diff --git a/lib/qcd/hmc/GenericHMCrunner.h b/lib/qcd/hmc/GenericHMCrunner.h index 66b16435..dd530d39 100644 --- a/lib/qcd/hmc/GenericHMCrunner.h +++ b/lib/qcd/hmc/GenericHMCrunner.h @@ -138,7 +138,15 @@ class HMCWrapperTemplate: public HMCRunnerBase { // Can move this outside? typedef IntegratorType TheIntegrator; - TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing); + // Metric + //TrivialMetric Mtr; + ConjugateGradient CG(1.0e-8,10000); + LaplacianParams LapPar(0.0001, 1.0, 1000, 1e-8, 12, 64); + RealD Kappa = 0.9; + + + LaplacianAdjointField Laplacian(UGrid, CG, LapPar, Kappa); + TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing, Laplacian); if (Parameters.StartingType == "HotStart") { // Hot start diff --git a/lib/qcd/hmc/HMC.h b/lib/qcd/hmc/HMC.h index be469f82..61a56c7c 100644 --- a/lib/qcd/hmc/HMC.h +++ b/lib/qcd/hmc/HMC.h @@ -202,7 +202,7 @@ class HybridMonteCarlo { RealD H0 = TheIntegrator.S(U); // initial state action std::streamsize current_precision = std::cout.precision(); - std::cout.precision(17); + std::cout.precision(15); std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n"; std::cout.precision(current_precision); @@ -210,7 +210,19 @@ class HybridMonteCarlo { RealD H1 = TheIntegrator.S(U); // updated state action - std::cout.precision(17); + /////////////////////////////////////////////////////////// + if(0){ + std::cout << "------------------------- Reversibility test" << std::endl; + TheIntegrator.reverse_momenta(); + TheIntegrator.integrate(U); + + H1 = TheIntegrator.S(U); // updated state action + std::cout << "--------------------------------------------" << std::endl; + } + /////////////////////////////////////////////////////////// + + + std::cout.precision(15); std::cout << GridLogMessage << "Total H after trajectory = " << H1 << " dH = " << H1 - H0 << "\n"; std::cout.precision(current_precision); diff --git a/lib/qcd/hmc/integrators/Integrator.h b/lib/qcd/hmc/integrators/Integrator.h index 25339a2e..1fc3afe2 100644 --- a/lib/qcd/hmc/integrators/Integrator.h +++ b/lib/qcd/hmc/integrators/Integrator.h @@ -78,7 +78,7 @@ class Integrator { std::vector t_P; //MomentaField P; - GeneralisedMomenta> P; + GeneralisedMomenta P; SmearingPolicy& Smearer; RepresentationPolicy Representations; IntegratorParameters Params; @@ -125,9 +125,15 @@ class Integrator { force = FieldImplementation::projectForce(force); // Ta for gauge fields Real force_abs = std::sqrt(norm2(force)/U._grid->gSites()); std::cout << GridLogIntegrator << "Force average: " << force_abs << std::endl; - Mom -= force * ep; + Mom -= force * ep; } + + MomentaField MomDer(P.Mom._grid); + P.M.ImportGauge(U); + P.DerivativeU(P.Mom, MomDer); + Mom -= MomDer * ep; + // Force from the other representations as[level].apply(update_P_hireps, Representations, Mom, U, ep); } @@ -141,7 +147,7 @@ class Integrator { MomentaField Msum(P.Mom._grid); Msum = zero; for (int a = 0; a < as[level].actions.size(); ++a) { - // Compute the force + // Compute the force terms for the lagrangian part // We need to compute the derivative of the actions // only once Field force(U._grid); @@ -153,7 +159,7 @@ class Integrator { if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force); force = FieldImplementation::projectForce(force); // Ta for gauge fields Real force_abs = std::sqrt(norm2(force) / U._grid->gSites()); - std::cout << GridLogIntegrator << "Force average: " << force_abs + std::cout << GridLogIntegrator << "|Force| site average: " << force_abs << std::endl; Msum += force; } @@ -162,21 +168,44 @@ class Integrator { MomentaField OldMom = P.Mom; double threshold = 1e-6; P.M.ImportGauge(U); + MomentaField MomDer(P.Mom._grid); + MomentaField MomDer1(P.Mom._grid); + MomDer1 = zero; + MomentaField diff(P.Mom._grid); + + // be careful here, we need the first step + // in every trajectory + static int call = 0; + if (call == 1) + P.DerivativeU(P.Mom, MomDer1); + + call = 1; + // Here run recursively + int counter = 1; + RealD RelativeError; do { - MomentaField MomDer(P.Mom._grid); - MomentaField X(P.Mom._grid); - OldMom = NewMom; + std::cout << GridLogIntegrator << "UpdateP implicit step "<< counter << std::endl; + // Compute the derivative of the kinetic term // with respect to the gauge field P.DerivativeU(NewMom, MomDer); - NewMom = P.Mom - ep * (MomDer + Msum); + Real force_abs = std::sqrt(norm2(MomDer) / U._grid->gSites()); + std::cout << GridLogIntegrator << "|Force| laplacian site average: " << force_abs + << std::endl; - } while (norm2(NewMom - OldMom) > threshold); + NewMom = P.Mom - ep* 0.5 * (2.0*Msum + MomDer + MomDer1); + diff = NewMom - OldMom; + counter++; + RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewMom)); + std::cout << GridLogIntegrator << "UpdateP RelativeError: " << RelativeError << std::endl; + OldMom = NewMom; + } while (RelativeError > threshold); P.Mom = NewMom; // update the auxiliary fields momenta + // todo } @@ -204,19 +233,44 @@ class Integrator { int fl = levels - 1; std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl; - Real threshold = 1e-6; - P.M.ImportGauge(U); MomentaField Mom1(P.Mom._grid); MomentaField Mom2(P.Mom._grid); + RealD RelativeError; + Field diff(U._grid); + Real threshold = 1e-6; + int counter = 1; + int MaxCounter = 1000; + Field OldU = U; Field NewU = U; + + P.M.ImportGauge(U); P.DerivativeP(Mom1); // first term in the derivative + do { - OldU = NewU; // some redundancy to be eliminated + std::cout << GridLogIntegrator << "UpdateU implicit step "<< counter << std::endl; + P.DerivativeP(Mom2); // second term in the derivative, on the updated U - FieldImplementation::update_field(Mom1 + Mom2, NewU, ep); + MomentaField sum = (Mom1 + Mom2); + //std::cout << GridLogMessage << "sum Norm " << norm2(sum) << std::endl; + + for (int mu = 0; mu < Nd; mu++) { + auto Umu = PeekIndex(U, mu); + auto Pmu = PeekIndex(sum, mu); + Umu = expMat(Pmu, ep * 0.5, 12) * Umu; + PokeIndex(NewU, ProjectOnGroup(Umu), mu); + } + + diff = NewU - OldU; + RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewU)); + std::cout << GridLogIntegrator << "UpdateU RelativeError: " << RelativeError << std::endl; + P.M.ImportGauge(NewU); - } while (norm2(NewU - OldU) > threshold); + OldU = NewU; // some redundancy to be eliminated + counter++; + } while (RelativeError > threshold && counter < MaxCounter); + + U = NewU; } @@ -225,10 +279,10 @@ class Integrator { public: Integrator(GridBase* grid, IntegratorParameters Par, ActionSet& Aset, - SmearingPolicy& Sm) + SmearingPolicy& Sm, Metric& M) : Params(Par), as(Aset), - P(grid), + P(grid, M), levels(Aset.size()), Smearer(Sm), Representations(grid) { @@ -260,6 +314,10 @@ class Integrator { } + void reverse_momenta(){ + P.Mom *= 1.0; + } + // to be used by the actionlevel class to iterate // over the representations struct _refresh { @@ -278,7 +336,10 @@ class Integrator { void refresh(Field& U, GridParallelRNG& pRNG) { assert(P.Mom._grid == U._grid); std::cout << GridLogIntegrator << "Integrator refresh\n"; + //FieldImplementation::generate_momenta(P, pRNG); + + P.M.ImportGauge(U); P.MomentaDistribution(pRNG); // Update the smeared fields, can be implemented as observer @@ -325,7 +386,9 @@ class Integrator { // Calculate action RealD S(Field& U) { // here also U not used - RealD H = - FieldImplementation::FieldSquareNorm(P.Mom); // - trace (P*P) + //RealD H = - FieldImplementation::FieldSquareNorm(P.Mom); // - trace (P*P) + P.M.ImportGauge(U); + RealD H = - P.MomentaAction(); RealD Hterm; std::cout << GridLogMessage << "Momentum action H_p = " << H << "\n"; @@ -369,6 +432,7 @@ class Integrator { // and that we indeed got to the end of the trajectory assert(fabs(t_U - Params.trajL) < 1.0e-6); + } diff --git a/lib/qcd/hmc/integrators/Integrator_algorithm.h b/lib/qcd/hmc/integrators/Integrator_algorithm.h index 97c79dbd..553faf6f 100644 --- a/lib/qcd/hmc/integrators/Integrator_algorithm.h +++ b/lib/qcd/hmc/integrators/Integrator_algorithm.h @@ -294,7 +294,7 @@ class ForceGradient : public Integrator > @@ -311,9 +311,9 @@ class ImplicitLeapFrog : public Integrator& Aset, SmearingPolicy& Sm) + ActionSet& Aset, SmearingPolicy& Sm, Metric& M) : Integrator( - grid, Par, Aset, Sm){}; + grid, Par, Aset, Sm, M){}; void step(Field& U, int level, int _first, int _last) { int fl = this->as.size() - 1; @@ -335,19 +335,89 @@ class ImplicitLeapFrog : public Integratorimplicit_update_U(U, eps / 2.0); + this->implicit_update_U(U, eps); } else { // recursive function call this->step(U, level + 1, first_step, last_step); } - int mm = last_step ? 1 : 2; - this->update_P(U, level, mm * eps / 2.0); + //int mm = last_step ? 1 : 2; + if (last_step){ + this->update_P(U, level, eps / 2.0); + } else { + this->implicit_update_P(U, level, eps); + } } } }; +// This is not completely tested +template > +class ImplicitMinimumNorm2 : public Integrator { + private: + const RealD lambda = 0.1931833275037836; + public: + INHERIT_FIELD_TYPES(FieldImplementation); + + ImplicitMinimumNorm2(GridBase* grid, IntegratorParameters Par, + ActionSet& Aset, SmearingPolicy& Sm, Metric& M) + : Integrator( + grid, Par, Aset, Sm, M){}; + + std::string integrator_name(){return "ImplicitMininumNorm2";} + + void step(Field& U, int level, int _first, int _last) { + // level : current level + // fl : final level + // eps : current step size + + int fl = this->as.size() - 1; + + RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0; + for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier; + + // Nesting: 2xupdate_U of size eps/2 + // Next level is eps/2/multiplier + + int multiplier = this->as[level].multiplier; + for (int e = 0; e < multiplier; ++e) { // steps per step + + int first_step = _first && (e == 0); + int last_step = _last && (e == multiplier - 1); + + if (first_step) { // initial half step + this->implicit_update_P(U, level, lambda * eps); + } + + if (level == fl) { // lowest level + this->implicit_update_U(U, 0.5 * eps); + } else { // recursive function call + this->step(U, level + 1, first_step, 0); + } + + this->implicit_update_P(U, level, (1.0 - 2.0 * lambda) * eps); + + if (level == fl) { // lowest level + this->implicit_update_U(U, 0.5 * eps); + } else { // recursive function call + this->step(U, level + 1, 0, last_step); + } + + //int mm = (last_step) ? 1 : 2; + //this->update_P(U, level, lambda * eps * mm); + + if (last_step) { + this->update_P(U, level, eps * lambda); + } else { + this->implicit_update_P(U, level, lambda * eps*2.0); + } + } + } +}; diff --git a/lib/qcd/utils/CovariantLaplacian.h b/lib/qcd/utils/CovariantLaplacian.h index b41fbb57..3182572b 100644 --- a/lib/qcd/utils/CovariantLaplacian.h +++ b/lib/qcd/utils/CovariantLaplacian.h @@ -77,7 +77,8 @@ template class LaplacianAdjointField: public Metric { OperatorFunction &Solver; LaplacianParams param; - MultiShiftFunction PowerNegHalf; + MultiShiftFunction PowerHalf; + MultiShiftFunction PowerInvHalf; public: INHERIT_GIMPL_TYPES(Impl); @@ -87,10 +88,15 @@ class LaplacianAdjointField: public Metric { AlgRemez remez(param.lo,param.hi,param.precision); std::cout<(_U, mu); @@ -98,6 +104,11 @@ class LaplacianAdjointField: public Metric { } void M(const GaugeField& in, GaugeField& out) { + // in is an antihermitian matrix + // test + //GaugeField herm = in + adj(in); + //std::cout << "AHermiticity: " << norm2(herm) << std::endl; + GaugeLinkField tmp(in._grid); GaugeLinkField tmp2(in._grid); GaugeLinkField sum(in._grid); @@ -116,17 +127,21 @@ class LaplacianAdjointField: public Metric { } } - void MDeriv(const GaugeField& in, GaugeField& der, bool dag) { + void MDeriv(const GaugeField& in, GaugeField& der) { + // in is anti-hermitian RealD factor = -kappa / (double(4 * Nd)); - for (int mu = 0; mu < Nd; mu++) { - GaugeLinkField in_mu = PeekIndex(in, mu); + + for (int mu = 0; mu < Nd; mu++){ GaugeLinkField der_mu(der._grid); - if (!dag) - der_mu = - factor * Cshift(in_mu, mu, +1) * adj(U[mu]) + adj(U[mu]) * in_mu; - else - der_mu = factor * U[mu] * Cshift(in_mu, mu, +1) + in_mu * U[mu]; - } + der_mu = zero; + for (int nu = 0; nu < Nd; nu++){ + GaugeLinkField in_nu = PeekIndex(in, nu); + der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu; + } + // the minus sign comes by using the in_nu instead of the + // adjoint in the last multiplication + PokeIndex(der, -2.0 * factor * der_mu, mu); + } } void Minv(const GaugeField& in, GaugeField& inverted){ @@ -134,14 +149,12 @@ class LaplacianAdjointField: public Metric { Solver(HermOp, in, inverted); } - void MInvSquareRoot(GaugeField& P){ - // Takes a gaussian gauge field and multiplies by the metric - // need the rational approximation for the square root + void MSquareRoot(GaugeField& P){ GaugeField Gp(P._grid); HermitianLinearOperator,GaugeField> HermOp(*this); - ConjugateGradientMultiShift msCG(param.MaxIter,PowerNegHalf); + ConjugateGradientMultiShift msCG(param.MaxIter,PowerHalf); msCG(HermOp,P,Gp); - P = Gp; // now P has the correct distribution + P = Gp; } diff --git a/lib/qcd/utils/Metric.h b/lib/qcd/utils/Metric.h index e92488e7..504d6fc0 100644 --- a/lib/qcd/utils/Metric.h +++ b/lib/qcd/utils/Metric.h @@ -39,7 +39,8 @@ public: virtual void ImportGauge(const Field&) = 0; virtual void M(const Field&, Field&) = 0; virtual void Minv(const Field&, Field&) = 0; - virtual void MInvSquareRoot(Field&) = 0; + virtual void MSquareRoot(Field&) = 0; + virtual void MDeriv(const Field&, Field&) = 0; }; @@ -54,9 +55,12 @@ public: virtual void Minv(const Field& in, Field& out){ out = in; } - virtual void MInvSquareRoot(Field& P){ + virtual void MSquareRoot(Field& P){ // do nothing } + virtual void MDeriv(const Field& in, Field& out){ + out = zero; + } }; @@ -64,17 +68,17 @@ public: // Generalised momenta /////////////////////////////// -template +template class GeneralisedMomenta{ public: typedef typename Implementation::Field MomentaField; //for readability - - Metric M; + typedef typename Implementation::GaugeLinkField MomentaLinkField; //for readability + Metric& M; MomentaField Mom; - GeneralisedMomenta(GridBase* grid): Mom(grid){} - + GeneralisedMomenta(GridBase* grid, Metric& M): M(M), Mom(grid){} + // Correct void MomentaDistribution(GridParallelRNG& pRNG){ // Generate a distribution for // 1/2 P^dag G P @@ -83,26 +87,45 @@ public: // Generate gaussian momenta Implementation::generate_momenta(Mom, pRNG); // Modify the distribution with the metric - M.MInvSquareRoot(Mom); + M.MSquareRoot(Mom); } - void Derivative(MomentaField& in, MomentaField& der){ + // Correct + RealD MomentaAction(){ + MomentaField inv(Mom._grid); + inv = zero; + M.Minv(Mom, inv); + LatticeComplex Hloc(Mom._grid); + Hloc = zero; + for (int mu = 0; mu < Nd; mu++) { + // This is not very general + // hide in the operators + auto Mom_mu = PeekIndex(Mom, mu); + auto inv_mu = PeekIndex(inv, mu); + Hloc += trace(Mom_mu * inv_mu); + } + Complex Hsum = sum(Hloc); + return Hsum.real(); + } + + // Correct + void DerivativeU(MomentaField& in, MomentaField& der){ // Compute the derivative of the kinetic term // with respect to the gauge field - MomentaField MomDer(in._grid); + MomentaField MDer(in._grid); MomentaField X(in._grid); - - M.Minv(in, X); // X = G in - M.MDeriv(X, MomDer, DaggerNo); // MomDer = dM/dU X - // MomDer is just the derivative - MomDer = adj(X)* MomDer; - // Traceless Antihermitian - // assuming we are in the algebra - der = Implementation::projectForce(MomDer); + X = zero; + M.Minv(in, X); // X = G in + M.MDeriv(X, MDer); // MDer = U * dS/dU + der = Implementation::projectForce(MDer); // Ta if gauge fields } + + // void DerivativeP(MomentaField& der){ + der = zero; M.Minv(Mom, der); + der = Implementation::projectForce(der); } }; diff --git a/tests/forces/Test_laplacian_force.cc b/tests/forces/Test_laplacian_force.cc new file mode 100644 index 00000000..c09297ce --- /dev/null +++ b/tests/forces/Test_laplacian_force.cc @@ -0,0 +1,178 @@ + /************************************************************************************* + + Grid physics library, www.github.com/paboyle/Grid + + Source file: ./tests/Test_rect_force.cc + + Copyright (C) 2015 + +Author: Azusa Yamaguchi + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + + See the full license in the file "LICENSE" in the top level distribution directory + *************************************************************************************/ + /* END LEGAL */ +#include + +using namespace std; +using namespace Grid; +using namespace Grid::QCD; + +#define parallel_for PARALLEL_FOR_LOOP for + +int main (int argc, char ** argv) +{ + Grid_init(&argc,&argv); + + std::vector latt_size = GridDefaultLatt(); + std::vector simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd()); + std::vector mpi_layout = GridDefaultMpi(); + + GridCartesian Grid(latt_size,simd_layout,mpi_layout); + GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout); + + int threads = GridThread::GetThreads(); + std::cout< seeds({1,2,3,4}); + + GridParallelRNG pRNG(&Grid); + pRNG.SeedRandomDevice(); + + LatticeGaugeField U(&Grid); + LatticeGaugeField P(&Grid); + LatticeColourMatrix P_mu(&Grid); + // Matrix in the algebra + for (int mu = 0; mu < Nd; mu++) { + SU::GaussianFundamentalLieAlgebraMatrix(pRNG, P_mu); + PokeIndex(P, P_mu, mu); + } + + SU3::HotConfiguration(pRNG,U); + + + ConjugateGradient CG(1.0e-8, 10000); + LaplacianParams LapPar(0.001, 1.0, 1000, 1e-8, 10, 64); + RealD Kappa = 0.99; + LaplacianAdjointField Laplacian(&Grid, CG, LapPar, Kappa); + GeneralisedMomenta LaplacianMomenta(&Grid, Laplacian); + LaplacianMomenta.M.ImportGauge(U); + LaplacianMomenta.MomentaDistribution(pRNG);// fills the Momenta with the correct distr + + + std::cout << std::setprecision(15); + std::cout << GridLogMessage << "MomentaAction" << std::endl; + ComplexD S = LaplacianMomenta.MomentaAction(); + + // get the deriv with respect to "U" + LatticeGaugeField UdSdU(&Grid); + std::cout << GridLogMessage<< "DerivativeU" << std::endl; + LaplacianMomenta.DerivativeU(LaplacianMomenta.Mom, UdSdU); + + + //////////////////////////////////// + // Modify the gauge field a little + //////////////////////////////////// + RealD dt = 0.001; + + LatticeColourMatrix mommu(&Grid); + LatticeColourMatrix forcemu(&Grid); + LatticeGaugeField mom(&Grid); + LatticeGaugeField Uprime(&Grid); + + std::cout << GridLogMessage << "Update the U " << std::endl; + for(int mu=0;mu(U, mu); + PokeIndex(mom,mommu,mu); + Umu = expMat(mommu, dt, 12) * Umu; + PokeIndex(Uprime, ProjectOnGroup(Umu), mu); + + } + + std::cout << GridLogMessage << "New action " << std::endl; + LaplacianMomenta.M.ImportGauge(Uprime); + ComplexD Sprime = LaplacianMomenta.MomentaAction(); + + ////////////////////////////////////////////// + // Use derivative to estimate dS + ////////////////////////////////////////////// + + LatticeComplex dS(&Grid); dS = zero; + + for(int mu=0;mu(UdSdU,mu); + mommu = PeekIndex(mom,mu); + + // Update gauge action density + // U = exp(p dt) U + // dU/dt = p U + // so dSdt = trace( dUdt dSdU) = trace( p UdSdUmu ) + + dS = dS + trace(mommu*UdSdUmu)*dt*2.0; + } + + Complex dSpred = sum(dS); + + std::cout << GridLogMessage << " S "<(UdSdP,mu); + auto Pmu = PeekIndex(P,mu); + // Update gauge action density + // + // dMom/dt = P + // so dSdt = trace( dPdt dSdP) = trace( P dSdP ) + + dS = dS + trace(Pmu*dSdPmu)*dt*2.0; + } + dSpred = sum(dS); + + std::cout << GridLogMessage << " S "< +Author: neo +Author: Guido Cossu + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License along +with this program; if not, write to the Free Software Foundation, Inc., +51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + +See the full license in the file "LICENSE" in the top level distribution +directory +*************************************************************************************/ +/* END LEGAL */ +#include + +int main(int argc, char **argv) { + using namespace Grid; + using namespace Grid::QCD; + + Grid_init(&argc, &argv); + int threads = GridThread::GetThreads(); + // here make a routine to print all the relevant information on the run + std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl; + + // Typedefs to simplify notation + typedef GenericHMCRunner HMCWrapper; // Uses the default minimum norm + HMCWrapper TheHMC; + + // Grid from the command line + TheHMC.Resources.AddFourDimGrid("gauge"); + // Possibile to create the module by hand + // hardcoding parameters or using a Reader + + + // Checkpointer definition + CheckpointerParameters CPparams; + CPparams.config_prefix = "ckpoint_lat"; + CPparams.rng_prefix = "ckpoint_rng"; + CPparams.saveInterval = 20; + CPparams.format = "IEEE64BIG"; + + TheHMC.Resources.LoadBinaryCheckpointer(CPparams); + + RNGModuleParameters RNGpar; + RNGpar.serial_seeds = "1 2 3 4 5"; + RNGpar.parallel_seeds = "6 7 8 9 10 12"; + TheHMC.Resources.SetRNGSeeds(RNGpar); + + // Construct observables + // here there is too much indirection + PlaquetteObsParameters PlPar; + PlPar.output_prefix = "Plaquette"; + PlaquetteMod PlaqModule(PlPar); + TheHMC.Resources.AddObservable(&PlaqModule); + ////////////////////////////////////////////// + + ///////////////////////////////////////////////////////////// + // Collect actions, here use more encapsulation + // need wrappers of the fermionic classes + // that have a complex construction + // standard + RealD beta = 5.6; + WilsonGaugeActionR Waction(beta); + + ActionLevel Level1(1); + Level1.push_back(&Waction); + //Level1.push_back(WGMod.getPtr()); + TheHMC.TheAction.push_back(Level1); + ///////////////////////////////////////////////////////////// + + // HMC parameters are serialisable + TheHMC.Parameters.MD.MDsteps = 60; + TheHMC.Parameters.MD.trajL = 1.0; + + TheHMC.ReadCommandLine(argc, argv); // these can be parameters from file + TheHMC.Run(); // no smearing + + Grid_finalize(); + +} // main diff --git a/tests/solver/Test_laplacian.cc b/tests/solver/Test_laplacian.cc index c8765757..9e706fd3 100644 --- a/tests/solver/Test_laplacian.cc +++ b/tests/solver/Test_laplacian.cc @@ -70,13 +70,13 @@ int main (int argc, char ** argv) LatticeColourMatrix src_mu(&Grid); for (int mu = 0; mu < Nd; mu++) { SU::GaussianFundamentalLieAlgebraMatrix(pRNG, src_mu); - PokeIndex(src_f, src_mu, mu); + PokeIndex(src_f, timesI(src_mu), mu); } LatticeGaugeField result_f(&Grid); // Definition of the Laplacian operator ConjugateGradient CG(1.0e-8,10000); - LaplacianParams LapPar(0.001, 1.0, 1000, 1e-8, 10, 64); + LaplacianParams LapPar(0.00001, 1.0, 1000, 1e-8, 10, 64); LaplacianAdjointField Laplacian(&Grid, CG, LapPar, Kappa); Laplacian.ImportGauge(Umu); std::cout << GridLogMessage << "Testing the Laplacian using the full matrix" <