mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-04 19:25:56 +01:00
Use accelerator_for2d and DeviceSegmentedRecude to avoid kernel launch latencies
This commit is contained in:
parent
caa5f97723
commit
79a6ed32d8
@ -6,6 +6,7 @@
|
|||||||
#define gpuMalloc cudaMalloc
|
#define gpuMalloc cudaMalloc
|
||||||
#define gpuMemcpy cudaMemcpy
|
#define gpuMemcpy cudaMemcpy
|
||||||
#define gpuMemcpyDeviceToHost cudaMemcpyDeviceToHost
|
#define gpuMemcpyDeviceToHost cudaMemcpyDeviceToHost
|
||||||
|
#define gpuMemcpyHostToDevice cudaMemcpyHostToDevice
|
||||||
#define gpuError_t cudaError_t
|
#define gpuError_t cudaError_t
|
||||||
#define gpuSuccess cudaSuccess
|
#define gpuSuccess cudaSuccess
|
||||||
|
|
||||||
@ -16,6 +17,7 @@
|
|||||||
#define gpuMalloc hipMalloc
|
#define gpuMalloc hipMalloc
|
||||||
#define gpuMemcpy hipMemcpy
|
#define gpuMemcpy hipMemcpy
|
||||||
#define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost
|
#define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost
|
||||||
|
#define gpuMemcpyHostToDevice hipMemcpyHostToDevice
|
||||||
#define gpuError_t hipError_t
|
#define gpuError_t hipError_t
|
||||||
#define gpuSuccess hipSuccess
|
#define gpuSuccess hipSuccess
|
||||||
|
|
||||||
@ -49,14 +51,15 @@ template<class vobj> inline void sliceSumGpu(const Lattice<vobj> &Data,std::vect
|
|||||||
int ostride=grid->_ostride[orthogdim];
|
int ostride=grid->_ostride[orthogdim];
|
||||||
Vector<vobj> lvSum(rd);
|
Vector<vobj> lvSum(rd);
|
||||||
Vector<sobj> lsSum(ld,Zero());
|
Vector<sobj> lsSum(ld,Zero());
|
||||||
commVector<vobj> reduction_buffer(e1*e2);
|
commVector<vobj> reduction_buffer(rd*e1*e2);
|
||||||
ExtractBuffer<sobj> extracted(Nsimd);
|
ExtractBuffer<sobj> extracted(Nsimd);
|
||||||
|
|
||||||
result.resize(fd);
|
result.resize(fd);
|
||||||
for(int r=0;r<rd;r++){
|
for(int r=0;r<rd;r++){
|
||||||
lvSum[r]=Zero();
|
lvSum[r]=Zero();
|
||||||
}
|
}
|
||||||
|
vobj identity;
|
||||||
|
zeroit(identity);
|
||||||
|
|
||||||
autoView( Data_v, Data, AcceleratorRead);
|
autoView( Data_v, Data, AcceleratorRead);
|
||||||
auto rb_p = &reduction_buffer[0];
|
auto rb_p = &reduction_buffer[0];
|
||||||
@ -65,39 +68,59 @@ template<class vobj> inline void sliceSumGpu(const Lattice<vobj> &Data,std::vect
|
|||||||
vobj *d_out;
|
vobj *d_out;
|
||||||
size_t temp_storage_bytes = 0;
|
size_t temp_storage_bytes = 0;
|
||||||
size_t size = e1*e2;
|
size_t size = e1*e2;
|
||||||
gpuMalloc(&d_out,rd*sizeof(vobj));
|
std::vector<int> offsets(rd+1,0);
|
||||||
gpuError_t gpuErr =gpucub::DeviceReduce::Sum(helperArray, temp_storage_bytes, rb_p,d_out, size, computeStream);
|
for (int i = 0; i < offsets.size(); i++) {
|
||||||
|
offsets[i] = i*size;
|
||||||
|
}
|
||||||
|
int* d_offsets;
|
||||||
|
|
||||||
|
gpuError_t gpuErr = gpuMalloc(&d_out,rd*sizeof(vobj));
|
||||||
|
if (gpuErr != gpuSuccess) {
|
||||||
|
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc(1) Error: " << gpuErr <<std::endl;
|
||||||
|
}
|
||||||
|
gpuErr = gpuMalloc(&d_offsets,sizeof(int)*(rd+1));
|
||||||
|
if (gpuErr != gpuSuccess) {
|
||||||
|
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc(2) Error: " << gpuErr <<std::endl;
|
||||||
|
}
|
||||||
|
gpuErr = gpuMemcpy(d_offsets,&offsets[0],sizeof(int)*(rd+1),gpuMemcpyHostToDevice);
|
||||||
|
if (gpuErr != gpuSuccess) {
|
||||||
|
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy(1) Error: " << gpuErr <<std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(helperArray, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), identity, computeStream);
|
||||||
if (gpuErr!=gpuSuccess) {
|
if (gpuErr!=gpuSuccess) {
|
||||||
std::cout << "Encountered error during cub::DeviceReduce::Sum(1)! Error: " << gpuErr <<std::endl;
|
std::cout << "Lattice_slicesum_gpu.h: Encountered error during cub::DeviceReduce::Sum(1)! Error: " << gpuErr <<std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpuErr = gpuMalloc(&helperArray,temp_storage_bytes);
|
gpuErr = gpuMalloc(&helperArray,temp_storage_bytes);
|
||||||
if (gpuErr!=gpuSuccess) {
|
if (gpuErr!=gpuSuccess) {
|
||||||
std::cout << "Encountered error during gpuMalloc Error: " << gpuErr <<std::endl;
|
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc Error: " << gpuErr <<std::endl;
|
||||||
}
|
}
|
||||||
for (int r = 0; r < rd; r++) {
|
|
||||||
//prepare buffer for reduction
|
|
||||||
accelerator_forNB( s,e1*e2, grid->Nsimd(),{ //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
|
|
||||||
|
|
||||||
int n = s / e2;
|
|
||||||
int b = s % e2;
|
|
||||||
int so=r*ostride; // base offset for start of plane
|
|
||||||
int ss= so+n*stride+b;
|
|
||||||
|
|
||||||
coalescedWrite(rb_p[s], coalescedRead(Data_v[ss]));
|
//prepare buffer for reduction
|
||||||
|
accelerator_for2dNB( s,e1*e2, r,rd, grid->Nsimd(),{ //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
|
||||||
|
//use 2d accelerator_for to avoid launch latencies found when looping over rd
|
||||||
|
int n = s / e2;
|
||||||
|
int b = s % e2;
|
||||||
|
int so=r*ostride; // base offset for start of plane
|
||||||
|
int ss= so+n*stride+b;
|
||||||
|
|
||||||
});
|
coalescedWrite(rb_p[r*e1*e2+s], coalescedRead(Data_v[ss]));
|
||||||
|
|
||||||
//issue reductions in computeStream
|
});
|
||||||
gpuErr =gpucub::DeviceReduce::Sum(helperArray, temp_storage_bytes, rb_p, &d_out[r], size, computeStream);
|
|
||||||
if (gpuErr!=gpuSuccess) {
|
//issue reductions in computeStream
|
||||||
std::cout << "Encountered error during cub::DeviceReduce::Sum(2)! Error: " << gpuErr <<std::endl;
|
gpuErr =gpucub::DeviceSegmentedReduce::Reduce(helperArray, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), identity, computeStream);
|
||||||
}
|
if (gpuErr!=gpuSuccess) {
|
||||||
|
std::cout << "Lattice_slicesum_gpu.h: Encountered error during cub::DeviceReduce::Sum(2)! Error: " << gpuErr <<std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
//sync before copy
|
//sync before copy
|
||||||
accelerator_barrier();
|
accelerator_barrier();
|
||||||
gpuMemcpy(&lvSum[0],d_out,rd*sizeof(vobj),gpuMemcpyDeviceToHost);
|
gpuErr = gpuMemcpy(&lvSum[0],d_out,rd*sizeof(vobj),gpuMemcpyDeviceToHost);
|
||||||
|
if (gpuErr!=gpuSuccess) {
|
||||||
|
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy(2) Error: " << gpuErr <<std::endl;
|
||||||
|
}
|
||||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||||
Coordinate icoor(Nd);
|
Coordinate icoor(Nd);
|
||||||
|
|
||||||
|
@ -34,7 +34,7 @@ class GridTracer {
|
|||||||
};
|
};
|
||||||
inline void tracePush(const char *name) { roctxRangePushA(name); }
|
inline void tracePush(const char *name) { roctxRangePushA(name); }
|
||||||
inline void tracePop(const char *name) { roctxRangePop(); }
|
inline void tracePop(const char *name) { roctxRangePop(); }
|
||||||
inline int traceStart(const char *name) { roctxRangeStart(name); }
|
inline int traceStart(const char *name) { return roctxRangeStart(name); }
|
||||||
inline void traceStop(int ID) { roctxRangeStop(ID); }
|
inline void traceStop(int ID) { roctxRangeStop(ID); }
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -44,8 +44,9 @@ int main (int argc, char ** argv) {
|
|||||||
std::cout <<" sliceSumGpu took "<<tgpu<<" usecs"<<std::endl;
|
std::cout <<" sliceSumGpu took "<<tgpu<<" usecs"<<std::endl;
|
||||||
|
|
||||||
for(int t=0;t<reduction_reference.size();t++){
|
for(int t=0;t<reduction_reference.size();t++){
|
||||||
|
|
||||||
auto diff = reduction_reference[t]-reduction_result[t];
|
auto diff = reduction_reference[t]-reduction_result[t];
|
||||||
|
// std::cout << "Difference = " << diff <<std::endl;
|
||||||
|
|
||||||
assert(abs(TensorRemove(diff)) < 1e-8 );
|
assert(abs(TensorRemove(diff)) < 1e-8 );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user