1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00

Merge branch 'develop' into feature/hw-multigrid

This commit is contained in:
Peter Boyle 2020-09-03 21:52:04 -04:00
commit 77124d99d5

View File

@ -7,6 +7,7 @@
Copyright (C) 2019 Copyright (C) 2019
Author: Felix Erben <felix.erben@ed.ac.uk> Author: Felix Erben <felix.erben@ed.ac.uk>
Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -58,9 +59,12 @@ public:
const Gamma GammaA_right, const Gamma GammaA_right,
const Gamma GammaB_right, const Gamma GammaB_right,
const int parity, const int parity,
const int * wick_contractions, const bool * wick_contractions,
robj &result); robj &result);
public: public:
static void Wick_Contractions(std::string qi,
std::string qf,
bool* wick_contractions);
static void ContractBaryons(const PropagatorField &q1_left, static void ContractBaryons(const PropagatorField &q1_left,
const PropagatorField &q2_left, const PropagatorField &q2_left,
const PropagatorField &q3_left, const PropagatorField &q3_left,
@ -68,8 +72,7 @@ public:
const Gamma GammaB_left, const Gamma GammaB_left,
const Gamma GammaA_right, const Gamma GammaA_right,
const Gamma GammaB_right, const Gamma GammaB_right,
const char * quarks_left, const bool* wick_contractions,
const char * quarks_right,
const int parity, const int parity,
ComplexField &baryon_corr); ComplexField &baryon_corr);
template <class mobj, class robj> template <class mobj, class robj>
@ -80,10 +83,59 @@ public:
const Gamma GammaB_left, const Gamma GammaB_left,
const Gamma GammaA_right, const Gamma GammaA_right,
const Gamma GammaB_right, const Gamma GammaB_right,
const char * quarks_left, const bool* wick_contractions,
const char * quarks_right,
const int parity, const int parity,
const int nt,
robj &result); robj &result);
private:
template <class mobj, class mobj2, class robj>
static void Baryon_Gamma_3pt_Group1_Site(
const mobj &Dq1_ti,
const mobj2 &Dq2_spec,
const mobj2 &Dq3_spec,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result);
template <class mobj, class mobj2, class robj>
static void Baryon_Gamma_3pt_Group2_Site(
const mobj2 &Dq1_spec,
const mobj &Dq2_ti,
const mobj2 &Dq3_spec,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result);
template <class mobj, class mobj2, class robj>
static void Baryon_Gamma_3pt_Group3_Site(
const mobj2 &Dq1_spec,
const mobj2 &Dq2_spec,
const mobj &Dq3_ti,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result);
public:
template <class mobj>
static void Baryon_Gamma_3pt(
const PropagatorField &q_ti,
const mobj &Dq_spec1,
const mobj &Dq_spec2,
const PropagatorField &q_tf,
int group,
int wick_contraction,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
SpinMatrixField &stn_corr);
private: private:
template <class mobj, class mobj2, class robj> template <class mobj, class mobj2, class robj>
static void Sigma_to_Nucleon_Q1_Eye_site(const mobj &Dq_loop, static void Sigma_to_Nucleon_Q1_Eye_site(const mobj &Dq_loop,
@ -166,111 +218,137 @@ const Real BaryonUtils<FImpl>::epsilon_sgn[6] = {1.,1.,1.,-1.,-1.,-1.};
template <class FImpl> template <class FImpl>
template <class mobj, class robj> template <class mobj, class robj>
void BaryonUtils<FImpl>::baryon_site(const mobj &D1, void BaryonUtils<FImpl>::baryon_site(const mobj &D1,
const mobj &D2, const mobj &D2,
const mobj &D3, const mobj &D3,
const Gamma GammaA_left, const Gamma GammaA_i,
const Gamma GammaB_left, const Gamma GammaB_i,
const Gamma GammaA_right, const Gamma GammaA_f,
const Gamma GammaB_right, const Gamma GammaB_f,
const int parity, const int parity,
const int * wick_contraction, const bool * wick_contraction,
robj &result) robj &result)
{ {
Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4) Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4)
auto gD1a = GammaA_left * GammaA_right * D1;
auto gD1b = GammaA_left * g4 * GammaA_right * D1; auto D1_GAi = D1 * GammaA_i;
auto pD1 = 0.5* (gD1a + (Real)parity * gD1b); auto D1_GAi_g4 = D1_GAi * g4;
auto gD3 = GammaB_right * D3; auto D1_GAi_P = 0.5*(D1_GAi + (Real)parity * D1_GAi_g4);
auto D2g = D2 * GammaB_left; auto GAf_D1_GAi_P = GammaA_f * D1_GAi_P;
auto pD1g = pD1 * GammaB_left; auto GBf_D1_GAi_P = GammaB_f * D1_GAi_P;
auto gD3g = gD3 * GammaB_left;
for (int ie_left=0; ie_left < 6 ; ie_left++){ auto D2_GBi = D2 * GammaB_i;
int a_left = epsilon[ie_left][0]; //a auto GBf_D2_GBi = GammaB_f * D2_GBi;
int b_left = epsilon[ie_left][1]; //b auto GAf_D2_GBi = GammaA_f * D2_GBi;
int c_left = epsilon[ie_left][2]; //c
for (int ie_right=0; ie_right < 6 ; ie_right++){ auto GBf_D3 = GammaB_f * D3;
int a_right = epsilon[ie_right][0]; //a' auto GAf_D3 = GammaA_f * D3;
int b_right = epsilon[ie_right][1]; //b'
int c_right = epsilon[ie_right][2]; //c' for (int ie_f=0; ie_f < 6 ; ie_f++){
Real ee = epsilon_sgn[ie_left] * epsilon_sgn[ie_right]; int a_f = epsilon[ie_f][0]; //a
int b_f = epsilon[ie_f][1]; //b
int c_f = epsilon[ie_f][2]; //c
for (int ie_i=0; ie_i < 6 ; ie_i++){
int a_i = epsilon[ie_i][0]; //a'
int b_i = epsilon[ie_i][1]; //b'
int c_i = epsilon[ie_i][2]; //c'
Real ee = epsilon_sgn[ie_f] * epsilon_sgn[ie_i];
//This is the \delta_{456}^{123} part //This is the \delta_{456}^{123} part
if (wick_contraction[0]){ if (wick_contraction[0]){
for (int gamma_left=0; gamma_left<Ns; gamma_left++){ for (int rho=0; rho<Ns; rho++){
auto eepD1 = ee * pD1()(gamma_left,gamma_left)(c_right,c_left); auto GAf_D1_GAi_P_rr_cc = GAf_D1_GAi_P()(rho,rho)(c_f,c_i);
for (int alpha_right=0; alpha_right<Ns; alpha_right++){ for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_left=0; beta_left<Ns; beta_left++){ for (int beta_i=0; beta_i<Ns; beta_i++){
auto D2g_ab = D2g()(alpha_right,beta_left)(a_right,a_left); result()()() += ee * GAf_D1_GAi_P_rr_cc
auto gD3_ab = gD3()(alpha_right,beta_left)(b_right,b_left); * D2_GBi ()(alpha_f,beta_i)(a_f,a_i)
result()()() += eepD1*D2g_ab*gD3_ab; * GBf_D3 ()(alpha_f,beta_i)(b_f,b_i);
}} }}
} }
} }
//This is the \delta_{456}^{231} part //This is the \delta_{456}^{231} part
if (wick_contraction[1]){ if (wick_contraction[1]){
for (int gamma_left=0; gamma_left<Ns; gamma_left++){ for (int rho=0; rho<Ns; rho++){
for (int alpha_right=0; alpha_right<Ns; alpha_right++){ for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto gD3_ag = gD3()(alpha_right,gamma_left)(b_right,c_left); auto D1_GAi_P_ar_ac = D1_GAi_P()(alpha_f,rho)(a_f,c_i);
for (int beta_left=0; beta_left<Ns; beta_left++){ for (int beta_i=0; beta_i<Ns; beta_i++){
auto eepD1g_gb = ee * pD1g()(gamma_left,beta_left)(c_right,a_left); result()()() += ee * D1_GAi_P_ar_ac
auto D2_ab = D2()(alpha_right,beta_left)(a_right,b_left); * GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i)
result()()() += eepD1g_gb*D2_ab*gD3_ag; * GAf_D3 ()(rho,beta_i)(c_f,b_i);
} }
}}
}
//This is the \delta_{456}^{312} part
if (wick_contraction[2]){
for (int gamma_left=0; gamma_left<Ns; gamma_left++){
for (int alpha_right=0; alpha_right<Ns; alpha_right++){
auto D2_ag = D2()(alpha_right,gamma_left)(a_right,c_left);
for (int beta_left=0; beta_left<Ns; beta_left++){
auto eepD1_gb = ee * pD1()(gamma_left,beta_left)(c_right,b_left);
auto gD3g_ab = gD3g()(alpha_right,beta_left)(b_right,a_left);
result()()() += eepD1_gb*D2_ag*gD3g_ab;
}
}}
}
//This is the \delta_{456}^{132} part
if (wick_contraction[3]){
for (int gamma_left=0; gamma_left<Ns; gamma_left++){
auto eepD1 = ee * pD1()(gamma_left,gamma_left)(c_right,c_left);
for (int alpha_right=0; alpha_right<Ns; alpha_right++){
for (int beta_left=0; beta_left<Ns; beta_left++){
auto D2_ab = D2()(alpha_right,beta_left)(a_right,b_left);
auto gD3g_ab = gD3g()(alpha_right,beta_left)(b_right,a_left);
result()()() -= eepD1*D2_ab*gD3g_ab;
}} }}
} }
} //This is the \delta_{456}^{312} part
if (wick_contraction[2]){
for (int rho=0; rho<Ns; rho++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto GBf_D1_GAi_P_ar_bc = GBf_D1_GAi_P()(alpha_f,rho)(b_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
result()()() += ee * GBf_D1_GAi_P_ar_bc
* GAf_D2_GBi ()(rho,beta_i)(c_f,a_i)
* D3 ()(alpha_f,beta_i)(a_f,b_i);
}
}}
}
//This is the \delta_{456}^{132} part
if (wick_contraction[3]){
for (int rho=0; rho<Ns; rho++){
auto GAf_D1_GAi_P_rr_cc = GAf_D1_GAi_P()(rho,rho)(c_f,c_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
result()()() -= ee * GAf_D1_GAi_P_rr_cc
* GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i)
* D3 ()(alpha_f,beta_i)(a_f,b_i);
}
}}
}
//This is the \delta_{456}^{321} part //This is the \delta_{456}^{321} part
if (wick_contraction[4]){ if (wick_contraction[4]){
for (int gamma_left=0; gamma_left<Ns; gamma_left++){ for (int rho=0; rho<Ns; rho++){
for (int alpha_right=0; alpha_right<Ns; alpha_right++){ for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto gD3_ag = gD3()(alpha_right,gamma_left)(b_right,c_left); auto GBf_D1_GAi_P_ar_bc = GBf_D1_GAi_P()(alpha_f,rho)(b_f,c_i);
for (int beta_left=0; beta_left<Ns; beta_left++){ for (int beta_i=0; beta_i<Ns; beta_i++){
auto eepD1_gb = ee * pD1()(gamma_left,beta_left)(c_right,b_left); result()()() -= ee * GBf_D1_GAi_P_ar_bc
auto D2g_ab = D2g()(alpha_right,beta_left)(a_right,a_left); * D2_GBi ()(alpha_f,beta_i)(a_f,a_i)
result()()() -= eepD1_gb*D2g_ab*gD3_ag; * GAf_D3 ()(rho,beta_i)(c_f,b_i);
} }
}} }}
} }
//This is the \delta_{456}^{213} part //This is the \delta_{456}^{213} part
if (wick_contraction[5]){ if (wick_contraction[5]){
for (int gamma_left=0; gamma_left<Ns; gamma_left++){ for (int rho=0; rho<Ns; rho++){
for (int alpha_right=0; alpha_right<Ns; alpha_right++){ for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto D2_ag = D2()(alpha_right,gamma_left)(a_right,c_left); auto D1_GAi_P_ar_ac = D1_GAi_P()(alpha_f,rho)(a_f,c_i);
for (int beta_left=0; beta_left<Ns; beta_left++){ for (int beta_i=0; beta_i<Ns; beta_i++){
auto eepD1g_gb = ee * pD1g()(gamma_left,beta_left)(c_right,a_left); result()()() -= ee * D1_GAi_P_ar_ac
auto gD3_ab = gD3()(alpha_right,beta_left)(b_right,b_left); * GAf_D2_GBi ()(rho,beta_i)(c_f,a_i)
result()()() -= eepD1g_gb*D2_ag*gD3_ab; * GBf_D3 ()(alpha_f,beta_i)(b_f,b_i);
} }
}} }}
} }
} }}
}
/* Computes which wick contractions should be performed for a *
* baryon 2pt function given the initial and finals state quark *
* flavours. *
* The array wick_contractions must be of length 6 */
template<class FImpl>
void BaryonUtils<FImpl>::Wick_Contractions(std::string qi, std::string qf, bool* wick_contractions) {
const int epsilon[6][3] = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
for (int ie=0; ie < 6 ; ie++) {
wick_contractions[ie] = (qi.size() == 3 && qf.size() == 3
&& qi[0] == qf[epsilon[ie][0]]
&& qi[1] == qf[epsilon[ie][1]]
&& qi[2] == qf[epsilon[ie][2]]);
} }
} }
/* The array wick_contractions must be of length 6. The order *
* corresponds to the to that shown in the Hadrons documentation *
* at https://aportelli.github.io/Hadrons-doc/#/mcontraction *
* This can be computed from the quark flavours using the *
* Wick_Contractions function above */
template<class FImpl> template<class FImpl>
void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left, void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
const PropagatorField &q2_left, const PropagatorField &q2_left,
@ -279,8 +357,7 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
const Gamma GammaB_left, const Gamma GammaB_left,
const Gamma GammaA_right, const Gamma GammaA_right,
const Gamma GammaB_right, const Gamma GammaB_right,
const char * quarks_left, const bool* wick_contractions,
const char * quarks_right,
const int parity, const int parity,
ComplexField &baryon_corr) ComplexField &baryon_corr)
{ {
@ -288,7 +365,6 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
assert(Ns==4 && "Baryon code only implemented for N_spin = 4"); assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3"); assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
std::cout << "Contraction <" << quarks_right[0] << quarks_right[1] << quarks_right[2] << "|" << quarks_left[0] << quarks_left[1] << quarks_left[2] << ">" << std::endl;
std::cout << "GammaA (left) " << (GammaA_left.g) << std::endl; std::cout << "GammaA (left) " << (GammaA_left.g) << std::endl;
std::cout << "GammaB (left) " << (GammaB_left.g) << std::endl; std::cout << "GammaB (left) " << (GammaB_left.g) << std::endl;
std::cout << "GammaA (right) " << (GammaA_right.g) << std::endl; std::cout << "GammaA (right) " << (GammaA_right.g) << std::endl;
@ -297,11 +373,7 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
assert(parity==1 || parity == -1 && "Parity must be +1 or -1"); assert(parity==1 || parity == -1 && "Parity must be +1 or -1");
GridBase *grid = q1_left.Grid(); GridBase *grid = q1_left.Grid();
int wick_contraction[6];
for (int ie=0; ie < 6 ; ie++)
wick_contraction[ie] = (quarks_left[0] == quarks_right[epsilon[ie][0]] && quarks_left[1] == quarks_right[epsilon[ie][1]] && quarks_left[2] == quarks_right[epsilon[ie][2]]) ? 1 : 0;
autoView(vbaryon_corr, baryon_corr,CpuWrite); autoView(vbaryon_corr, baryon_corr,CpuWrite);
autoView( v1 , q1_left, CpuRead); autoView( v1 , q1_left, CpuRead);
autoView( v2 , q2_left, CpuRead); autoView( v2 , q2_left, CpuRead);
@ -311,10 +383,10 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
bytes += grid->oSites() * (432.*sizeof(vComplex) + 126.*sizeof(int) + 36.*sizeof(Real)); bytes += grid->oSites() * (432.*sizeof(vComplex) + 126.*sizeof(int) + 36.*sizeof(Real));
for (int ie=0; ie < 6 ; ie++){ for (int ie=0; ie < 6 ; ie++){
if(ie==0 or ie==3){ if(ie==0 or ie==3){
bytes += grid->oSites() * (4.*sizeof(int) + 4752.*sizeof(vComplex)) * wick_contraction[ie]; bytes += grid->oSites() * (4.*sizeof(int) + 4752.*sizeof(vComplex)) * wick_contractions[ie];
} }
else{ else{
bytes += grid->oSites() * (64.*sizeof(int) + 5184.*sizeof(vComplex)) * wick_contraction[ie]; bytes += grid->oSites() * (64.*sizeof(int) + 5184.*sizeof(vComplex)) * wick_contractions[ie];
} }
} }
Real t=0.; Real t=0.;
@ -325,7 +397,7 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
auto D2 = v2[ss]; auto D2 = v2[ss];
auto D3 = v3[ss]; auto D3 = v3[ss];
vobj result=Zero(); vobj result=Zero();
baryon_site(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contraction,result); baryon_site(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result);
vbaryon_corr[ss] = result; vbaryon_corr[ss] = result;
} );//end loop over lattice sites } );//end loop over lattice sites
@ -334,6 +406,12 @@ void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
std::cout << std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s " << std::endl; std::cout << std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s " << std::endl;
} }
/* The array wick_contractions must be of length 6. The order *
* corresponds to the to that shown in the Hadrons documentation *
* at https://aportelli.github.io/Hadrons-doc/#/mcontraction *
* This can also be computed from the quark flavours using the *
* Wick_Contractions function above */
template <class FImpl> template <class FImpl>
template <class mobj, class robj> template <class mobj, class robj>
void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1, void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1,
@ -343,16 +421,15 @@ void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1,
const Gamma GammaB_left, const Gamma GammaB_left,
const Gamma GammaA_right, const Gamma GammaA_right,
const Gamma GammaB_right, const Gamma GammaB_right,
const char * quarks_left, const bool* wick_contractions,
const char * quarks_right,
const int parity, const int parity,
const int nt,
robj &result) robj &result)
{ {
assert(Ns==4 && "Baryon code only implemented for N_spin = 4"); assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3"); assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
std::cout << "Contraction <" << quarks_right[0] << quarks_right[1] << quarks_right[2] << "|" << quarks_left[0] << quarks_left[1] << quarks_left[2] << ">" << std::endl;
std::cout << "GammaA (left) " << (GammaA_left.g) << std::endl; std::cout << "GammaA (left) " << (GammaA_left.g) << std::endl;
std::cout << "GammaB (left) " << (GammaB_left.g) << std::endl; std::cout << "GammaB (left) " << (GammaB_left.g) << std::endl;
std::cout << "GammaA (right) " << (GammaA_right.g) << std::endl; std::cout << "GammaA (right) " << (GammaA_right.g) << std::endl;
@ -360,17 +437,347 @@ void BaryonUtils<FImpl>::ContractBaryons_Sliced(const mobj &D1,
assert(parity==1 || parity == -1 && "Parity must be +1 or -1"); assert(parity==1 || parity == -1 && "Parity must be +1 or -1");
int wick_contraction[6]; for (int t=0; t<nt; t++) {
for (int ie=0; ie < 6 ; ie++) baryon_site(D1[t],D2[t],D3[t],GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result[t]);
wick_contraction[ie] = (quarks_left[0] == quarks_right[epsilon[ie][0]] && quarks_left[1] == quarks_right[epsilon[ie][1]] && quarks_left[2] == quarks_right[epsilon[ie][2]]) ? 1 : 0; }
result=Zero();
baryon_site<decltype(D1),decltype(result)>(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contraction,result);
} }
/*********************************************************************** /***********************************************************************
* End of Baryon 2pt-function code. * * End of Baryon 2pt-function code. *
* * * *
* The following code is for baryonGamma3pt function *
**********************************************************************/
/* Dq1_ti is a quark line from t_i to t_J
* Dq2_spec is a quark line from t_i to t_f
* Dq3_spec is a quark line from t_i to t_f
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group1_Site(
const mobj &Dq1_ti,
const mobj2 &Dq2_spec,
const mobj2 &Dq3_spec,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto adjD4_g_D1 = g5 * adj(Dq4_tf) * g5 * GammaJ * Dq1_ti;
auto Gf_adjD4_g_D1 = GammaBf * adjD4_g_D1;
auto D2_Gi = Dq2_spec * GammaBi;
auto Gf_D2_Gi = GammaBf * D2_Gi;
auto Gf_D3 = GammaBf * Dq3_spec;
int a_f, b_f, c_f;
int a_i, b_i, c_i;
Real ee;
for (int ie_f=0; ie_f < 6 ; ie_f++){
a_f = epsilon[ie_f][0]; //a
b_f = epsilon[ie_f][1]; //b
c_f = epsilon[ie_f][2]; //c
for (int ie_i=0; ie_i < 6 ; ie_i++){
a_i = epsilon[ie_i][0]; //a'
b_i = epsilon[ie_i][1]; //b'
c_i = epsilon[ie_i][2]; //c'
ee = epsilon_sgn[ie_f] * epsilon_sgn[ie_i];
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D2_Gi_ab_aa = D2_Gi ()(alpha_f,beta_i)(a_f,a_i);
auto Gf_D3_ab_bb = Gf_D3 ()(alpha_f,beta_i)(b_f,b_i);
auto Gf_D2_Gi_ab_ba = Gf_D2_Gi ()(alpha_f,beta_i)(b_f,a_i);
auto Dq3_spec_ab_ab = Dq3_spec ()(alpha_f,beta_i)(a_f,b_i);
for (int gamma_i=0; gamma_i<Ns; gamma_i++){
auto ee_adjD4_g_D1_ag_ac = ee * adjD4_g_D1 ()(alpha_f,gamma_i)(a_f,c_i);
auto ee_Gf_adjD4_g_D1_ag_bc = ee * Gf_adjD4_g_D1()(alpha_f,gamma_i)(b_f,c_i);
for (int gamma_f=0; gamma_f<Ns; gamma_f++){
auto ee_adjD4_g_D1_gg_cc = ee * adjD4_g_D1 ()(gamma_f,gamma_i)(c_f,c_i);
auto Dq3_spec_gb_cb = Dq3_spec ()(gamma_f,beta_i)(c_f,b_i);
auto D2_Gi_gb_ca = D2_Gi ()(gamma_f,beta_i)(c_f,a_i);
if(wick_contraction == 1) { // Do contraction I1
result()(gamma_f,gamma_i)() -= ee_adjD4_g_D1_gg_cc
* D2_Gi_ab_aa
* Gf_D3_ab_bb;
}
if(wick_contraction == 2) { // Do contraction I2
result()(gamma_f,gamma_i)() -= ee_adjD4_g_D1_ag_ac
* Gf_D2_Gi_ab_ba
* Dq3_spec_gb_cb;
}
if(wick_contraction == 3) { // Do contraction I3
result()(gamma_f,gamma_i)() -= ee_Gf_adjD4_g_D1_ag_bc
* D2_Gi_gb_ca
* Dq3_spec_ab_ab;
}
if(wick_contraction == 4) { // Do contraction I4
result()(gamma_f,gamma_i)() += ee_adjD4_g_D1_gg_cc
* Gf_D2_Gi_ab_ba
* Dq3_spec_ab_ab;
}
if(wick_contraction == 5) { // Do contraction I5
result()(gamma_f,gamma_i)() += ee_Gf_adjD4_g_D1_ag_bc
* D2_Gi_ab_aa
* Dq3_spec_gb_cb;
}
if(wick_contraction == 6) { // Do contraction I6
result()(gamma_f,gamma_i)() += ee_adjD4_g_D1_ag_ac
* D2_Gi_gb_ca
* Gf_D3_ab_bb;
}
}}
}}
}}
}
/* Dq1_spec is a quark line from t_i to t_f
* Dq2_ti is a quark line from t_i to t_J
* Dq3_spec is a quark line from t_i to t_f
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group2_Site(
const mobj2 &Dq1_spec,
const mobj &Dq2_ti,
const mobj2 &Dq3_spec,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto adjD4_g_D2_Gi = g5 * adj(Dq4_tf) * g5 * GammaJ * Dq2_ti * GammaBi;
auto Gf_adjD4_g_D2_Gi = GammaBf * adjD4_g_D2_Gi;
auto Gf_D1 = GammaBf * Dq1_spec;
auto Gf_D3 = GammaBf * Dq3_spec;
int a_f, b_f, c_f;
int a_i, b_i, c_i;
Real ee;
for (int ie_f=0; ie_f < 6 ; ie_f++){
a_f = epsilon[ie_f][0]; //a
b_f = epsilon[ie_f][1]; //b
c_f = epsilon[ie_f][2]; //c
for (int ie_i=0; ie_i < 6 ; ie_i++){
a_i = epsilon[ie_i][0]; //a'
b_i = epsilon[ie_i][1]; //b'
c_i = epsilon[ie_i][2]; //c'
ee = epsilon_sgn[ie_f] * epsilon_sgn[ie_i];
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
auto adjD4_g_D2_Gi_ab_aa = adjD4_g_D2_Gi ()(alpha_f,beta_i)(a_f,a_i);
auto Gf_D3_ab_bb = Gf_D3 ()(alpha_f,beta_i)(b_f,b_i);
auto Gf_adjD4_g_D2_Gi_ab_ba = Gf_adjD4_g_D2_Gi ()(alpha_f,beta_i)(b_f,a_i);
auto Dq3_spec_ab_ab = Dq3_spec ()(alpha_f,beta_i)(a_f,b_i);
for (int gamma_i=0; gamma_i<Ns; gamma_i++){
auto ee_Dq1_spec_ag_ac = ee * Dq1_spec ()(alpha_f,gamma_i)(a_f,c_i);
auto ee_Gf_D1_ag_bc = ee * Gf_D1 ()(alpha_f,gamma_i)(b_f,c_i);
for (int gamma_f=0; gamma_f<Ns; gamma_f++){
auto ee_Dq1_spec_gg_cc = ee * Dq1_spec ()(gamma_f,gamma_i)(c_f,c_i);
auto Dq3_spec_gb_cb = Dq3_spec ()(gamma_f,beta_i)(c_f,b_i);
auto adjD4_g_D2_Gi_gb_ca = adjD4_g_D2_Gi ()(gamma_f,beta_i)(c_f,a_i);
if(wick_contraction == 1) { // Do contraction II1
result()(gamma_f,gamma_i)() -= ee_Dq1_spec_gg_cc
* adjD4_g_D2_Gi_ab_aa
* Gf_D3_ab_bb;
}
if(wick_contraction == 2) { // Do contraction II2
result()(gamma_f,gamma_i)() -= ee_Dq1_spec_ag_ac
* Gf_adjD4_g_D2_Gi_ab_ba
* Dq3_spec_gb_cb;
}
if(wick_contraction == 3) { // Do contraction II3
result()(gamma_f,gamma_i)() -= ee_Gf_D1_ag_bc
* adjD4_g_D2_Gi_gb_ca
* Dq3_spec_ab_ab;
}
if(wick_contraction == 4) { // Do contraction II4
result()(gamma_f,gamma_i)() += ee_Dq1_spec_gg_cc
* Gf_adjD4_g_D2_Gi_ab_ba
* Dq3_spec_ab_ab;
}
if(wick_contraction == 5) { // Do contraction II5
result()(gamma_f,gamma_i)() += ee_Gf_D1_ag_bc
* adjD4_g_D2_Gi_ab_aa
* Dq3_spec_gb_cb;
}
if(wick_contraction == 6) { // Do contraction II6
result()(gamma_f,gamma_i)() += ee_Dq1_spec_ag_ac
* adjD4_g_D2_Gi_gb_ca
* Gf_D3_ab_bb;
}
}}
}}
}}
}
/* Dq1_spec is a quark line from t_i to t_f
* Dq2_spec is a quark line from t_i to t_f
* Dq3_ti is a quark line from t_i to t_J
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt_Group3_Site(
const mobj2 &Dq1_spec,
const mobj2 &Dq2_spec,
const mobj &Dq3_ti,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto adjD4_g_D3 = g5 * adj(Dq4_tf) * g5 * GammaJ * Dq3_ti;
auto Gf_adjD4_g_D3 = GammaBf * adjD4_g_D3;
auto Gf_D1 = GammaBf * Dq1_spec;
auto D2_Gi = Dq2_spec * GammaBi;
auto Gf_D2_Gi = GammaBf * D2_Gi;
int a_f, b_f, c_f;
int a_i, b_i, c_i;
Real ee;
for (int ie_f=0; ie_f < 6 ; ie_f++){
a_f = epsilon[ie_f][0]; //a
b_f = epsilon[ie_f][1]; //b
c_f = epsilon[ie_f][2]; //c
for (int ie_i=0; ie_i < 6 ; ie_i++){
a_i = epsilon[ie_i][0]; //a'
b_i = epsilon[ie_i][1]; //b'
c_i = epsilon[ie_i][2]; //c'
ee = epsilon_sgn[ie_f] * epsilon_sgn[ie_i];
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D2_Gi_ab_aa = D2_Gi ()(alpha_f,beta_i)(a_f,a_i);
auto Gf_adjD4_g_D3_ab_bb = Gf_adjD4_g_D3 ()(alpha_f,beta_i)(b_f,b_i);
auto Gf_D2_Gi_ab_ba = Gf_D2_Gi ()(alpha_f,beta_i)(b_f,a_i);
auto adjD4_g_D3_ab_ab = adjD4_g_D3 ()(alpha_f,beta_i)(a_f,b_i);
for (int gamma_i=0; gamma_i<Ns; gamma_i++) {
auto ee_Dq1_spec_ag_ac = ee * Dq1_spec ()(alpha_f,gamma_i)(a_f,c_i);
auto ee_Gf_D1_ag_bc = ee * Gf_D1 ()(alpha_f,gamma_i)(b_f,c_i);
for (int gamma_f=0; gamma_f<Ns; gamma_f++) {
auto ee_Dq1_spec_gg_cc = ee * Dq1_spec ()(gamma_f,gamma_i)(c_f,c_i);
auto adjD4_g_D3_gb_cb = adjD4_g_D3 ()(gamma_f,beta_i)(c_f,b_i);
auto D2_Gi_gb_ca = D2_Gi ()(gamma_f,beta_i)(c_f,a_i);
if(wick_contraction == 1) { // Do contraction III1
result()(gamma_f,gamma_i)() -= ee_Dq1_spec_gg_cc
* D2_Gi_ab_aa
* Gf_adjD4_g_D3_ab_bb;
}
if(wick_contraction == 2) { // Do contraction III2
result()(gamma_f,gamma_i)() -= ee_Dq1_spec_ag_ac
* Gf_D2_Gi_ab_ba
* adjD4_g_D3_gb_cb;
}
if(wick_contraction == 3) { // Do contraction III3
result()(gamma_f,gamma_i)() -= ee_Gf_D1_ag_bc
* D2_Gi_gb_ca
* adjD4_g_D3_ab_ab;
}
if(wick_contraction == 4) { // Do contraction III4
result()(gamma_f,gamma_i)() += ee_Dq1_spec_gg_cc
* Gf_D2_Gi_ab_ba
* adjD4_g_D3_ab_ab;
}
if(wick_contraction == 5) { // Do contraction III5
result()(gamma_f,gamma_i)() += ee_Gf_D1_ag_bc
* D2_Gi_ab_aa
* adjD4_g_D3_gb_cb;
}
if(wick_contraction == 6) { // Do contraction III6
result()(gamma_f,gamma_i)() += ee_Dq1_spec_ag_ac
* D2_Gi_gb_ca
* Gf_adjD4_g_D3_ab_bb;
}
}}
}}
}}
}
/* The group indicates which inital state quarks the current is *
* connected to. It must be in the range 1-3. *
* The wick_contraction must be in the range 1-6 correspond to *
* the contractions given in the Hadrons documentation at *
* https://aportelli.github.io/Hadrons-doc/#/mcontraction */
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::Baryon_Gamma_3pt(
const PropagatorField &q_ti,
const mobj &Dq_spec1,
const mobj &Dq_spec2,
const PropagatorField &q_tf,
int group,
int wick_contraction,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
SpinMatrixField &stn_corr)
{
GridBase *grid = q_tf.Grid();
autoView( vcorr, stn_corr, CpuWrite);
autoView( vq_ti , q_ti, CpuRead);
autoView( vq_tf , q_tf, CpuRead);
if (group == 1) {
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto Dq_ti = vq_ti[ss];
auto Dq_tf = vq_tf[ss];
sobj result=Zero();
Baryon_Gamma_3pt_Group1_Site(Dq_ti,Dq_spec1,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
vcorr[ss] += result;
});//end loop over lattice sites
} else if (group == 2) {
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto Dq_ti = vq_ti[ss];
auto Dq_tf = vq_tf[ss];
sobj result=Zero();
Baryon_Gamma_3pt_Group2_Site(Dq_spec1,Dq_ti,Dq_spec2,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
vcorr[ss] += result;
});//end loop over lattice sites
} else if (group == 3) {
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto Dq_ti = vq_ti[ss];
auto Dq_tf = vq_tf[ss];
sobj result=Zero();
Baryon_Gamma_3pt_Group3_Site(Dq_spec1,Dq_spec2,Dq_ti,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
vcorr[ss] += result;
});//end loop over lattice sites
}
}
/***********************************************************************
* End of BaryonGamma3pt-function code. *
* *
* The following code is for Sigma -> N rare hypeon decays * * The following code is for Sigma -> N rare hypeon decays *
**********************************************************************/ **********************************************************************/