1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 20:57:06 +01:00

Small dh obtained in two flavour ratio so looks ok.

This commit is contained in:
Peter Boyle
2015-08-18 09:21:29 +01:00
parent 25d0eae50c
commit 7622f0c441
6 changed files with 83 additions and 28 deletions

View File

@ -152,5 +152,6 @@ typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
////////////////////////////////////////
#include <qcd/action/pseudofermion/TwoFlavour.h>
#include <qcd/action/pseudofermion/TwoFlavourEvenOdd.h>
#include <qcd/action/pseudofermion/TwoFlavourRatio.h>
#endif

View File

@ -4,15 +4,6 @@
namespace Grid{
namespace QCD{
// Placeholder comments:
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 V^dag phi
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
///////////////////////////////////////
// One flavour rational

View File

@ -1,5 +1,5 @@
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_H
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H
namespace Grid{
namespace QCD{
@ -26,30 +26,35 @@ namespace Grid{
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS
) : NumOp(_NumOp), DenOp(_DenOp), DerivativeSolver(DS), ActionSolver(AS), Phi(Op.FermionGrid()) {};
) : NumOp(_NumOp), DenOp(_DenOp), DerivativeSolver(DS), ActionSolver(AS), Phi(_NumOp.FermionGrid()) {};
virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag V (MdagM)^-1 Vdag phi}
//
// phi = Vdag^{-1} Mdag eta
// NumOp == V
// DenOp == M
//
// Take phi = Vdag^{-1} Mdag eta ; eta = Mdag^{-1} Vdag Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// and must multiply by 0.707....
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
gaussian(pRNG,eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// Note: this hard codes normal equations type solvers; alternate implementation needed for
// non-herm style solvers.
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
DenOp.Mdag(eta,Phi); // Mdag eta
@ -74,9 +79,9 @@ namespace Grid{
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
X=zero;
NumOp.Mdag(Phi,Y); // Vdag phi
ActionSolver(MdagMOp,Y,X); // MdagMinv Vdag phi
MdagMOp.Op(X,Y); // Y=Mdaginv Vdag phi
NumOp.Mdag(Phi,Y); // Y= Vdag phi
ActionSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
RealD action = norm2(Y);
@ -99,18 +104,16 @@ namespace Grid{
FermionField Y(NumOp.FermionGrid());
FermionField f1(NumOp.FermionGrid());
GaugeField force(FermOp.GaugeGrid());
GaugeField force(NumOp.GaugeGrid());
X=zero;
//f1=Vdag phi
NumOp.Mdag(phi,f1);
//Y=Vdag phi
//X = (Mdag M)^-1 V^dag phi
DerivativeSolver(MdagMOp,f1,X);
//Y = (Mdag)^-1 V^dag phi
DenOp.M(X,Y);
NumOp.Mdag(Phi,Y); // Y= Vdag phi
DerivativeSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
// phi^dag V (Mdag M)^-1 dV^dag phi
NumOp.MDeriv(force , X, Phi, DaggerYes ); dSdU=force;
@ -122,7 +125,7 @@ namespace Grid{
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force;
DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force;
dSdU = - dSdU;
dSdU = Ta(dSdU);
};