1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Merge branch 'feature/distil' of github.com:mmphys/Grid into feature/distil

This commit is contained in:
ferben 2019-03-06 13:55:51 +00:00
commit 73cdca3973
3 changed files with 303 additions and 254 deletions

View File

@ -37,16 +37,16 @@ Author: Guido Cossu <guido.cossu@ed.ac.uk>
namespace Grid { namespace Grid {
// TODO Support Grid::complex from GPU port // TODO Support Grid::complex from GPU port
template<typename T> using Grid_complex = std::complex<T>; //template<typename T> using Grid_complex = std::complex<T>;
// Returns original type, except for Grid_complex, where it returns the underlying type // Returns original type, except for Grid_complex, where it returns the underlying type
template<typename T> struct RealType { using type = T; }; //template<typename T> struct RealType { using type = T; };
template<typename T> struct RealType<Grid_complex<T>> { using type = T; }; //template<typename T> struct RealType<Grid_complex<T>> { using type = T; };
namespace EigenIO { namespace EigenIO {
template<typename T> struct is_complex : public std::false_type {}; //template<typename T> struct is_complex : public std::false_type {};
template<typename T> struct is_complex<Grid_complex<T>> //template<typename T> struct is_complex<Grid_complex<T>>
: std::integral_constant<bool, std::is_arithmetic<T>::value> {}; //: std::integral_constant<bool, std::is_arithmetic<T>::value> {};
// Eigen tensors can be composed of arithmetic scalar and complex types // Eigen tensors can be composed of arithmetic scalar and complex types
template<typename T> struct is_scalar : std::integral_constant<bool, template<typename T> struct is_scalar : std::integral_constant<bool,
@ -54,11 +54,11 @@ namespace Grid {
// Eigen tensors can also be composed of a limited number of containers // Eigen tensors can also be composed of a limited number of containers
// NB: grid tensors (iScalar, iVector, iMatrix) have stricter limits on complex types // NB: grid tensors (iScalar, iVector, iMatrix) have stricter limits on complex types
template <typename T> struct is_container : public std::false_type {}; //template <typename T> struct is_container : public std::false_type {};
template <typename T> struct is_container<iScalar<T>> : public std::true_type {}; //template <typename T> struct is_container<iScalar<T>> : public std::true_type {};
template <typename T, int N> struct is_container<iVector<T, N>> : public std::true_type {}; //template <typename T, int N> struct is_container<iVector<T, N>> : public std::true_type {};
template <typename T, int N> struct is_container<iMatrix<T, N>> : public std::true_type {}; //template <typename T, int N> struct is_container<iMatrix<T, N>> : public std::true_type {};
template <typename T, std::size_t N> struct is_container<std::array<T, N>> : public std::true_type {}; //template <typename T, std::size_t N> struct is_container<std::array<T, N>> : public std::true_type {};
// Is this an Eigen tensor // Is this an Eigen tensor
template<typename T> struct is_tensor : std::integral_constant<bool, template<typename T> struct is_tensor : std::integral_constant<bool,
@ -70,7 +70,7 @@ namespace Grid {
// Is this an Eigen tensor of a supported container // Is this an Eigen tensor of a supported container
template<typename T, typename C = void> struct is_tensor_of_container : public std::false_type {}; template<typename T, typename C = void> struct is_tensor_of_container : public std::false_type {};
template<typename T> struct is_tensor_of_container<T, typename std::enable_if<is_tensor<T>::value && is_container<typename T::Scalar>::value, void>::type> : public std::true_type {}; template<typename T> struct is_tensor_of_container<T, typename std::enable_if<is_tensor<T>::value && isGridTensor<typename T::Scalar>::value, void>::type> : public std::true_type {};
// Is this a fixed-size Eigen tensor // Is this a fixed-size Eigen tensor
template<typename T> struct is_tensor_fixed : public std::false_type {}; template<typename T> struct is_tensor_fixed : public std::false_type {};
@ -94,11 +94,11 @@ namespace Grid {
// EigenIO::Traits are not defined for Eigen tensors, but rather their top-level scalar // EigenIO::Traits are not defined for Eigen tensors, but rather their top-level scalar
// This is because Eigen tensors have a dynamic size flavour, but the scalars are all fixed size // This is because Eigen tensors have a dynamic size flavour, but the scalars are all fixed size
// This allows the traits to all be defined as constexpr // This allows the traits to all be defined as constexpr
template <typename T, typename C = void> struct Traits {}; // C needed for specialisation /*template <typename T, typename C = void> struct Traits {}; // C needed for specialisation
// This defines the bottom level - i.e. it's a description of the underlying scalar // This defines the bottom level - i.e. it's a description of the underlying scalar
template <typename T> struct Traits<T, typename std::enable_if<is_scalar<T>::value, void>::type> { template <typename T> struct Traits<T, typename std::enable_if<is_scalar<T>::value, void>::type> {
using scalar_type = T; // Type of the underlying scalar using scalar_type = T; // Type of the underlying scalar
using scalar_real = typename RealType<scalar_type>::type; // real type underlying scalar_type using scalar_real = typename RealPart<scalar_type>::type; // real type underlying scalar_type
static constexpr unsigned int rank = 0; // The rank of the grid tensor (i.e. how many indices used) static constexpr unsigned int rank = 0; // The rank of the grid tensor (i.e. how many indices used)
//static constexpr unsigned int rank_non_trivial = 0; // As per rank, but excludes those of dimension 1 //static constexpr unsigned int rank_non_trivial = 0; // As per rank, but excludes those of dimension 1
static constexpr unsigned int count = 1; // total number of elements (i.e. product of dimensions) static constexpr unsigned int count = 1; // total number of elements (i.e. product of dimensions)
@ -121,7 +121,7 @@ namespace Grid {
}; };
template <typename T> struct Traits<iScalar<T>> { template <typename T> struct Traits<iScalar<T>> {
using scalar_type = typename Traits<T>::scalar_type; using scalar_type = typename Traits<T>::scalar_type;
using scalar_real = typename RealType<scalar_type>::type; using scalar_real = typename RealPart<scalar_type>::type;
static constexpr unsigned int rank = 1 + Traits<T>::rank; static constexpr unsigned int rank = 1 + Traits<T>::rank;
//static constexpr unsigned int rank_non_trivial = 0 + Traits<T>::rank_non_trivial; //static constexpr unsigned int rank_non_trivial = 0 + Traits<T>::rank_non_trivial;
static constexpr unsigned int count = 1 * Traits<T>::count; static constexpr unsigned int count = 1 * Traits<T>::count;
@ -134,7 +134,7 @@ namespace Grid {
}; };
template <typename T, int N> struct Traits<iVector<T, N>> { template <typename T, int N> struct Traits<iVector<T, N>> {
using scalar_type = typename Traits<T>::scalar_type; using scalar_type = typename Traits<T>::scalar_type;
using scalar_real = typename RealType<scalar_type>::type; using scalar_real = typename RealPart<scalar_type>::type;
static constexpr unsigned int rank = 1 + Traits<T>::rank; static constexpr unsigned int rank = 1 + Traits<T>::rank;
//static constexpr unsigned int rank_non_trivial = (N>1 ? 1 : 0) + Traits<T>::rank_non_trivial; //static constexpr unsigned int rank_non_trivial = (N>1 ? 1 : 0) + Traits<T>::rank_non_trivial;
static constexpr unsigned int count = N * Traits<T>::count; static constexpr unsigned int count = N * Traits<T>::count;
@ -148,7 +148,7 @@ namespace Grid {
}; };
template <typename T, int N> struct Traits<iMatrix<T, N>> { template <typename T, int N> struct Traits<iMatrix<T, N>> {
using scalar_type = typename Traits<T>::scalar_type; using scalar_type = typename Traits<T>::scalar_type;
using scalar_real = typename RealType<scalar_type>::type; using scalar_real = typename RealPart<scalar_type>::type;
static constexpr unsigned int rank = 2 + Traits<T>::rank; static constexpr unsigned int rank = 2 + Traits<T>::rank;
//static constexpr unsigned int rank_non_trivial = (N>1 ? 2 : 0) + Traits<T>::rank_non_trivial; //static constexpr unsigned int rank_non_trivial = (N>1 ? 2 : 0) + Traits<T>::rank_non_trivial;
static constexpr unsigned int count = N * N * Traits<T>::count; static constexpr unsigned int count = N * N * Traits<T>::count;
@ -160,224 +160,9 @@ namespace Grid {
//return ( N == 1 ) ? Traits<T>::DimensionNT(dim) : ( dim == 0 || dim == 1 ) ? N : Traits<T>::DimensionNT(dim - 2); //return ( N == 1 ) ? Traits<T>::DimensionNT(dim) : ( dim == 0 || dim == 1 ) ? N : Traits<T>::DimensionNT(dim - 2);
//} //}
}; };
template <typename T, int N> struct Traits<std::array<T, N>> : Traits<iVector<T, N>> {}; template <typename T, int N> struct Traits<std::array<T, N>> : Traits<iVector<T, N>> {};*/
} }
// for_all helper function to call the lambda for scalar
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
{
lambda( scalar, Seq++, MyIndex );
}
// for_all helper function to call the lambda for container
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &container, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
const auto rank{ETensor::NumIndices};
const auto InnerRank = Traits::rank;
for( typename Traits::scalar_type &Source : container ) {
lambda(Source, Seq++, MyIndex );
// Now increment SubIndex
for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == Traits::Dimension(i); i-- )
MyIndex[rank + i] = 0;
}
}
// Calls a lamda (passing index and sequence number) for every member of an Eigen::Tensor
// For efficiency, iteration proceeds in memory order,
// ... but parameters guaranteed to be the same regardless of memory order
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
for_all( ETensor &ET, Lambda lambda )
{
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
const std::size_t NumScalars = ET.size();
assert( NumScalars > 0 );
using Index = typename ETensor::Index;
Index ScalarElementCount{1};
const auto InnerRank = EigenIO::Traits<Scalar>::rank;
const auto rank{ETensor::NumIndices};
std::array<std::size_t, rank + InnerRank> Dims;
for(auto i = 0; i < rank; i++ ) {
auto dim = ET.dimension(i);
assert( dim > 0 );
Dims[i] = static_cast<std::size_t>(dim);
assert( Dims[i] == dim ); // check we didn't lose anything in the conversion
ScalarElementCount *= Dims[i];
}
// Check that the number of containers is correct ... and we didn't lose anything in conversions
assert( NumScalars == ScalarElementCount );
// If the Scalar is actually a container, add the inner Scalar's dimensions
size_t InnerScalarCount{1};
for(auto i = 0; i < InnerRank; i++ ) {
auto dim = EigenIO::Traits<Scalar>::Dimension(i);
assert( dim > 0 );
Dims[rank + i] = static_cast<std::size_t>(dim);
assert( Dims[rank + i] == dim ); // check we didn't lose anything in the conversion
InnerScalarCount *= dim;
}
assert(EigenIO::Traits<Scalar>::count == InnerScalarCount);
assert(EigenIO::Traits<Scalar>::size == sizeof( Scalar ));
std::array<std::size_t, rank + InnerRank> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
Index Seq = 0;
Scalar * pScalar = ET.data();
for( std::size_t j = 0; j < NumScalars; j++ ) {
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex );
// Now increment the index to pass to the lambda (bearing in mind we're walking in memory order)
if( ETensor::Options & Eigen::RowMajor ) {
for( auto i = rank - 1; i != -1 && ++MyIndex[i] == Dims[i]; i-- )
MyIndex[i] = 0;
} else {
for( auto i = 0; i < rank && ++MyIndex[i] == Dims[i]; i++ )
MyIndex[i] = 0;
size_t NewSeq = 0;
for( auto i = 0; i < rank + InnerRank ; i++ ) {
NewSeq *= Dims[i];
NewSeq += MyIndex[i];
}
Seq = static_cast<Index>( NewSeq );
}
pScalar++;
}
}
// Sequential initialisation of tensors
// Would have preferred to define template variables for this, but that's c++ 17
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc = 1,
unsigned short Precision = 0 )
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
scalar_type x = Inc * static_cast<scalar_type>(n);
if( Precision ) {
std::stringstream s;
s << std::scientific << std::setprecision(Precision) << x;
s >> x;
}
c = x;
} );
}
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc={1,-1},
unsigned short Precision = 0 )
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
auto re = Inc.real();
auto im = Inc.imag();
re *= n;
im *= n;
if( Precision ) {
std::stringstream s;
s << std::setprecision(Precision) << re;
s >> re;
s.clear();
s << im;
s >> im;
}
c = scalar_type(re,im);
} );
}
// Helper to dump a tensor
#ifdef DEBUG
#define dump_tensor(args...) dump_tensor_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
{
using Traits = typename EigenIO::Traits<typename T::Scalar>;
const auto rank{T::NumIndices};
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
std::cout << " in memory order:" << std::endl;
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::rank> &Dims ){
std::cout << " ";
for( auto dim : Dims )
std::cout << "[" << dim << "]";
std::cout << " = " << c << std::endl;
} );
std::cout << "========================================" << std::endl;
}
template <typename T>
typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
{
std::cout << "Dumping non-tensor object ";
if( pName )
std::cout << pName;
std::cout << "=" << t;
}
// Helper to dump a tensor in memory order
// Kind of superfluous given the above ... just keeping in case I need to fall back to this
#define DumpMemoryOrder(args...) DumpMemoryOrder_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor_of_scalar<T>::value, void>::type
DumpMemoryOrder_func(T &t, const char * pName = nullptr)
{
const auto rank = t.rank();
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto d : dims ) std::cout << "[" << d << "]";
std::cout << " in memory order:" << std::endl;
const typename T::Scalar * p = t.data();
const auto size = t.size();
const typename T::Scalar * pEnd = p + size;
if( rank <= 2 ) {
for( unsigned int i = 0 ; i < t.size() ; i++ )
std::cout << "[" << i << "]=" << *p++ << " ";
std::cout << std::endl;
} else {
const auto innersize = dims[rank-2] * dims[rank-1];
using Index = typename T::Index;
std::vector<Index> idx(rank - 2);
for( auto &i : idx ) i = 0;
Index idxCounter = 0;
while( p < pEnd ) {
if( T::Options & Eigen::RowMajor ) {
if( pName )
std::cout << pName;
idxCounter = 0;
for(auto i = 0 ; i < rank - 2 ; i++)
std::cout << "[" << idx[i] << "]:";
}
for( unsigned int i = 0 ; i < innersize ; i++ )
std::cout << " [" << idxCounter++ << "]=" << *p++;
if( T::Options & Eigen::RowMajor )
std::cout << std::endl;
// Now increment MyIndex
for( auto i = rank - 3; i != -1 && ++idx[i] == dims[i]; i-- )
idx[i] = 0;
}
if( ! ( T::Options & Eigen::RowMajor ) )
std::cout << std::endl;
}
}
#else
#define dump_tensor(args...)
#define DumpMemoryOrder(args...)
#endif
// Abstract writer/reader classes //////////////////////////////////////////// // Abstract writer/reader classes ////////////////////////////////////////////
// static polymorphism implemented using CRTP idiom // static polymorphism implemented using CRTP idiom
class Serializable; class Serializable;
@ -410,14 +195,14 @@ namespace Grid {
// Helper functions for Scalar vs Container specialisations // Helper functions for Scalar vs Container specialisations
template <typename ETensor> template <typename ETensor>
inline typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, const typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type *>::type inline typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, const typename GridTypeMapper<typename ETensor::Scalar>::scalar_type *>::type
getFirstScalar(const ETensor &output) getFirstScalar(const ETensor &output)
{ {
return output.data(); return output.data();
} }
template <typename ETensor> template <typename ETensor>
inline typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, const typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type *>::type inline typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, const typename GridTypeMapper<typename ETensor::Scalar>::scalar_type *>::type
getFirstScalar(const ETensor &output) getFirstScalar(const ETensor &output)
{ {
return output.data()->begin(); return output.data()->begin();
@ -425,16 +210,16 @@ namespace Grid {
template <typename S> template <typename S>
inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type
copyScalars(typename EigenIO::Traits<S>::scalar_type * &pCopy, const S &Source) copyScalars(typename GridTypeMapper<S>::scalar_type * &pCopy, const S &Source)
{ {
* pCopy ++ = Source; * pCopy ++ = Source;
} }
template <typename S> template <typename S>
inline typename std::enable_if<EigenIO::is_container<S>::value, void>::type inline typename std::enable_if<isGridTensor<S>::value, void>::type
copyScalars(typename EigenIO::Traits<S>::scalar_type * &pCopy, const S &Source) copyScalars(typename GridTypeMapper<S>::scalar_type * &pCopy, const S &Source)
{ {
for( const typename EigenIO::Traits<S>::scalar_type &item : Source ) for( const typename GridTypeMapper<S>::scalar_type &item : Source )
* pCopy ++ = item; * pCopy ++ = item;
} }
@ -483,16 +268,16 @@ namespace Grid {
// Helper functions for Scalar vs Container specialisations // Helper functions for Scalar vs Container specialisations
template <typename S> template <typename S>
inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type
copyScalars(S &Dest, const typename EigenIO::Traits<S>::scalar_type * &pSource) copyScalars(S &Dest, const typename GridTypeMapper<S>::scalar_type * &pSource)
{ {
Dest = * pSource ++; Dest = * pSource ++;
} }
template <typename S> template <typename S>
inline typename std::enable_if<EigenIO::is_container<S>::value, void>::type inline typename std::enable_if<isGridTensor<S>::value, void>::type
copyScalars(S &Dest, const typename EigenIO::Traits<S>::scalar_type * &pSource) copyScalars(S &Dest, const typename GridTypeMapper<S>::scalar_type * &pSource)
{ {
for( typename EigenIO::Traits<S>::scalar_type &item : Dest ) for( typename GridTypeMapper<S>::scalar_type &item : Dest )
item = * pSource ++; item = * pSource ++;
} }
@ -577,10 +362,10 @@ namespace Grid {
{ {
using Index = typename ETensor::Index; using Index = typename ETensor::Index;
using Container = typename ETensor::Scalar; // NB: could be same as scalar using Container = typename ETensor::Scalar; // NB: could be same as scalar
using Traits = EigenIO::Traits<Container>; using Traits = GridTypeMapper<Container>;
using Scalar = typename Traits::scalar_type; // type of the underlying scalar using Scalar = typename Traits::scalar_type; // type of the underlying scalar
constexpr unsigned int TensorRank{ETensor::NumIndices}; constexpr unsigned int TensorRank{ETensor::NumIndices};
constexpr unsigned int ContainerRank{Traits::rank}; // Only non-zero for containers constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers
constexpr unsigned int TotalRank{TensorRank + ContainerRank}; constexpr unsigned int TotalRank{TensorRank + ContainerRank};
const Index NumElements{output.size()}; const Index NumElements{output.size()};
assert( NumElements > 0 ); assert( NumElements > 0 );
@ -728,10 +513,10 @@ namespace Grid {
{ {
using Index = typename ETensor::Index; using Index = typename ETensor::Index;
using Container = typename ETensor::Scalar; // NB: could be same as scalar using Container = typename ETensor::Scalar; // NB: could be same as scalar
using Traits = EigenIO::Traits<Container>; using Traits = GridTypeMapper<Container>;
using Scalar = typename Traits::scalar_type; // type of the underlying scalar using Scalar = typename Traits::scalar_type; // type of the underlying scalar
constexpr unsigned int TensorRank{ETensor::NumIndices}; constexpr unsigned int TensorRank{ETensor::NumIndices};
constexpr unsigned int ContainerRank{Traits::rank}; // Only non-zero for containers constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers
constexpr unsigned int TotalRank{TensorRank + ContainerRank}; constexpr unsigned int TotalRank{TensorRank + ContainerRank};
using ETDims = std::array<Index, TensorRank>; // Dimensions of the tensor using ETDims = std::array<Index, TensorRank>; // Dimensions of the tensor

249
Grid/util/Eigen.h Normal file
View File

@ -0,0 +1,249 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Grid/util/Eigen.h
Copyright (C) 2019
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_UTIL_EIGEN_H
#define GRID_UTIL_EIGEN_H
#include <Grid/tensors/Tensor_traits.h>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
namespace Grid {
// for_all helper function to call the lambda for scalar
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + GridTypeMapper<typename ETensor::Scalar>::Rank> &MyIndex)
{
lambda( scalar, Seq++, MyIndex );
}
// for_all helper function to call the lambda for container
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &container, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + GridTypeMapper<typename ETensor::Scalar>::Rank> &MyIndex)
{
using Traits = GridTypeMapper<typename ETensor::Scalar>;
const auto rank{ETensor::NumIndices};
const auto InnerRank = Traits::Rank;
for( typename Traits::scalar_type &Source : container ) {
lambda(Source, Seq++, MyIndex );
// Now increment SubIndex
for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == Traits::Dimension(i); i-- )
MyIndex[rank + i] = 0;
}
}
// Calls a lamda (passing index and sequence number) for every member of an Eigen::Tensor
// For efficiency, iteration proceeds in memory order,
// ... but parameters guaranteed to be the same regardless of memory order
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
for_all( ETensor &ET, Lambda lambda )
{
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
const std::size_t NumScalars = ET.size();
assert( NumScalars > 0 );
using Index = typename ETensor::Index;
Index ScalarElementCount{1};
const auto InnerRank = GridTypeMapper<Scalar>::Rank;
const auto rank{ETensor::NumIndices};
std::array<std::size_t, rank + InnerRank> Dims;
for(auto i = 0; i < rank; i++ ) {
auto dim = ET.dimension(i);
assert( dim > 0 );
Dims[i] = static_cast<std::size_t>(dim);
assert( Dims[i] == dim ); // check we didn't lose anything in the conversion
ScalarElementCount *= Dims[i];
}
// Check that the number of containers is correct ... and we didn't lose anything in conversions
assert( NumScalars == ScalarElementCount );
// If the Scalar is actually a container, add the inner Scalar's dimensions
size_t InnerScalarCount{1};
for(auto i = 0; i < InnerRank; i++ ) {
auto dim = GridTypeMapper<Scalar>::Dimension(i);
assert( dim > 0 );
Dims[rank + i] = static_cast<std::size_t>(dim);
assert( Dims[rank + i] == dim ); // check we didn't lose anything in the conversion
InnerScalarCount *= dim;
}
assert(GridTypeMapper<Scalar>::count == InnerScalarCount);
assert(GridTypeMapper<Scalar>::size == sizeof( Scalar ));
std::array<std::size_t, rank + InnerRank> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
Index Seq = 0;
Scalar * pScalar = ET.data();
for( std::size_t j = 0; j < NumScalars; j++ ) {
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex );
// Now increment the index to pass to the lambda (bearing in mind we're walking in memory order)
if( ETensor::Options & Eigen::RowMajor ) {
for( auto i = rank - 1; i != -1 && ++MyIndex[i] == Dims[i]; i-- )
MyIndex[i] = 0;
} else {
for( auto i = 0; i < rank && ++MyIndex[i] == Dims[i]; i++ )
MyIndex[i] = 0;
size_t NewSeq = 0;
for( auto i = 0; i < rank + InnerRank ; i++ ) {
NewSeq *= Dims[i];
NewSeq += MyIndex[i];
}
Seq = static_cast<Index>( NewSeq );
}
pScalar++;
}
}
// Sequential initialisation of tensors
// Would have preferred to define template variables for this, but that's c++ 17
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !is_complex<typename GridTypeMapper<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename GridTypeMapper<typename ETensor::Scalar>::scalar_type Inc = 1,
unsigned short Precision = 0 )
{
using Traits = GridTypeMapper<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::Rank> &Dims ) {
scalar_type x = Inc * static_cast<scalar_type>(n);
if( Precision ) {
std::stringstream s;
s << std::scientific << std::setprecision(Precision) << x;
s >> x;
}
c = x;
} );
}
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && is_complex<typename GridTypeMapper<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename GridTypeMapper<typename ETensor::Scalar>::scalar_type Inc={1,-1},
unsigned short Precision = 0 )
{
using Traits = GridTypeMapper<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::Rank> &Dims ) {
auto re = Inc.real();
auto im = Inc.imag();
re *= n;
im *= n;
if( Precision ) {
std::stringstream s;
s << std::setprecision(Precision) << re;
s >> re;
s.clear();
s << im;
s >> im;
}
c = scalar_type(re,im);
} );
}
// Helper to dump a tensor
#ifdef DEBUG
#define dump_tensor(args...) dump_tensor_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
{
using Traits = GridTypeMapper<typename T::Scalar>;
const auto rank{T::NumIndices};
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
std::cout << " in memory order:" << std::endl;
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::Rank> &Dims ){
std::cout << " ";
for( auto dim : Dims )
std::cout << "[" << dim << "]";
std::cout << " = " << c << std::endl;
} );
std::cout << "========================================" << std::endl;
}
template <typename T>
typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
{
std::cout << "Dumping non-tensor object ";
if( pName )
std::cout << pName;
std::cout << "=" << t;
}
// Helper to dump a tensor in memory order
// Kind of superfluous given the above ... just keeping in case I need to fall back to this
#define DumpMemoryOrder(args...) DumpMemoryOrder_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor_of_scalar<T>::value, void>::type
DumpMemoryOrder_func(T &t, const char * pName = nullptr)
{
const auto rank = t.rank();
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto d : dims ) std::cout << "[" << d << "]";
std::cout << " in memory order:" << std::endl;
const typename T::Scalar * p = t.data();
const auto size = t.size();
const typename T::Scalar * pEnd = p + size;
if( rank <= 2 ) {
for( unsigned int i = 0 ; i < t.size() ; i++ )
std::cout << "[" << i << "]=" << *p++ << " ";
std::cout << std::endl;
} else {
const auto innersize = dims[rank-2] * dims[rank-1];
using Index = typename T::Index;
std::vector<Index> idx(rank - 2);
for( auto &i : idx ) i = 0;
Index idxCounter = 0;
while( p < pEnd ) {
if( T::Options & Eigen::RowMajor ) {
if( pName )
std::cout << pName;
idxCounter = 0;
for(auto i = 0 ; i < rank - 2 ; i++)
std::cout << "[" << idx[i] << "]:";
}
for( unsigned int i = 0 ; i < innersize ; i++ )
std::cout << " [" << idxCounter++ << "]=" << *p++;
if( T::Options & Eigen::RowMajor )
std::cout << std::endl;
// Now increment MyIndex
for( auto i = rank - 3; i != -1 && ++idx[i] == dims[i]; i-- )
idx[i] = 0;
}
if( ! ( T::Options & Eigen::RowMajor ) )
std::cout << std::endl;
}
}
#else
#define dump_tensor(args...)
#define DumpMemoryOrder(args...)
#endif
}
#endif

View File

@ -29,6 +29,7 @@ Author: Michael Marshall <michael.marshall@ed.ac.uk>
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid/Grid.h> #include <Grid/Grid.h>
#include <Grid/util/Eigen.h>
using namespace Grid; using namespace Grid;
using namespace Grid::QCD; using namespace Grid::QCD;
@ -108,16 +109,16 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
std::cout << " done." << std::endl; std::cout << " done." << std::endl;
} }
typedef std::complex<double> TestScalar; typedef ComplexD TestScalar;
typedef Eigen::TensorFixedSize<unsigned short, Eigen::Sizes<5,4,3,2,1>> TensorRank5UShort; typedef Eigen::TensorFixedSize<Integer, Eigen::Sizes<5,4,3,2,1>> TensorRank5UShort;
typedef Eigen::TensorFixedSize<unsigned short, Eigen::Sizes<5,4,3,2,1>, Eigen::StorageOptions::RowMajor> TensorRank5UShortAlt; typedef Eigen::TensorFixedSize<Integer, Eigen::Sizes<5,4,3,2,1>, Eigen::StorageOptions::RowMajor> TensorRank5UShortAlt;
typedef Eigen::Tensor<TestScalar, 3, Eigen::StorageOptions::RowMajor> TensorRank3; typedef Eigen::Tensor<TestScalar, 3, Eigen::StorageOptions::RowMajor> TensorRank3;
typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>, Eigen::StorageOptions::RowMajor> Tensor_9_4_2; typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>, Eigen::StorageOptions::RowMajor> Tensor_9_4_2;
typedef std::vector<Tensor_9_4_2> aTensor_9_4_2; typedef std::vector<Tensor_9_4_2> aTensor_9_4_2;
typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<6,5>> LSCTensor; typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<6,5>> LSCTensor;
class PerambIOTestClass: Serializable { class PerambIOTestClass: Serializable {
Grid_complex<double> Flag; ComplexD Flag;
public: public:
using PerambTensor = Eigen::Tensor<SpinColourVector, 6, Eigen::StorageOptions::RowMajor>; using PerambTensor = Eigen::Tensor<SpinColourVector, 6, Eigen::StorageOptions::RowMajor>;
GRID_SERIALIZABLE_CLASS_MEMBERS(PerambIOTestClass GRID_SERIALIZABLE_CLASS_MEMBERS(PerambIOTestClass
@ -156,11 +157,11 @@ public:
#define TEST_PARAMS( T ) #T, Flag, Precision, filename, pszExtension, TestNum #define TEST_PARAMS( T ) #T, Flag, Precision, filename, pszExtension, TestNum
template <typename WTR_, typename RDR_, typename T, typename... IndexTypes> template <typename WTR_, typename RDR_, typename T, typename... IndexTypes>
void EigenTensorTestSingle(const char * MyTypeName, typename EigenIO::Traits<typename T::Scalar>::scalar_type Flag, void EigenTensorTestSingle(const char * MyTypeName, typename GridTypeMapper<typename T::Scalar>::scalar_type Flag,
unsigned short Precision, std::string &filename, const char * pszExtension, unsigned int &TestNum, unsigned short Precision, std::string &filename, const char * pszExtension, unsigned int &TestNum,
IndexTypes... otherDims) IndexTypes... otherDims)
{ {
using Traits = EigenIO::Traits<typename T::Scalar>; using Traits = GridTypeMapper<typename T::Scalar>;
using scalar_type = typename Traits::scalar_type; using scalar_type = typename Traits::scalar_type;
std::unique_ptr<T> pTensor{new T(otherDims...)}; std::unique_ptr<T> pTensor{new T(otherDims...)};
SequentialInit( * pTensor, Flag, Precision ); SequentialInit( * pTensor, Flag, Precision );
@ -175,7 +176,7 @@ void EigenTensorTest(const char * pszExtension, unsigned short Precision = 0)
std::string filename; std::string filename;
{ {
int Flag = 7; int Flag = 7;
using TensorSingle = Eigen::TensorFixedSize<int, Eigen::Sizes<1>>; using TensorSingle = Eigen::TensorFixedSize<Integer, Eigen::Sizes<1>>;
EigenTensorTestSingle<WTR_, RDR_, TensorSingle>(TEST_PARAMS( TensorSingle )); EigenTensorTestSingle<WTR_, RDR_, TensorSingle>(TEST_PARAMS( TensorSingle ));
} }
TestScalar Flag{1,-3.1415927}; TestScalar Flag{1,-3.1415927};
@ -239,6 +240,20 @@ void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
int main(int argc,char **argv) int main(int argc,char **argv)
{ {
{
LSCTensor Bingo;
constexpr Complex Flag{1,-3.1415927};
Complex z{0};
SpinColourVector * pV = Bingo.data();
for( std::size_t i = Bingo.size(); i--; ) {
for( typename GridTypeMapper<SpinColourVector>::scalar_type &s : *pV++ ) {
s = z;
z += Flag;
}
}
dump_tensor( Bingo );
}
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
std::cout << std::boolalpha << "==== basic IO" << std::endl; // display true / false for boolean std::cout << std::boolalpha << "==== basic IO" << std::endl; // display true / false for boolean