1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-09 21:50:45 +01:00

Accelerator markup and thrust complex on nvcc

This commit is contained in:
paboyle 2018-01-24 13:50:10 +00:00
parent 65f77112e0
commit 725f03e2e2

View File

@ -72,7 +72,7 @@ struct RealPart {
typedef T type; typedef T type;
}; };
template <typename T> template <typename T>
struct RealPart<std::complex<T> > { struct RealPart<complex<T> > {
typedef T type; typedef T type;
}; };
@ -89,8 +89,8 @@ template <typename Condition, typename ReturnType> using NotEnableIf = Invoke<st
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
// Check for complexity with type traits // Check for complexity with type traits
template <typename T> struct is_complex : public std::false_type {}; template <typename T> struct is_complex : public std::false_type {};
template <> struct is_complex<std::complex<double> > : public std::true_type {}; template <> struct is_complex<complex<double> > : public std::true_type {};
template <> struct is_complex<std::complex<float> > : public std::true_type {}; template <> struct is_complex<complex<float> > : public std::true_type {};
template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >; template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >;
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >; template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
@ -108,17 +108,15 @@ template <typename T1,typename T2> using IfNotSame = Invoke<std::enable_if<!s
// need explicit declaration of types when used since // need explicit declaration of types when used since
// clang cannot automatically determine the output type sometimes // clang cannot automatically determine the output type sometimes
template <class Out, class Input1, class Input2, class Input3, class Operation> template <class Out, class Input1, class Input2, class Input3, class Operation>
Out trinary(Input1 src_1, Input2 src_2, Input3 src_3, Operation op) { Out accelerator_inline trinary(Input1 src_1, Input2 src_2, Input3 src_3, Operation op) {
return op(src_1, src_2, src_3); return op(src_1, src_2, src_3);
} }
template <class Out, class Input1, class Input2, class Operation> template <class Out, class Input1, class Input2, class Operation>
Out binary(Input1 src_1, Input2 src_2, Operation op) { Out accelerator_inline binary(Input1 src_1, Input2 src_2, Operation op) {
return op(src_1, src_2); return op(src_1, src_2);
} }
template <class Out, class Input, class Operation> template <class Out, class Input, class Operation>
Out unary(Input src, Operation op) { Out accelerator_inline unary(Input src, Operation op) {
return op(src); return op(src);
} }
/////////////////////////////////////////////// ///////////////////////////////////////////////
@ -136,107 +134,107 @@ public:
typedef union conv_t_union { typedef union conv_t_union {
Vector_type v; Vector_type v;
Scalar_type s[sizeof(Vector_type) / sizeof(Scalar_type)]; Scalar_type s[sizeof(Vector_type) / sizeof(Scalar_type)];
conv_t_union(){}; accelerator_inline conv_t_union(){};
} conv_t; } conv_t;
Vector_type v; Vector_type v;
static inline constexpr int Nsimd(void) { static accelerator_inline constexpr int Nsimd(void) {
return sizeof(Vector_type) / sizeof(Scalar_type); return sizeof(Vector_type) / sizeof(Scalar_type);
} }
Grid_simd &operator=(const Grid_simd &&rhs) { accelerator_inline Grid_simd &operator=(const Grid_simd &&rhs) {
v = rhs.v; v = rhs.v;
return *this; return *this;
}; };
Grid_simd &operator=(const Grid_simd &rhs) { accelerator_inline Grid_simd &operator=(const Grid_simd &rhs) {
v = rhs.v; v = rhs.v;
return *this; return *this;
}; // faster than not declaring it and leaving to the compiler }; // faster than not declaring it and leaving to the compiler
Grid_simd() = default; accelerator Grid_simd() = default;
Grid_simd(const Grid_simd &rhs) : v(rhs.v){}; // compiles in movaps accelerator_inline Grid_simd(const Grid_simd &rhs) : v(rhs.v){}; // compiles in movaps
Grid_simd(const Grid_simd &&rhs) : v(rhs.v){}; accelerator_inline Grid_simd(const Grid_simd &&rhs) : v(rhs.v){};
///////////////////////////// /////////////////////////////
// Constructors // Constructors
///////////////////////////// /////////////////////////////
Grid_simd &operator=(Zero &z) { accelerator_inline Grid_simd & operator=(Zero &z) {
vzero(*this); vzero(*this);
return (*this); return (*this);
} }
// Enable if complex type // Enable if complex type
template <typename S = Scalar_type> template <typename S = Scalar_type> accelerator_inline
Grid_simd(const typename std::enable_if<is_complex<S>::value, S>::type a) { Grid_simd(const typename std::enable_if<is_complex<S>::value, S>::type a) {
vsplat(*this, a); vsplat(*this, a);
}; };
Grid_simd(const Real a) { vsplat(*this, Scalar_type(a)); }; accelerator Grid_simd(const Real a) { vsplat(*this, Scalar_type(a)); };
/////////////////////////////////////////////// ///////////////////////////////////////////////
// mac, mult, sub, add, adj // mac, mult, sub, add, adj
/////////////////////////////////////////////// ///////////////////////////////////////////////
// FIXME -- alias this to an inline MAC struct. // FIXME -- alias this to an accelerator_inline MAC struct.
friend inline void mac(Grid_simd *__restrict__ y, friend accelerator_inline void mac(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ a, const Grid_simd *__restrict__ a,
const Grid_simd *__restrict__ x) { const Grid_simd *__restrict__ x) {
*y = (*a) * (*x) + (*y); *y = (*a) * (*x) + (*y);
}; };
friend inline void mult(Grid_simd *__restrict__ y, friend accelerator_inline void mult(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l, const Grid_simd *__restrict__ l,
const Grid_simd *__restrict__ r) { const Grid_simd *__restrict__ r) {
*y = (*l) * (*r); *y = (*l) * (*r);
} }
friend inline void sub(Grid_simd *__restrict__ y, friend accelerator_inline void sub(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l, const Grid_simd *__restrict__ l,
const Grid_simd *__restrict__ r) { const Grid_simd *__restrict__ r) {
*y = (*l) - (*r); *y = (*l) - (*r);
} }
friend inline void add(Grid_simd *__restrict__ y, friend accelerator_inline void add(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l, const Grid_simd *__restrict__ l,
const Grid_simd *__restrict__ r) { const Grid_simd *__restrict__ r) {
*y = (*l) + (*r); *y = (*l) + (*r);
} }
friend inline void mac(Grid_simd *__restrict__ y, friend accelerator_inline void mac(Grid_simd *__restrict__ y,
const Scalar_type *__restrict__ a, const Scalar_type *__restrict__ a,
const Grid_simd *__restrict__ x) { const Grid_simd *__restrict__ x) {
*y = (*a) * (*x) + (*y); *y = (*a) * (*x) + (*y);
}; };
friend inline void mult(Grid_simd *__restrict__ y, friend accelerator_inline void mult(Grid_simd *__restrict__ y,
const Scalar_type *__restrict__ l, const Scalar_type *__restrict__ l,
const Grid_simd *__restrict__ r) { const Grid_simd *__restrict__ r) {
*y = (*l) * (*r); *y = (*l) * (*r);
} }
friend inline void sub(Grid_simd *__restrict__ y, friend accelerator_inline void sub(Grid_simd *__restrict__ y,
const Scalar_type *__restrict__ l, const Scalar_type *__restrict__ l,
const Grid_simd *__restrict__ r) { const Grid_simd *__restrict__ r) {
*y = (*l) - (*r); *y = (*l) - (*r);
} }
friend inline void add(Grid_simd *__restrict__ y, friend accelerator_inline void add(Grid_simd *__restrict__ y,
const Scalar_type *__restrict__ l, const Scalar_type *__restrict__ l,
const Grid_simd *__restrict__ r) { const Grid_simd *__restrict__ r) {
*y = (*l) + (*r); *y = (*l) + (*r);
} }
friend inline void mac(Grid_simd *__restrict__ y, friend accelerator_inline void mac(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ a, const Grid_simd *__restrict__ a,
const Scalar_type *__restrict__ x) { const Scalar_type *__restrict__ x) {
*y = (*a) * (*x) + (*y); *y = (*a) * (*x) + (*y);
}; };
friend inline void mult(Grid_simd *__restrict__ y, friend accelerator_inline void mult(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l, const Grid_simd *__restrict__ l,
const Scalar_type *__restrict__ r) { const Scalar_type *__restrict__ r) {
*y = (*l) * (*r); *y = (*l) * (*r);
} }
friend inline void sub(Grid_simd *__restrict__ y, friend accelerator_inline void sub(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l, const Grid_simd *__restrict__ l,
const Scalar_type *__restrict__ r) { const Scalar_type *__restrict__ r) {
*y = (*l) - (*r); *y = (*l) - (*r);
} }
friend inline void add(Grid_simd *__restrict__ y, friend accelerator_inline void add(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l, const Grid_simd *__restrict__ l,
const Scalar_type *__restrict__ r) { const Scalar_type *__restrict__ r) {
*y = (*l) + (*r); *y = (*l) + (*r);
@ -245,52 +243,52 @@ public:
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// FIXME: gonna remove these load/store, get, set, prefetch // FIXME: gonna remove these load/store, get, set, prefetch
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
friend inline void vset(Grid_simd &ret, Scalar_type *a) { friend accelerator_inline void vset(Grid_simd &ret, Scalar_type *a) {
ret.v = unary<Vector_type>(a, VsetSIMD()); ret.v = unary<Vector_type>(a, VsetSIMD());
} }
/////////////////////// ///////////////////////
// Vstore // Vstore
/////////////////////// ///////////////////////
friend inline void vstore(const Grid_simd &ret, Scalar_type *a) { friend accelerator_inline void vstore(const Grid_simd &ret, Scalar_type *a) {
binary<void>(ret.v, (Real *)a, VstoreSIMD()); binary<void>(ret.v, (Real *)a, VstoreSIMD());
} }
/////////////////////// ///////////////////////
// Vprefetch // Vprefetch
/////////////////////// ///////////////////////
friend inline void vprefetch(const Grid_simd &v) { friend accelerator_inline void vprefetch(const Grid_simd &v) {
prefetch_HINT_T0((const char *)&v.v); prefetch_HINT_T0((const char *)&v.v);
} }
/////////////////////// ///////////////////////
// Reduce // Reduce
/////////////////////// ///////////////////////
friend inline Scalar_type Reduce(const Grid_simd &in) { friend accelerator_inline Scalar_type Reduce(const Grid_simd &in) {
return unary<Scalar_type>(in.v, ReduceSIMD<Scalar_type, Vector_type>()); return unary<Scalar_type>(in.v, ReduceSIMD<Scalar_type, Vector_type>());
} }
//////////////////////////// ////////////////////////////
// operator scalar * simd // operator scalar * simd
//////////////////////////// ////////////////////////////
friend inline Grid_simd operator*(const Scalar_type &a, Grid_simd b) { friend accelerator_inline Grid_simd operator*(const Scalar_type &a, Grid_simd b) {
Grid_simd va; Grid_simd va;
vsplat(va, a); vsplat(va, a);
return va * b; return va * b;
} }
friend inline Grid_simd operator*(Grid_simd b, const Scalar_type &a) { friend accelerator_inline Grid_simd operator*(Grid_simd b, const Scalar_type &a) {
return a * b; return a * b;
} }
////////////////////////////////// //////////////////////////////////
// Divides // Divides
////////////////////////////////// //////////////////////////////////
friend inline Grid_simd operator/(const Scalar_type &a, Grid_simd b) { friend accelerator_inline Grid_simd operator/(const Scalar_type &a, Grid_simd b) {
Grid_simd va; Grid_simd va;
vsplat(va, a); vsplat(va, a);
return va / b; return va / b;
} }
friend inline Grid_simd operator/(Grid_simd b, const Scalar_type &a) { friend accelerator_inline Grid_simd operator/(Grid_simd b, const Scalar_type &a) {
Grid_simd va; Grid_simd va;
vsplat(va, a); vsplat(va, a);
return b / a; return b / a;
@ -299,23 +297,23 @@ public:
/////////////////////// ///////////////////////
// Unary negation // Unary negation
/////////////////////// ///////////////////////
friend inline Grid_simd operator-(const Grid_simd &r) { friend accelerator_inline Grid_simd operator-(const Grid_simd &r) {
Grid_simd ret; Grid_simd ret;
vzero(ret); vzero(ret);
ret = ret - r; ret = ret - r;
return ret; return ret;
} }
// *=,+=,-= operators // *=,+=,-= operators
inline Grid_simd &operator*=(const Grid_simd &r) { accelerator_inline Grid_simd &operator*=(const Grid_simd &r) {
*this = (*this) * r; *this = (*this) * r;
return *this; return *this;
// return (*this)*r; ? // return (*this)*r; ?
} }
inline Grid_simd &operator+=(const Grid_simd &r) { accelerator_inline Grid_simd &operator+=(const Grid_simd &r) {
*this = *this + r; *this = *this + r;
return *this; return *this;
} }
inline Grid_simd &operator-=(const Grid_simd &r) { accelerator_inline Grid_simd &operator-=(const Grid_simd &r) {
*this = *this - r; *this = *this - r;
return *this; return *this;
} }
@ -328,7 +326,7 @@ public:
/////////////////////////////////////// ///////////////////////////////////////
template <class functor> template <class functor>
friend inline Grid_simd SimdApply(const functor &func, const Grid_simd &v) { friend accelerator_inline Grid_simd SimdApply(const functor &func, const Grid_simd &v) {
Grid_simd ret; Grid_simd ret;
Grid_simd::conv_t conv; Grid_simd::conv_t conv;
Grid_simd::scalar_type s; Grid_simd::scalar_type s;
@ -342,7 +340,7 @@ public:
return ret; return ret;
} }
template <class functor> template <class functor>
friend inline Grid_simd SimdApplyBinop(const functor &func, friend accelerator_inline Grid_simd SimdApplyBinop(const functor &func,
const Grid_simd &x, const Grid_simd &x,
const Grid_simd &y) { const Grid_simd &y) {
Grid_simd ret; Grid_simd ret;
@ -364,7 +362,7 @@ public:
// Exchange // Exchange
// Al Ah , Bl Bh -> Al Bl Ah,Bh // Al Ah , Bl Bh -> Al Bl Ah,Bh
/////////////////////// ///////////////////////
friend inline void exchange(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2,int n) friend accelerator_inline void exchange(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2,int n)
{ {
if (n==3) { if (n==3) {
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
@ -376,16 +374,16 @@ public:
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
} }
} }
friend inline void exchange0(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){ friend accelerator_inline void exchange0(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
} }
friend inline void exchange1(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){ friend accelerator_inline void exchange1(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
} }
friend inline void exchange2(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){ friend accelerator_inline void exchange2(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
} }
friend inline void exchange3(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){ friend accelerator_inline void exchange3(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
} }
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
@ -393,19 +391,19 @@ public:
// all subtypes; may not be a good assumption, but could // all subtypes; may not be a good assumption, but could
// add the vector width as a template param for BG/Q for example // add the vector width as a template param for BG/Q for example
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
friend inline void permute0(Grid_simd &y, Grid_simd b) { friend accelerator_inline void permute0(Grid_simd &y, Grid_simd b) {
y.v = Optimization::Permute::Permute0(b.v); y.v = Optimization::Permute::Permute0(b.v);
} }
friend inline void permute1(Grid_simd &y, Grid_simd b) { friend accelerator_inline void permute1(Grid_simd &y, Grid_simd b) {
y.v = Optimization::Permute::Permute1(b.v); y.v = Optimization::Permute::Permute1(b.v);
} }
friend inline void permute2(Grid_simd &y, Grid_simd b) { friend accelerator_inline void permute2(Grid_simd &y, Grid_simd b) {
y.v = Optimization::Permute::Permute2(b.v); y.v = Optimization::Permute::Permute2(b.v);
} }
friend inline void permute3(Grid_simd &y, Grid_simd b) { friend accelerator_inline void permute3(Grid_simd &y, Grid_simd b) {
y.v = Optimization::Permute::Permute3(b.v); y.v = Optimization::Permute::Permute3(b.v);
} }
friend inline void permute(Grid_simd &y, Grid_simd b, int perm) { friend accelerator_inline void permute(Grid_simd &y, Grid_simd b, int perm) {
if (perm & RotateBit) { if (perm & RotateBit) {
int dist = perm & 0xF; int dist = perm & 0xF;
y = rotate(b, dist); y = rotate(b, dist);
@ -420,57 +418,57 @@ public:
/////////////////////////////// ///////////////////////////////
// Getting single lanes // Getting single lanes
/////////////////////////////// ///////////////////////////////
inline Scalar_type getlane(int lane) { accelerator_inline Scalar_type getlane(int lane) {
return ((Scalar_type*)&v)[lane]; return ((Scalar_type*)&v)[lane];
} }
inline void putlane(const Scalar_type &S, int lane){ accelerator_inline void putlane(const Scalar_type &S, int lane){
((Scalar_type*)&v)[lane] = S; ((Scalar_type*)&v)[lane] = S;
} }
}; // end of Grid_simd class definition }; // end of Grid_simd class definition
inline void permute(ComplexD &y,ComplexD b, int perm) { y=b; } accelerator_inline void permute(ComplexD &y,ComplexD b, int perm) { y=b; }
inline void permute(ComplexF &y,ComplexF b, int perm) { y=b; } accelerator_inline void permute(ComplexF &y,ComplexF b, int perm) { y=b; }
inline void permute(RealD &y,RealD b, int perm) { y=b; } accelerator_inline void permute(RealD &y,RealD b, int perm) { y=b; }
inline void permute(RealF &y,RealF b, int perm) { y=b; } accelerator_inline void permute(RealF &y,RealF b, int perm) { y=b; }
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
// General rotate // General rotate
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
template <class S, class V, IfNotComplex<S> = 0> template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) { accelerator_inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd(); nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = Optimization::Rotate::rotate(b.v, nrot); ret.v = Optimization::Rotate::rotate(b.v, nrot);
return ret; return ret;
} }
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) { accelerator_inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd(); nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = Optimization::Rotate::rotate(b.v, 2 * nrot); ret.v = Optimization::Rotate::rotate(b.v, 2 * nrot);
return ret; return ret;
} }
template <class S, class V, IfNotComplex<S> =0> template <class S, class V, IfNotComplex<S> =0>
inline void rotate( Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot) accelerator_inline void rotate( Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{ {
nrot = nrot % Grid_simd<S,V>::Nsimd(); nrot = nrot % Grid_simd<S,V>::Nsimd();
ret.v = Optimization::Rotate::rotate(b.v,nrot); ret.v = Optimization::Rotate::rotate(b.v,nrot);
} }
template <class S, class V, IfComplex<S> =0> template <class S, class V, IfComplex<S> =0>
inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot) accelerator_inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{ {
nrot = nrot % Grid_simd<S,V>::Nsimd(); nrot = nrot % Grid_simd<S,V>::Nsimd();
ret.v = Optimization::Rotate::rotate(b.v,2*nrot); ret.v = Optimization::Rotate::rotate(b.v,2*nrot);
} }
template <class S, class V> template <class S, class V>
inline void vbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){ accelerator_inline void vbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
S* typepun =(S*) &src; S* typepun =(S*) &src;
vsplat(ret,typepun[lane]); vsplat(ret,typepun[lane]);
} }
template <class S, class V, IfComplex<S> =0> template <class S, class V, IfComplex<S> =0>
inline void rbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){ accelerator_inline void rbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
S* typepun =(S*) &src; S* typepun =(S*) &src;
ret.v = unary<V>(real(typepun[lane]), VsplatSIMD()); ret.v = unary<V>(real(typepun[lane]), VsplatSIMD());
} }
@ -483,24 +481,24 @@ inline void rbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
// this is only for the complex version // this is only for the complex version
template <class S, class V, IfComplex<S> = 0, class ABtype> template <class S, class V, IfComplex<S> = 0, class ABtype>
inline void vsplat(Grid_simd<S, V> &ret, ABtype a, ABtype b) { accelerator_inline void vsplat(Grid_simd<S, V> &ret, ABtype a, ABtype b) {
ret.v = binary<V>(a, b, VsplatSIMD()); ret.v = binary<V>(a, b, VsplatSIMD());
} }
// overload if complex // overload if complex
template <class S, class V> template <class S, class V>
inline void vsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) { accelerator_inline void vsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) {
vsplat(ret, real(c), imag(c)); vsplat(ret, real(c), imag(c));
} }
template <class S, class V> template <class S, class V>
inline void rsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) { accelerator_inline void rsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) {
vsplat(ret, real(c), real(c)); vsplat(ret, real(c), real(c));
} }
// if real fill with a, if complex fill with a in the real part (first function // if real fill with a, if complex fill with a in the real part (first function
// above) // above)
template <class S, class V> template <class S, class V>
inline void vsplat(Grid_simd<S, V> &ret, NotEnableIf<is_complex<S>, S> a) { accelerator_inline void vsplat(Grid_simd<S, V> &ret, NotEnableIf<is_complex<S>, S> a) {
ret.v = unary<V>(a, VsplatSIMD()); ret.v = unary<V>(a, VsplatSIMD());
} }
////////////////////////// //////////////////////////
@ -510,56 +508,56 @@ inline void vsplat(Grid_simd<S, V> &ret, NotEnableIf<is_complex<S>, S> a) {
/////////////////////////////////////////////// ///////////////////////////////////////////////
// For complex types // For complex types
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline void vone(Grid_simd<S, V> &ret) { accelerator_inline void vone(Grid_simd<S, V> &ret) {
vsplat(ret, S(1.0, 0.0)); vsplat(ret, S(1.0, 0.0));
} }
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline void vzero(Grid_simd<S, V> &ret) { accelerator_inline void vzero(Grid_simd<S, V> &ret) {
vsplat(ret, S(0.0, 0.0)); vsplat(ret, S(0.0, 0.0));
} // use xor? } // use xor?
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline void vcomplex_i(Grid_simd<S, V> &ret) { accelerator_inline void vcomplex_i(Grid_simd<S, V> &ret) {
vsplat(ret, S(0.0, 1.0)); vsplat(ret, S(0.0, 1.0));
} }
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline void visign(Grid_simd<S, V> &ret) { accelerator_inline void visign(Grid_simd<S, V> &ret) {
vsplat(ret, S(1.0, -1.0)); vsplat(ret, S(1.0, -1.0));
} }
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline void vrsign(Grid_simd<S, V> &ret) { accelerator_inline void vrsign(Grid_simd<S, V> &ret) {
vsplat(ret, S(-1.0, 1.0)); vsplat(ret, S(-1.0, 1.0));
} }
// if not complex overload here // if not complex overload here
template <class S, class V, IfReal<S> = 0> template <class S, class V, IfReal<S> = 0>
inline void vone(Grid_simd<S, V> &ret) { accelerator_inline void vone(Grid_simd<S, V> &ret) {
vsplat(ret, S(1.0)); vsplat(ret, S(1.0));
} }
template <class S, class V, IfReal<S> = 0> template <class S, class V, IfReal<S> = 0>
inline void vzero(Grid_simd<S, V> &ret) { accelerator_inline void vzero(Grid_simd<S, V> &ret) {
vsplat(ret, S(0.0)); vsplat(ret, S(0.0));
} }
// For integral types // For integral types
template <class S, class V, IfInteger<S> = 0> template <class S, class V, IfInteger<S> = 0>
inline void vone(Grid_simd<S, V> &ret) { accelerator_inline void vone(Grid_simd<S, V> &ret) {
vsplat(ret, 1); vsplat(ret, 1);
} }
template <class S, class V, IfInteger<S> = 0> template <class S, class V, IfInteger<S> = 0>
inline void vzero(Grid_simd<S, V> &ret) { accelerator_inline void vzero(Grid_simd<S, V> &ret) {
vsplat(ret, 0); vsplat(ret, 0);
} }
template <class S, class V, IfInteger<S> = 0> template <class S, class V, IfInteger<S> = 0>
inline void vtrue(Grid_simd<S, V> &ret) { accelerator_inline void vtrue(Grid_simd<S, V> &ret) {
vsplat(ret, 0xFFFFFFFF); vsplat(ret, 0xFFFFFFFF);
} }
template <class S, class V, IfInteger<S> = 0> template <class S, class V, IfInteger<S> = 0>
inline void vfalse(Grid_simd<S, V> &ret) { accelerator_inline void vfalse(Grid_simd<S, V> &ret) {
vsplat(ret, 0); vsplat(ret, 0);
} }
template <class S, class V> template <class S, class V>
inline void zeroit(Grid_simd<S, V> &z) { accelerator_inline void zeroit(Grid_simd<S, V> &z) {
vzero(z); vzero(z);
} }
@ -567,16 +565,16 @@ inline void zeroit(Grid_simd<S, V> &z) {
// Vstream // Vstream
/////////////////////// ///////////////////////
template <class S, class V, IfReal<S> = 0> template <class S, class V, IfReal<S> = 0>
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) { accelerator_inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
binary<void>((S *)&out.v, in.v, VstreamSIMD()); binary<void>((S *)&out.v, in.v, VstreamSIMD());
} }
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) { accelerator_inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
typedef typename S::value_type T; typedef typename S::value_type T;
binary<void>((T *)&out.v, in.v, VstreamSIMD()); binary<void>((T *)&out.v, in.v, VstreamSIMD());
} }
template <class S, class V, IfInteger<S> = 0> template <class S, class V, IfInteger<S> = 0>
inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) { accelerator_inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
out = in; out = in;
} }
@ -584,14 +582,14 @@ inline void vstream(Grid_simd<S, V> &out, const Grid_simd<S, V> &in) {
// Arithmetic operator overloads +,-,* // Arithmetic operator overloads +,-,*
//////////////////////////////////// ////////////////////////////////////
template <class S, class V> template <class S, class V>
inline Grid_simd<S, V> operator+(Grid_simd<S, V> a, Grid_simd<S, V> b) { accelerator_inline Grid_simd<S, V> operator+(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, SumSIMD()); ret.v = binary<V>(a.v, b.v, SumSIMD());
return ret; return ret;
}; };
template <class S, class V> template <class S, class V>
inline Grid_simd<S, V> operator-(Grid_simd<S, V> a, Grid_simd<S, V> b) { accelerator_inline Grid_simd<S, V> operator-(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, SubSIMD()); ret.v = binary<V>(a.v, b.v, SubSIMD());
return ret; return ret;
@ -599,13 +597,13 @@ inline Grid_simd<S, V> operator-(Grid_simd<S, V> a, Grid_simd<S, V> b) {
// Distinguish between complex types and others // Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> real_mult(Grid_simd<S, V> a, Grid_simd<S, V> b) { accelerator_inline Grid_simd<S, V> real_mult(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, MultRealPartSIMD()); ret.v = binary<V>(a.v, b.v, MultRealPartSIMD());
return ret; return ret;
}; };
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> real_madd(Grid_simd<S, V> a, Grid_simd<S, V> b, Grid_simd<S,V> c) { accelerator_inline Grid_simd<S, V> real_madd(Grid_simd<S, V> a, Grid_simd<S, V> b, Grid_simd<S,V> c) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = trinary<V>(a.v, b.v, c.v, MaddRealPartSIMD()); ret.v = trinary<V>(a.v, b.v, c.v, MaddRealPartSIMD());
return ret; return ret;
@ -614,7 +612,7 @@ inline Grid_simd<S, V> real_madd(Grid_simd<S, V> a, Grid_simd<S, V> b, Grid_simd
// Distinguish between complex types and others // Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) { accelerator_inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, MultComplexSIMD()); ret.v = binary<V>(a.v, b.v, MultComplexSIMD());
return ret; return ret;
@ -622,7 +620,7 @@ inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {
// Real/Integer types // Real/Integer types
template <class S, class V, IfNotComplex<S> = 0> template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) { accelerator_inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, MultSIMD()); ret.v = binary<V>(a.v, b.v, MultSIMD());
return ret; return ret;
@ -630,7 +628,7 @@ inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {
// Distinguish between complex types and others // Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) { accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
typedef Grid_simd<S, V> simd; typedef Grid_simd<S, V> simd;
simd ret; simd ret;
@ -639,7 +637,6 @@ inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
ret = a * conjugate(b) ; ret = a * conjugate(b) ;
den = b * conjugate(b) ; den = b * conjugate(b) ;
auto real_den = toReal(den); auto real_den = toReal(den);
@ -650,7 +647,7 @@ inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
// Real/Integer types // Real/Integer types
template <class S, class V, IfNotComplex<S> = 0> template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) { accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, DivSIMD()); ret.v = binary<V>(a.v, b.v, DivSIMD());
return ret; return ret;
@ -660,18 +657,18 @@ inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
// Conjugate // Conjugate
/////////////////////// ///////////////////////
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> conjugate(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> conjugate(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
ret.v = unary<V>(in.v, ConjSIMD()); ret.v = unary<V>(in.v, ConjSIMD());
return ret; return ret;
} }
template <class S, class V, IfNotComplex<S> = 0> template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> conjugate(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> conjugate(const Grid_simd<S, V> &in) {
return in; // for real objects return in; // for real objects
} }
// Suppress adj for integer types... // odd; why conjugate above but not adj?? // Suppress adj for integer types... // odd; why conjugate above but not adj??
template <class S, class V, IfNotInteger<S> = 0> template <class S, class V, IfNotInteger<S> = 0>
inline Grid_simd<S, V> adj(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> adj(const Grid_simd<S, V> &in) {
return conjugate(in); return conjugate(in);
} }
@ -679,17 +676,17 @@ inline Grid_simd<S, V> adj(const Grid_simd<S, V> &in) {
// timesMinusI // timesMinusI
/////////////////////// ///////////////////////
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline void timesMinusI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) { accelerator_inline void timesMinusI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesMinusISIMD()); ret.v = binary<V>(in.v, ret.v, TimesMinusISIMD());
} }
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
timesMinusI(ret, in); timesMinusI(ret, in);
return ret; return ret;
} }
template <class S, class V, IfNotComplex<S> = 0> template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
return in; return in;
} }
@ -697,37 +694,34 @@ inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
// timesI // timesI
/////////////////////// ///////////////////////
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline void timesI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) { accelerator_inline void timesI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesISIMD()); ret.v = binary<V>(in.v, ret.v, TimesISIMD());
} }
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
timesI(ret, in); timesI(ret, in);
return ret; return ret;
} }
template <class S, class V, IfNotComplex<S> = 0> template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
return in; return in;
} }
///////////////////// /////////////////////
// Inner, outer // Inner, outer
///////////////////// /////////////////////
template <class S, class V> template <class S, class V>
inline Grid_simd<S, V> innerProduct(const Grid_simd<S, V> &l, accelerator_inline Grid_simd<S, V> innerProduct(const Grid_simd<S, V> &l,const Grid_simd<S, V> &r) {
const Grid_simd<S, V> &r) {
return conjugate(l) * r; return conjugate(l) * r;
} }
template <class S, class V> template <class S, class V>
inline Grid_simd<S, V> outerProduct(const Grid_simd<S, V> &l, accelerator_inline Grid_simd<S, V> outerProduct(const Grid_simd<S, V> &l,const Grid_simd<S, V> &r) {
const Grid_simd<S, V> &r) {
return l * conjugate(r); return l * conjugate(r);
} }
template <class S, class V> template <class S, class V>
inline Grid_simd<S, V> trace(const Grid_simd<S, V> &arg) { accelerator_inline Grid_simd<S, V> trace(const Grid_simd<S, V> &arg) {
return arg; return arg;
} }
@ -738,7 +732,7 @@ inline Grid_simd<S, V> trace(const Grid_simd<S, V> &arg) {
// real = toReal( complex ) // real = toReal( complex )
template <class S, class V, IfReal<S> = 0> template <class S, class V, IfReal<S> = 0>
inline Grid_simd<S, V> toReal(const Grid_simd<std::complex<S>, V> &in) { accelerator_inline Grid_simd<S, V> toReal(const Grid_simd<complex<S>, V> &in) {
typedef Grid_simd<S, V> simd; typedef Grid_simd<S, V> simd;
simd ret; simd ret;
typename simd::conv_t conv; typename simd::conv_t conv;
@ -752,9 +746,9 @@ inline Grid_simd<S, V> toReal(const Grid_simd<std::complex<S>, V> &in) {
// complex = toComplex( real ) // complex = toComplex( real )
template <class R, class V, IfReal<R> = 0> // must be a real arg template <class R, class V, IfReal<R> = 0> // must be a real arg
inline Grid_simd<std::complex<R>, V> toComplex(const Grid_simd<R, V> &in) { accelerator_inline Grid_simd< complex<R>, V> toComplex(const Grid_simd<R, V> &in) {
typedef Grid_simd<R, V> Rsimd; typedef Grid_simd<R, V> Rsimd;
typedef Grid_simd<std::complex<R>, V> Csimd; typedef Grid_simd< complex<R>, V> Csimd;
typename Rsimd::conv_t conv; // address as real typename Rsimd::conv_t conv; // address as real
conv.v = in.v; conv.v = in.v;
@ -775,15 +769,15 @@ inline Grid_simd<std::complex<R>, V> toComplex(const Grid_simd<R, V> &in) {
/////////////////////////////// ///////////////////////////////
typedef Grid_simd<float, SIMD_Ftype> vRealF; typedef Grid_simd<float, SIMD_Ftype> vRealF;
typedef Grid_simd<double, SIMD_Dtype> vRealD; typedef Grid_simd<double, SIMD_Dtype> vRealD;
typedef Grid_simd<std::complex<float>, SIMD_Ftype> vComplexF; typedef Grid_simd< complex<float>, SIMD_Ftype> vComplexF;
typedef Grid_simd<std::complex<double>, SIMD_Dtype> vComplexD; typedef Grid_simd< complex<double>, SIMD_Dtype> vComplexD;
typedef Grid_simd<Integer, SIMD_Itype> vInteger; typedef Grid_simd<Integer, SIMD_Itype> vInteger;
// Half precision; no arithmetic support // Half precision; no arithmetic support
typedef Grid_simd<uint16_t, SIMD_Htype> vRealH; typedef Grid_simd<uint16_t, SIMD_Htype> vRealH;
typedef Grid_simd<std::complex<uint16_t>, SIMD_Htype> vComplexH; typedef Grid_simd< complex<uint16_t>, SIMD_Htype> vComplexH;
inline void precisionChange(vRealF *out,vRealD *in,int nvec) accelerator_inline void precisionChange(vRealF *out,vRealD *in,int nvec)
{ {
assert((nvec&0x1)==0); assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){ for(int m=0;m*2<nvec;m++){
@ -791,7 +785,7 @@ inline void precisionChange(vRealF *out,vRealD *in,int nvec)
out[m].v=Optimization::PrecisionChange::DtoS(in[n].v,in[n+1].v); out[m].v=Optimization::PrecisionChange::DtoS(in[n].v,in[n+1].v);
} }
} }
inline void precisionChange(vRealH *out,vRealD *in,int nvec) accelerator_inline void precisionChange(vRealH *out,vRealD *in,int nvec)
{ {
assert((nvec&0x3)==0); assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){ for(int m=0;m*4<nvec;m++){
@ -799,7 +793,7 @@ inline void precisionChange(vRealH *out,vRealD *in,int nvec)
out[m].v=Optimization::PrecisionChange::DtoH(in[n].v,in[n+1].v,in[n+2].v,in[n+3].v); out[m].v=Optimization::PrecisionChange::DtoH(in[n].v,in[n+1].v,in[n+2].v,in[n+3].v);
} }
} }
inline void precisionChange(vRealH *out,vRealF *in,int nvec) accelerator_inline void precisionChange(vRealH *out,vRealF *in,int nvec)
{ {
assert((nvec&0x1)==0); assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){ for(int m=0;m*2<nvec;m++){
@ -807,7 +801,7 @@ inline void precisionChange(vRealH *out,vRealF *in,int nvec)
out[m].v=Optimization::PrecisionChange::StoH(in[n].v,in[n+1].v); out[m].v=Optimization::PrecisionChange::StoH(in[n].v,in[n+1].v);
} }
} }
inline void precisionChange(vRealD *out,vRealF *in,int nvec) accelerator_inline void precisionChange(vRealD *out,vRealF *in,int nvec)
{ {
assert((nvec&0x1)==0); assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){ for(int m=0;m*2<nvec;m++){
@ -815,7 +809,7 @@ inline void precisionChange(vRealD *out,vRealF *in,int nvec)
Optimization::PrecisionChange::StoD(in[m].v,out[n].v,out[n+1].v); Optimization::PrecisionChange::StoD(in[m].v,out[n].v,out[n+1].v);
} }
} }
inline void precisionChange(vRealD *out,vRealH *in,int nvec) accelerator_inline void precisionChange(vRealD *out,vRealH *in,int nvec)
{ {
assert((nvec&0x3)==0); assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){ for(int m=0;m*4<nvec;m++){
@ -823,7 +817,7 @@ inline void precisionChange(vRealD *out,vRealH *in,int nvec)
Optimization::PrecisionChange::HtoD(in[m].v,out[n].v,out[n+1].v,out[n+2].v,out[n+3].v); Optimization::PrecisionChange::HtoD(in[m].v,out[n].v,out[n+1].v,out[n+2].v,out[n+3].v);
} }
} }
inline void precisionChange(vRealF *out,vRealH *in,int nvec) accelerator_inline void precisionChange(vRealF *out,vRealH *in,int nvec)
{ {
assert((nvec&0x1)==0); assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){ for(int m=0;m*2<nvec;m++){
@ -831,12 +825,12 @@ inline void precisionChange(vRealF *out,vRealH *in,int nvec)
Optimization::PrecisionChange::HtoS(in[m].v,out[n].v,out[n+1].v); Optimization::PrecisionChange::HtoS(in[m].v,out[n].v,out[n+1].v);
} }
} }
inline void precisionChange(vComplexF *out,vComplexD *in,int nvec){ precisionChange((vRealF *)out,(vRealD *)in,nvec);} accelerator_inline void precisionChange(vComplexF *out,vComplexD *in,int nvec){ precisionChange((vRealF *)out,(vRealD *)in,nvec);}
inline void precisionChange(vComplexH *out,vComplexD *in,int nvec){ precisionChange((vRealH *)out,(vRealD *)in,nvec);} accelerator_inline void precisionChange(vComplexH *out,vComplexD *in,int nvec){ precisionChange((vRealH *)out,(vRealD *)in,nvec);}
inline void precisionChange(vComplexH *out,vComplexF *in,int nvec){ precisionChange((vRealH *)out,(vRealF *)in,nvec);} accelerator_inline void precisionChange(vComplexH *out,vComplexF *in,int nvec){ precisionChange((vRealH *)out,(vRealF *)in,nvec);}
inline void precisionChange(vComplexD *out,vComplexF *in,int nvec){ precisionChange((vRealD *)out,(vRealF *)in,nvec);} accelerator_inline void precisionChange(vComplexD *out,vComplexF *in,int nvec){ precisionChange((vRealD *)out,(vRealF *)in,nvec);}
inline void precisionChange(vComplexD *out,vComplexH *in,int nvec){ precisionChange((vRealD *)out,(vRealH *)in,nvec);} accelerator_inline void precisionChange(vComplexD *out,vComplexH *in,int nvec){ precisionChange((vRealD *)out,(vRealH *)in,nvec);}
inline void precisionChange(vComplexF *out,vComplexH *in,int nvec){ precisionChange((vRealF *)out,(vRealH *)in,nvec);} accelerator_inline void precisionChange(vComplexF *out,vComplexH *in,int nvec){ precisionChange((vRealF *)out,(vRealH *)in,nvec);}
// Check our vector types are of an appropriate size. // Check our vector types are of an appropriate size.
#if defined QPX #if defined QPX