {};
|
||||
virtual ~FermionOperator(void) = default;
|
||||
|
||||
virtual FermionField &tmp(void) = 0;
|
||||
|
||||
|
@ -77,11 +77,11 @@ namespace QCD {
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************
|
||||
/* Additional EOFA operators only called outside the inverter.
|
||||
/* Since speed is not essential, simple axpby-style
|
||||
/* implementations should be fine.
|
||||
/***************************************************************/
|
||||
/****************************************************************
|
||||
* Additional EOFA operators only called outside the inverter.
|
||||
* Since speed is not essential, simple axpby-style
|
||||
* implementations should be fine.
|
||||
***************************************************************/
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
|
||||
{
|
||||
@ -194,8 +194,8 @@ namespace QCD {
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
/* Performance critical fermion operators called inside the inverter
|
||||
/********************************************************************/
|
||||
* Performance critical fermion operators called inside the inverter
|
||||
********************************************************************/
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
|
||||
|
@ -265,7 +265,6 @@ public:
|
||||
if ( timer3 ) std::cout << GridLogMessage << " timer3 (commsMergeShm) " <<timer3/calls <<std::endl;
|
||||
if ( timer4 ) std::cout << GridLogMessage << " timer4 " <<timer4 <<std::endl;
|
||||
}
|
||||
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
|
||||
|
||||
std::vector<int> same_node;
|
||||
std::vector<int> surface_list;
|
||||
|
@ -16,12 +16,12 @@ class ScalarImplTypes {
|
||||
typedef iImplField<Simd> SiteField;
|
||||
typedef SiteField SitePropagator;
|
||||
typedef SiteField SiteComplex;
|
||||
|
||||
|
||||
typedef Lattice<SiteField> Field;
|
||||
typedef Field ComplexField;
|
||||
typedef Field FermionField;
|
||||
typedef Field PropagatorField;
|
||||
|
||||
|
||||
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG){
|
||||
gaussian(pRNG, P);
|
||||
}
|
||||
@ -47,54 +47,60 @@ class ScalarImplTypes {
|
||||
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||
U = 1.0;
|
||||
}
|
||||
|
||||
|
||||
static void MomentumSpacePropagator(Field &out, RealD m)
|
||||
{
|
||||
GridBase *grid = out._grid;
|
||||
Field kmu(grid), one(grid);
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
std::vector<int> &l = grid->_fdimensions;
|
||||
|
||||
|
||||
one = Complex(1.0,0.0);
|
||||
out = m*m;
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
Real twoPiL = M_PI*2./l[mu];
|
||||
|
||||
|
||||
LatticeCoordinate(kmu,mu);
|
||||
kmu = 2.*sin(.5*twoPiL*kmu);
|
||||
out = out + kmu*kmu;
|
||||
}
|
||||
out = one/out;
|
||||
}
|
||||
|
||||
|
||||
static void FreePropagator(const Field &in, Field &out,
|
||||
const Field &momKernel)
|
||||
{
|
||||
FFT fft((GridCartesian *)in._grid);
|
||||
Field inFT(in._grid);
|
||||
|
||||
|
||||
fft.FFT_all_dim(inFT, in, FFT::forward);
|
||||
inFT = inFT*momKernel;
|
||||
fft.FFT_all_dim(out, inFT, FFT::backward);
|
||||
}
|
||||
|
||||
|
||||
static void FreePropagator(const Field &in, Field &out, RealD m)
|
||||
{
|
||||
Field momKernel(in._grid);
|
||||
|
||||
|
||||
MomentumSpacePropagator(momKernel, m);
|
||||
FreePropagator(in, out, momKernel);
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
#ifdef USE_FFT_ACCELERATION
|
||||
#ifndef FFT_MASS
|
||||
#error "USE_FFT_ACCELERATION is defined but not FFT_MASS"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
template <class S, unsigned int N>
|
||||
class ScalarAdjMatrixImplTypes {
|
||||
public:
|
||||
typedef S Simd;
|
||||
typedef QCD::SU<N> Group;
|
||||
|
||||
|
||||
template <typename vtype>
|
||||
using iImplField = iScalar<iScalar<iMatrix<vtype, N>>>;
|
||||
template <typename vtype>
|
||||
@ -103,24 +109,119 @@ class ScalarImplTypes {
|
||||
typedef iImplField<Simd> SiteField;
|
||||
typedef SiteField SitePropagator;
|
||||
typedef iImplComplex<Simd> SiteComplex;
|
||||
|
||||
|
||||
typedef Lattice<SiteField> Field;
|
||||
typedef Lattice<SiteComplex> ComplexField;
|
||||
typedef Field FermionField;
|
||||
typedef Field PropagatorField;
|
||||
|
||||
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG) {
|
||||
static void MomentaSquare(ComplexField &out)
|
||||
{
|
||||
GridBase *grid = out._grid;
|
||||
const std::vector<int> &l = grid->FullDimensions();
|
||||
ComplexField kmu(grid);
|
||||
|
||||
for (int mu = 0; mu < grid->Nd(); mu++)
|
||||
{
|
||||
Real twoPiL = M_PI * 2.0 / l[mu];
|
||||
LatticeCoordinate(kmu, mu);
|
||||
kmu = 2.0 * sin(0.5 * twoPiL * kmu);
|
||||
out += kmu * kmu;
|
||||
}
|
||||
}
|
||||
|
||||
static void MomentumSpacePropagator(ComplexField &out, RealD m)
|
||||
{
|
||||
GridBase *grid = out._grid;
|
||||
ComplexField one(grid);
|
||||
one = Complex(1.0, 0.0);
|
||||
out = m * m;
|
||||
MomentaSquare(out);
|
||||
out = one / out;
|
||||
}
|
||||
|
||||
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG)
|
||||
{
|
||||
#ifndef USE_FFT_ACCELERATION
|
||||
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, P);
|
||||
#else
|
||||
|
||||
Field Pgaussian(P._grid), Pp(P._grid);
|
||||
ComplexField p2(P._grid); p2 = zero;
|
||||
RealD M = FFT_MASS;
|
||||
|
||||
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pgaussian);
|
||||
|
||||
FFT theFFT((GridCartesian*)P._grid);
|
||||
theFFT.FFT_all_dim(Pp, Pgaussian, FFT::forward);
|
||||
MomentaSquare(p2);
|
||||
p2 += M * M;
|
||||
p2 = sqrt(p2);
|
||||
Pp *= p2;
|
||||
theFFT.FFT_all_dim(P, Pp, FFT::backward);
|
||||
|
||||
#endif //USE_FFT_ACCELERATION
|
||||
}
|
||||
|
||||
static inline Field projectForce(Field& P) {return P;}
|
||||
|
||||
static inline void update_field(Field& P, Field& U, double ep) {
|
||||
U += P*ep;
|
||||
static inline void update_field(Field &P, Field &U, double ep)
|
||||
{
|
||||
#ifndef USE_FFT_ACCELERATION
|
||||
double t0=usecond();
|
||||
U += P * ep;
|
||||
double t1=usecond();
|
||||
double total_time = (t1-t0)/1e6;
|
||||
std::cout << GridLogIntegrator << "Total time for updating field (s) : " << total_time << std::endl;
|
||||
#else
|
||||
// FFT transform P(x) -> P(p)
|
||||
// divide by (M^2+p^2) M external parameter (how to pass?)
|
||||
// P'(p) = P(p)/(M^2+p^2)
|
||||
// Transform back -> P'(x)
|
||||
// U += P'(x)*ep
|
||||
|
||||
Field Pp(U._grid), P_FFT(U._grid);
|
||||
static ComplexField p2(U._grid);
|
||||
RealD M = FFT_MASS;
|
||||
|
||||
FFT theFFT((GridCartesian*)U._grid);
|
||||
theFFT.FFT_all_dim(Pp, P, FFT::forward);
|
||||
|
||||
static bool first_call = true;
|
||||
if (first_call)
|
||||
{
|
||||
// avoid recomputing
|
||||
MomentumSpacePropagator(p2, M);
|
||||
first_call = false;
|
||||
}
|
||||
Pp *= p2;
|
||||
theFFT.FFT_all_dim(P_FFT, Pp, FFT::backward);
|
||||
U += P_FFT * ep;
|
||||
|
||||
#endif //USE_FFT_ACCELERATION
|
||||
}
|
||||
|
||||
static inline RealD FieldSquareNorm(Field& U) {
|
||||
return (TensorRemove(sum(trace(U*U))).real());
|
||||
static inline RealD FieldSquareNorm(Field &U)
|
||||
{
|
||||
#ifndef USE_FFT_ACCELERATION
|
||||
return (TensorRemove(sum(trace(U * U))).real());
|
||||
#else
|
||||
// In case of Fourier acceleration we have to:
|
||||
// compute U(p)*U(p)/(M^2+p^2)) Parseval theorem
|
||||
// 1 FFT needed U(x) -> U(p)
|
||||
// M to be passed
|
||||
|
||||
FFT theFFT((GridCartesian*)U._grid);
|
||||
Field Up(U._grid);
|
||||
|
||||
theFFT.FFT_all_dim(Up, U, FFT::forward);
|
||||
RealD M = FFT_MASS;
|
||||
ComplexField p2(U._grid);
|
||||
MomentumSpacePropagator(p2, M);
|
||||
Field Up2 = Up * p2;
|
||||
// from the definition of the DFT we need to divide by the volume
|
||||
return (-TensorRemove(sum(trace(adj(Up) * Up2))).real() / U._grid->gSites());
|
||||
#endif //USE_FFT_ACCELERATION
|
||||
}
|
||||
|
||||
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||
@ -146,7 +247,7 @@ class ScalarImplTypes {
|
||||
typedef ScalarImplTypes<vComplex> ScalarImplCR;
|
||||
typedef ScalarImplTypes<vComplexF> ScalarImplCF;
|
||||
typedef ScalarImplTypes<vComplexD> ScalarImplCD;
|
||||
|
||||
|
||||
// Hardcoding here the size of the matrices
|
||||
typedef ScalarAdjMatrixImplTypes<vComplex, QCD::Nc> ScalarAdjImplR;
|
||||
typedef ScalarAdjMatrixImplTypes<vComplexF, QCD::Nc> ScalarAdjImplF;
|
||||
@ -155,7 +256,7 @@ class ScalarImplTypes {
|
||||
template <int Colours > using ScalarNxNAdjImplR = ScalarAdjMatrixImplTypes<vComplex, Colours >;
|
||||
template <int Colours > using ScalarNxNAdjImplF = ScalarAdjMatrixImplTypes<vComplexF, Colours >;
|
||||
template <int Colours > using ScalarNxNAdjImplD = ScalarAdjMatrixImplTypes<vComplexD, Colours >;
|
||||
|
||||
|
||||
//}
|
||||
}
|
||||
|
||||
|
@ -30,119 +30,179 @@ directory
|
||||
#ifndef SCALAR_INT_ACTION_H
|
||||
#define SCALAR_INT_ACTION_H
|
||||
|
||||
|
||||
// Note: this action can completely absorb the ScalarAction for real float fields
|
||||
// use the scalarObjs to generalise the structure
|
||||
|
||||
namespace Grid {
|
||||
// FIXME drop the QCD namespace everywhere here
|
||||
namespace Grid
|
||||
{
|
||||
// FIXME drop the QCD namespace everywhere here
|
||||
|
||||
template <class Impl, int Ndim >
|
||||
class ScalarInteractionAction : public QCD::Action<typename Impl::Field> {
|
||||
public:
|
||||
INHERIT_FIELD_TYPES(Impl);
|
||||
private:
|
||||
RealD mass_square;
|
||||
RealD lambda;
|
||||
template <class Impl, int Ndim>
|
||||
class ScalarInteractionAction : public QCD::Action<typename Impl::Field>
|
||||
{
|
||||
public:
|
||||
INHERIT_FIELD_TYPES(Impl);
|
||||
|
||||
private:
|
||||
RealD mass_square;
|
||||
RealD lambda;
|
||||
RealD g;
|
||||
const unsigned int N = Impl::Group::Dimension;
|
||||
|
||||
typedef typename Field::vector_object vobj;
|
||||
typedef CartesianStencil<vobj,vobj> Stencil;
|
||||
typedef typename Field::vector_object vobj;
|
||||
typedef CartesianStencil<vobj, vobj> Stencil;
|
||||
|
||||
SimpleCompressor<vobj> compressor;
|
||||
int npoint = 2*Ndim;
|
||||
std::vector<int> directions;// = {0,1,2,3,0,1,2,3}; // forcing 4 dimensions
|
||||
std::vector<int> displacements;// = {1,1,1,1, -1,-1,-1,-1};
|
||||
SimpleCompressor<vobj> compressor;
|
||||
int npoint = 2 * Ndim;
|
||||
std::vector<int> directions; //
|
||||
std::vector<int> displacements; //
|
||||
|
||||
|
||||
public:
|
||||
|
||||
ScalarInteractionAction(RealD ms, RealD l) : mass_square(ms), lambda(l), displacements(2*Ndim,0), directions(2*Ndim,0){
|
||||
for (int mu = 0 ; mu < Ndim; mu++){
|
||||
directions[mu] = mu; directions[mu+Ndim] = mu;
|
||||
displacements[mu] = 1; displacements[mu+Ndim] = -1;
|
||||
}
|
||||
public:
|
||||
ScalarInteractionAction(RealD ms, RealD l, RealD gval) : mass_square(ms), lambda(l), g(gval), displacements(2 * Ndim, 0), directions(2 * Ndim, 0)
|
||||
{
|
||||
for (int mu = 0; mu < Ndim; mu++)
|
||||
{
|
||||
directions[mu] = mu;
|
||||
directions[mu + Ndim] = mu;
|
||||
displacements[mu] = 1;
|
||||
displacements[mu + Ndim] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
virtual std::string LogParameters() {
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "[ScalarAction] lambda : " << lambda << std::endl;
|
||||
sstream << GridLogMessage << "[ScalarAction] mass_square : " << mass_square << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
virtual std::string LogParameters()
|
||||
{
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "[ScalarAction] lambda : " << lambda << std::endl;
|
||||
sstream << GridLogMessage << "[ScalarAction] mass_square : " << mass_square << std::endl;
|
||||
sstream << GridLogMessage << "[ScalarAction] g : " << g << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual std::string action_name() {return "ScalarAction";}
|
||||
virtual std::string action_name() { return "ScalarAction"; }
|
||||
|
||||
virtual void refresh(const Field &U, GridParallelRNG &pRNG) {}
|
||||
virtual void refresh(const Field &U, GridParallelRNG &pRNG) {}
|
||||
|
||||
virtual RealD S(const Field &p) {
|
||||
assert(p._grid->Nd() == Ndim);
|
||||
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
Field action(p._grid), pshift(p._grid), phisquared(p._grid);
|
||||
phisquared = p*p;
|
||||
action = (2.0*Ndim + mass_square)*phisquared - lambda/24.*phisquared*phisquared;
|
||||
for (int mu = 0; mu < Ndim; mu++) {
|
||||
// pshift = Cshift(p, mu, +1); // not efficient, implement with stencils
|
||||
parallel_for (int i = 0; i < p._grid->oSites(); i++) {
|
||||
int permute_type;
|
||||
StencilEntry *SE;
|
||||
vobj temp2;
|
||||
const vobj *temp, *t_p;
|
||||
|
||||
SE = phiStencil.GetEntry(permute_type, mu, i);
|
||||
t_p = &p._odata[i];
|
||||
if ( SE->_is_local ) {
|
||||
temp = &p._odata[SE->_offset];
|
||||
if ( SE->_permute ) {
|
||||
permute(temp2, *temp, permute_type);
|
||||
action._odata[i] -= temp2*(*t_p) + (*t_p)*temp2;
|
||||
} else {
|
||||
action._odata[i] -= (*temp)*(*t_p) + (*t_p)*(*temp);
|
||||
}
|
||||
} else {
|
||||
action._odata[i] -= phiStencil.CommBuf()[SE->_offset]*(*t_p) + (*t_p)*phiStencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
}
|
||||
// action -= pshift*p + p*pshift;
|
||||
}
|
||||
// NB the trace in the algebra is normalised to 1/2
|
||||
// minus sign coming from the antihermitian fields
|
||||
return -(TensorRemove(sum(trace(action)))).real();
|
||||
};
|
||||
|
||||
virtual void deriv(const Field &p, Field &force) {
|
||||
assert(p._grid->Nd() == Ndim);
|
||||
force = (2.0*Ndim + mass_square)*p - lambda/12.*p*p*p;
|
||||
// move this outside
|
||||
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
|
||||
//for (int mu = 0; mu < QCD::Nd; mu++) force -= Cshift(p, mu, -1) + Cshift(p, mu, 1);
|
||||
for (int point = 0; point < npoint; point++) {
|
||||
parallel_for (int i = 0; i < p._grid->oSites(); i++) {
|
||||
const vobj *temp;
|
||||
vobj temp2;
|
||||
int permute_type;
|
||||
StencilEntry *SE;
|
||||
SE = phiStencil.GetEntry(permute_type, point, i);
|
||||
|
||||
if ( SE->_is_local ) {
|
||||
temp = &p._odata[SE->_offset];
|
||||
if ( SE->_permute ) {
|
||||
permute(temp2, *temp, permute_type);
|
||||
force._odata[i] -= temp2;
|
||||
} else {
|
||||
force._odata[i] -= *temp;
|
||||
}
|
||||
} else {
|
||||
force._odata[i] -= phiStencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
}
|
||||
virtual RealD S(const Field &p)
|
||||
{
|
||||
assert(p._grid->Nd() == Ndim);
|
||||
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
Field action(p._grid), pshift(p._grid), phisquared(p._grid);
|
||||
phisquared = p * p;
|
||||
action = (2.0 * Ndim + mass_square) * phisquared - lambda * phisquared * phisquared;
|
||||
for (int mu = 0; mu < Ndim; mu++)
|
||||
{
|
||||
// pshift = Cshift(p, mu, +1); // not efficient, implement with stencils
|
||||
parallel_for(int i = 0; i < p._grid->oSites(); i++)
|
||||
{
|
||||
int permute_type;
|
||||
StencilEntry *SE;
|
||||
vobj temp2;
|
||||
const vobj *temp, *t_p;
|
||||
|
||||
SE = phiStencil.GetEntry(permute_type, mu, i);
|
||||
t_p = &p._odata[i];
|
||||
if (SE->_is_local)
|
||||
{
|
||||
temp = &p._odata[SE->_offset];
|
||||
if (SE->_permute)
|
||||
{
|
||||
permute(temp2, *temp, permute_type);
|
||||
action._odata[i] -= temp2 * (*t_p) + (*t_p) * temp2;
|
||||
}
|
||||
else
|
||||
{
|
||||
action._odata[i] -= (*temp) * (*t_p) + (*t_p) * (*temp);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
action._odata[i] -= phiStencil.CommBuf()[SE->_offset] * (*t_p) + (*t_p) * phiStencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
}
|
||||
// action -= pshift*p + p*pshift;
|
||||
}
|
||||
// NB the trace in the algebra is normalised to 1/2
|
||||
// minus sign coming from the antihermitian fields
|
||||
return -(TensorRemove(sum(trace(action)))).real() * N / g;
|
||||
};
|
||||
|
||||
} // namespace Grid
|
||||
|
||||
#endif // SCALAR_INT_ACTION_H
|
||||
virtual void deriv(const Field &p, Field &force)
|
||||
{
|
||||
double t0 = usecond();
|
||||
assert(p._grid->Nd() == Ndim);
|
||||
force = (2. * Ndim + mass_square) * p - 2. * lambda * p * p * p;
|
||||
double interm_t = usecond();
|
||||
|
||||
// move this outside
|
||||
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
|
||||
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
double halo_t = usecond();
|
||||
int chunk = 128;
|
||||
//for (int mu = 0; mu < QCD::Nd; mu++) force -= Cshift(p, mu, -1) + Cshift(p, mu, 1);
|
||||
|
||||
// inverting the order of the loops slows down the code(! g++ 7)
|
||||
// cannot try to reduce the number of force writes by factor npoint...
|
||||
// use cache blocking
|
||||
for (int point = 0; point < npoint; point++)
|
||||
{
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
int permute_type;
|
||||
StencilEntry *SE;
|
||||
const vobj *temp;
|
||||
|
||||
#pragma omp for schedule(static, chunk)
|
||||
for (int i = 0; i < p._grid->oSites(); i++)
|
||||
{
|
||||
SE = phiStencil.GetEntry(permute_type, point, i);
|
||||
// prefetch next p?
|
||||
|
||||
if (SE->_is_local)
|
||||
{
|
||||
temp = &p._odata[SE->_offset];
|
||||
|
||||
if (SE->_permute)
|
||||
{
|
||||
vobj temp2;
|
||||
permute(temp2, *temp, permute_type);
|
||||
force._odata[i] -= temp2;
|
||||
}
|
||||
else
|
||||
{
|
||||
force._odata[i] -= *temp; // slow part. Dominated by this read/write (BW)
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
force._odata[i] -= phiStencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
force *= N / g;
|
||||
|
||||
double t1 = usecond();
|
||||
double total_time = (t1 - t0) / 1e6;
|
||||
double interm_time = (interm_t - t0) / 1e6;
|
||||
double halo_time = (halo_t - interm_t) / 1e6;
|
||||
double stencil_time = (t1 - halo_t) / 1e6;
|
||||
std::cout << GridLogIntegrator << "Total time for force computation (s) : " << total_time << std::endl;
|
||||
std::cout << GridLogIntegrator << "Intermediate time for force computation (s): " << interm_time << std::endl;
|
||||
std::cout << GridLogIntegrator << "Halo time in force computation (s) : " << halo_time << std::endl;
|
||||
std::cout << GridLogIntegrator << "Stencil time in force computation (s) : " << stencil_time << std::endl;
|
||||
double flops = p._grid->gSites() * (14 * N * N * N + 18 * N * N + 2);
|
||||
double flops_no_stencil = p._grid->gSites() * (14 * N * N * N + 6 * N * N + 2);
|
||||
double Gflops = flops / (total_time * 1e9);
|
||||
double Gflops_no_stencil = flops_no_stencil / (interm_time * 1e9);
|
||||
std::cout << GridLogIntegrator << "Flops: " << flops << " - Gflop/s : " << Gflops << std::endl;
|
||||
std::cout << GridLogIntegrator << "Flops NS: " << flops_no_stencil << " - Gflop/s NS: " << Gflops_no_stencil << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Grid
|
||||
|
||||
#endif // SCALAR_INT_ACTION_H
|
||||
|
@ -211,7 +211,7 @@ typedef HMCWrapperTemplate<ScalarAdjImplR, MinimumNorm2, ScalarMatrixFields>
|
||||
ScalarAdjGenericHMCRunner;
|
||||
|
||||
template <int Colours>
|
||||
using ScalarNxNAdjGenericHMCRunner = HMCWrapperTemplate < ScalarNxNAdjImplR<Colours>, MinimumNorm2, ScalarNxNMatrixFields<Colours> >;
|
||||
using ScalarNxNAdjGenericHMCRunner = HMCWrapperTemplate < ScalarNxNAdjImplR<Colours>, ForceGradient, ScalarNxNMatrixFields<Colours> >;
|
||||
|
||||
} // namespace QCD
|
||||
} // namespace Grid
|
||||
|
@ -231,7 +231,7 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
|
||||
Field Pfg(U._grid);
|
||||
Ufg = U;
|
||||
Pfg = zero;
|
||||
std::cout << GridLogMessage << "FG update " << fg_dt << " " << ep
|
||||
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep
|
||||
<< std::endl;
|
||||
// prepare_fg; no prediction/result cache for now
|
||||
// could relax CG stopping conditions for the
|
||||
|
@ -746,7 +746,7 @@ template<typename GaugeField,typename GaugeMat>
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||
static void ColdConfiguration(GaugeField &out){
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
@ -757,6 +757,10 @@ template<typename GaugeField,typename GaugeMat>
|
||||
PokeIndex<LorentzIndex>(out,Umu,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||
ColdConfiguration(out);
|
||||
}
|
||||
|
||||
template<typename LatticeMatrixType>
|
||||
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out){
|
||||
|
@ -25,7 +25,7 @@
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid.h>
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
using namespace std;
|
||||
|
@ -125,7 +125,11 @@ static inline void write(Writer<T> &WR,const std::string &s, const cname &obj){
|
||||
}\
|
||||
template <typename T>\
|
||||
static inline void read(Reader<T> &RD,const std::string &s, cname &obj){ \
|
||||
push(RD,s);\
|
||||
if (!push(RD,s))\
|
||||
{\
|
||||
std::cout << Grid::GridLogWarning << "IO: Cannot open node '" << s << "'" << std::endl;\
|
||||
return;\
|
||||
};\
|
||||
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_READ_MEMBER,__VA_ARGS__)) \
|
||||
pop(RD);\
|
||||
}\
|
||||
|
@ -70,8 +70,8 @@ XmlReader::XmlReader(const char *xmlstring,string toplev) : fileName_("")
|
||||
pugi::xml_parse_result result;
|
||||
result = doc_.load_string(xmlstring);
|
||||
if ( !result ) {
|
||||
cerr << "XML error description: " << result.description() << "\n";
|
||||
cerr << "XML error offset : " << result.offset << "\n";
|
||||
cerr << "XML error description (from char *): " << result.description() << "\nXML\n"<< xmlstring << "\n";
|
||||
cerr << "XML error offset (from char *) " << result.offset << "\nXML\n"<< xmlstring <<"\n";
|
||||
abort();
|
||||
}
|
||||
if ( toplev == std::string("") ) {
|
||||
@ -87,8 +87,8 @@ XmlReader::XmlReader(const string &fileName,string toplev) : fileName_(fileName)
|
||||
pugi::xml_parse_result result;
|
||||
result = doc_.load_file(fileName_.c_str());
|
||||
if ( !result ) {
|
||||
cerr << "XML error description: " << result.description() << "\n";
|
||||
cerr << "XML error offset : " << result.offset << "\n";
|
||||
cerr << "XML error description: " << result.description() <<" "<< fileName_ <<"\n";
|
||||
cerr << "XML error offset : " << result.offset <<" "<< fileName_ <<"\n";
|
||||
abort();
|
||||
}
|
||||
if ( toplev == std::string("") ) {
|
||||
@ -100,13 +100,16 @@ XmlReader::XmlReader(const string &fileName,string toplev) : fileName_(fileName)
|
||||
|
||||
bool XmlReader::push(const string &s)
|
||||
{
|
||||
if (node_.child(s.c_str()))
|
||||
{
|
||||
node_ = node_.child(s.c_str());
|
||||
|
||||
if (node_.child(s.c_str()) == NULL )
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
|
||||
node_ = node_.child(s.c_str());
|
||||
return true;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void XmlReader::pop(void)
|
||||
@ -117,20 +120,30 @@ void XmlReader::pop(void)
|
||||
bool XmlReader::nextElement(const std::string &s)
|
||||
{
|
||||
if (node_.next_sibling(s.c_str()))
|
||||
{
|
||||
node_ = node_.next_sibling(s.c_str());
|
||||
|
||||
return true;
|
||||
}
|
||||
{
|
||||
node_ = node_.next_sibling(s.c_str());
|
||||
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
}
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <>
|
||||
void XmlReader::readDefault(const string &s, string &output)
|
||||
{
|
||||
output = node_.child(s.c_str()).first_child().value();
|
||||
if (node_.child(s.c_str()))
|
||||
{
|
||||
output = node_.child(s.c_str()).first_child().value();
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
|
||||
std::cout << std::endl;
|
||||
|
||||
output = "";
|
||||
}
|
||||
}
|
||||
|
@ -39,6 +39,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <cassert>
|
||||
|
||||
#include <Grid/pugixml/pugixml.h>
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
namespace Grid
|
||||
{
|
||||
@ -119,7 +120,6 @@ namespace Grid
|
||||
std::string buf;
|
||||
|
||||
readDefault(s, buf);
|
||||
// std::cout << s << " " << buf << std::endl;
|
||||
fromString(output, buf);
|
||||
}
|
||||
|
||||
@ -132,7 +132,13 @@ namespace Grid
|
||||
std::string buf;
|
||||
unsigned int i = 0;
|
||||
|
||||
push(s);
|
||||
if (!push(s))
|
||||
{
|
||||
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
|
||||
std::cout << std::endl;
|
||||
|
||||
return;
|
||||
}
|
||||
while (node_.child("elem"))
|
||||
{
|
||||
output.resize(i + 1);
|
||||
|
@ -105,7 +105,6 @@ template<class vobj,class cobj>
|
||||
class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal fill in.
|
||||
public:
|
||||
|
||||
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
|
||||
typedef typename cobj::vector_type vector_type;
|
||||
typedef typename cobj::scalar_type scalar_type;
|
||||
typedef typename cobj::scalar_object scalar_object;
|
||||
|
@ -51,7 +51,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#define PARALLEL_CRITICAL
|
||||
#endif
|
||||
|
||||
#define parallel_region PARALLEL_REGION
|
||||
#define parallel_for PARALLEL_FOR_LOOP for
|
||||
#define parallel_for_internal PARALLEL_FOR_LOOP_INTERN for
|
||||
#define parallel_for_nest2 PARALLEL_NESTED_LOOP2 for
|
||||
|
||||
namespace Grid {
|
||||
|
@ -204,11 +204,11 @@ std::string GridCmdVectorIntToString(const std::vector<int> & vec){
|
||||
// Reinit guard
|
||||
/////////////////////////////////////////////////////////
|
||||
static int Grid_is_initialised = 0;
|
||||
|
||||
static MemoryStats dbgMemStats;
|
||||
|
||||
void Grid_init(int *argc,char ***argv)
|
||||
{
|
||||
GridLogger::StopWatch.Start();
|
||||
GridLogger::GlobalStopWatch.Start();
|
||||
|
||||
std::string arg;
|
||||
|
||||
@ -220,11 +220,11 @@ void Grid_init(int *argc,char ***argv)
|
||||
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--shm");
|
||||
GridCmdOptionInt(arg,MB);
|
||||
uint64_t MB64 = MB;
|
||||
CartesianCommunicator::MAX_MPI_SHM_BYTES = MB64*1024LL*1024LL;
|
||||
GlobalSharedMemory::MAX_MPI_SHM_BYTES = MB64*1024LL*1024LL;
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(*argv,*argv+*argc,"--shm-hugepages") ){
|
||||
CartesianCommunicator::Hugepages = 1;
|
||||
GlobalSharedMemory::Hugepages = 1;
|
||||
}
|
||||
|
||||
|
||||
@ -243,6 +243,17 @@ void Grid_init(int *argc,char ***argv)
|
||||
fname<<CartesianCommunicator::RankWorld();
|
||||
fp=freopen(fname.str().c_str(),"w",stdout);
|
||||
assert(fp!=(FILE *)NULL);
|
||||
|
||||
std::ostringstream ename;
|
||||
ename<<"Grid.stderr.";
|
||||
ename<<CartesianCommunicator::RankWorld();
|
||||
fp=freopen(ename.str().c_str(),"w",stderr);
|
||||
assert(fp!=(FILE *)NULL);
|
||||
}
|
||||
|
||||
if( GridCmdOptionExists(*argv,*argv+*argc,"--debug-mem") ){
|
||||
MemoryProfiler::debug = true;
|
||||
MemoryProfiler::stats = &dbgMemStats;
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
@ -318,6 +329,7 @@ void Grid_init(int *argc,char ***argv)
|
||||
std::cout<<GridLogMessage<<" --decomposition : report on default omp,mpi and simd decomposition"<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --debug-signals : catch sigsegv and print a blame report"<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --debug-stdout : print stdout from EVERY node"<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --debug-mem : print Grid allocator activity"<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --notimestamp : suppress millisecond resolution stamps"<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Performance:"<<std::endl;
|
||||
@ -386,8 +398,8 @@ void Grid_init(int *argc,char ***argv)
|
||||
Grid_default_latt,
|
||||
Grid_default_mpi);
|
||||
|
||||
std::cout << GridLogMessage << "Requesting "<< CartesianCommunicator::MAX_MPI_SHM_BYTES <<" byte stencil comms buffers "<<std::endl;
|
||||
if ( CartesianCommunicator::Hugepages) {
|
||||
std::cout << GridLogMessage << "Requesting "<< GlobalSharedMemory::MAX_MPI_SHM_BYTES <<" byte stencil comms buffers "<<std::endl;
|
||||
if ( GlobalSharedMemory::Hugepages) {
|
||||
std::cout << GridLogMessage << "Mapped stencil comms buffers as MAP_HUGETLB "<<std::endl;
|
||||
}
|
||||
|
||||
|
@ -26,6 +26,25 @@ namespace Grid{
|
||||
}
|
||||
}
|
||||
|
||||
static inline void IndexFromCoorReversed (const std::vector<int>& coor,int &index,const std::vector<int> &dims){
|
||||
int nd=dims.size();
|
||||
int stride=1;
|
||||
index=0;
|
||||
for(int d=nd-1;d>=0;d--){
|
||||
index = index+stride*coor[d];
|
||||
stride=stride*dims[d];
|
||||
}
|
||||
}
|
||||
static inline void CoorFromIndexReversed (std::vector<int>& coor,int index,const std::vector<int> &dims){
|
||||
int nd= dims.size();
|
||||
coor.resize(nd);
|
||||
for(int d=nd-1;d>=0;d--){
|
||||
coor[d] = index % dims[d];
|
||||
index = index / dims[d];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user