1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-12 20:27:06 +01:00

Merge pull request #377 from RJHudspith/develop

NERSC and ILDG for non-SU(3) configuration checkpoints
This commit is contained in:
Peter Boyle
2022-05-03 08:55:48 -04:00
committed by GitHub
15 changed files with 282 additions and 247 deletions

View File

@ -9,6 +9,7 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Jamie Hudspith <renwick.james.hudspth@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -42,14 +43,14 @@ directory
using namespace std;
using namespace Grid;
;
;
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
std::vector<int> latt({4, 4, 4, 8});
GridCartesian* grid = SpaceTimeGrid::makeFourDimGrid(
latt, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
latt, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(grid);
@ -60,15 +61,19 @@ int main(int argc, char** argv) {
<< std::endl;
SU2::printGenerators();
std::cout << "Dimension of adjoint representation: "<< SU2Adjoint::Dimension << std::endl;
// guard as this code fails to compile for Nc != 3
#if (Nc == 3)
SU2Adjoint::printGenerators();
SU2::testGenerators();
SU2Adjoint::testGenerators();
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "* Generators for SU(Nc" << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
SU3::printGenerators();
std::cout << "Dimension of adjoint representation: "<< SU3Adjoint::Dimension << std::endl;
SU3Adjoint::printGenerators();
@ -111,12 +116,10 @@ int main(int argc, char** argv) {
// AdjointRepresentation has the predefined number of colours Nc
// Representations<FundamentalRepresentation, AdjointRepresentation, TwoIndexSymmetricRepresentation> RepresentationTypes(grid);
LatticeGaugeField U(grid), V(grid);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V);
// Adjoint representation
// Test group structure
// (U_f * V_f)_r = U_r * V_r
@ -127,17 +130,17 @@ int main(int argc, char** argv) {
SU3::LatticeMatrix Vmu = peekLorentz(V,mu);
pokeLorentz(UV,Umu*Vmu, mu);
}
AdjRep.update_representation(UV);
typename AdjointRep<Nc>::LatticeField UVr = AdjRep.U; // (U_f * V_f)_r
AdjRep.update_representation(U);
typename AdjointRep<Nc>::LatticeField Ur = AdjRep.U; // U_r
AdjRep.update_representation(V);
typename AdjointRep<Nc>::LatticeField Vr = AdjRep.U; // V_r
typename AdjointRep<Nc>::LatticeField UrVr(grid);
UrVr = Zero();
for (int mu = 0; mu < Nd; mu++) {
@ -145,10 +148,10 @@ int main(int argc, char** argv) {
typename AdjointRep<Nc>::LatticeMatrix Vrmu = peekLorentz(Vr,mu);
pokeLorentz(UrVr,Urmu*Vrmu, mu);
}
typename AdjointRep<Nc>::LatticeField Diff_check = UVr - UrVr;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Adjoint representation) : " << norm2(Diff_check) << std::endl;
// Check correspondence of algebra and group transformations
// Create a random vector
SU3::LatticeAlgebraVector h_adj(grid);
@ -156,32 +159,31 @@ int main(int argc, char** argv) {
random(gridRNG,h_adj);
h_adj = real(h_adj);
SU_Adjoint<Nc>::AdjointLieAlgebraMatrix(h_adj,Ar);
// Re-extract h_adj
SU3::LatticeAlgebraVector h_adj2(grid);
SU_Adjoint<Nc>::projectOnAlgebra(h_adj2, Ar);
SU3::LatticeAlgebraVector h_diff = h_adj - h_adj2;
std::cout << GridLogMessage << "Projections structure check vector difference (Adjoint representation) : " << norm2(h_diff) << std::endl;
// Exponentiate
typename AdjointRep<Nc>::LatticeMatrix Uadj(grid);
Uadj = expMat(Ar, 1.0, 16);
typename AdjointRep<Nc>::LatticeMatrix uno(grid);
uno = 1.0;
// Check matrix Uadj, must be real orthogonal
typename AdjointRep<Nc>::LatticeMatrix Ucheck = Uadj - conjugate(Uadj);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck)
<< std::endl;
<< std::endl;
Ucheck = Uadj * adj(Uadj) - uno;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck)
<< std::endl;
<< std::endl;
Ucheck = adj(Uadj) * Uadj - uno;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck)
<< std::endl;
<< std::endl;
// Construct the fundamental matrix in the group
SU3::LatticeMatrix Af(grid);
SU3::FundamentalLieAlgebraMatrix(h_adj,Af);
@ -193,72 +195,65 @@ int main(int argc, char** argv) {
SU3::LatticeMatrix UnitCheck(grid);
UnitCheck = Ufund * adj(Ufund) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck)
<< std::endl;
<< std::endl;
UnitCheck = adj(Ufund) * Ufund - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck)
<< std::endl;
<< std::endl;
// Tranform to the adjoint representation
U = Zero(); // fill this with only one direction
pokeLorentz(U,Ufund,0); // the representation transf acts on full gauge fields
AdjRep.update_representation(U);
Ur = AdjRep.U; // U_r
typename AdjointRep<Nc>::LatticeMatrix Ur0 = peekLorentz(Ur,0); // this should be the same as Uadj
typename AdjointRep<Nc>::LatticeMatrix Diff_check_mat = Ur0 - Uadj;
std::cout << GridLogMessage << "Projections structure check group difference : " << norm2(Diff_check_mat) << std::endl;
// TwoIndexRep tests
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "* eS^{ij} base for SU(2)" << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "Dimension of Two Index Symmetric representation: "<< SU2TwoIndexSymm::Dimension << std::endl;
SU2TwoIndexSymm::printBase();
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Generators of Two Index Symmetric representation: "<< SU2TwoIndexSymm::Dimension << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Generators of Two Index Symmetric representation: "<< SU2TwoIndexSymm::Dimension << std::endl;
SU2TwoIndexSymm::printGenerators();
std::cout << GridLogMessage << "Test of Two Index Symmetric Generators: "<< SU2TwoIndexSymm::Dimension << std::endl;
std::cout << GridLogMessage << "Test of Two Index Symmetric Generators: "<< SU2TwoIndexSymm::Dimension << std::endl;
SU2TwoIndexSymm::testGenerators();
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "* eAS^{ij} base for SU(2)" << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "Dimension of Two Index anti-Symmetric representation: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
SU2TwoIndexAntiSymm::printBase();
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Dimension of Two Index anti-Symmetric representation: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Dimension of Two Index anti-Symmetric representation: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
SU2TwoIndexAntiSymm::printGenerators();
std::cout << GridLogMessage << "Test of Two Index anti-Symmetric Generators: "<< SU2TwoIndexAntiSymm::Dimension << std::endl;
SU2TwoIndexAntiSymm::testGenerators();
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "Test for the Two Index Symmetric projectors"
<< std::endl;
<< std::endl;
// Projectors
SU3TwoIndexSymm::LatticeTwoIndexMatrix Gauss2(grid);
random(gridRNG,Gauss2);
@ -276,13 +271,13 @@ int main(int argc, char** argv) {
SU3::LatticeAlgebraVector diff2 = ha - hb;
std::cout << GridLogMessage << "Difference: " << norm2(diff) << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Test for the Two index anti-Symmetric projectors"
<< std::endl;
<< std::endl;
// Projectors
SU3TwoIndexAntiSymm::LatticeTwoIndexMatrix Gauss2a(grid);
random(gridRNG,Gauss2a);
@ -300,11 +295,11 @@ int main(int argc, char** argv) {
SU3::LatticeAlgebraVector diff2a = ha - hb;
std::cout << GridLogMessage << "Difference: " << norm2(diff2a) << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
<< std::endl;
std::cout << GridLogMessage << "Two index Symmetric: Checking Group Structure"
<< std::endl;
<< std::endl;
// Testing HMC representation classes
TwoIndexRep< Nc, Symmetric > TIndexRep(grid);
@ -313,7 +308,7 @@ int main(int argc, char** argv) {
LatticeGaugeField U2(grid), V2(grid);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2);
LatticeGaugeField UV2(grid);
UV2 = Zero();
for (int mu = 0; mu < Nd; mu++) {
@ -321,16 +316,16 @@ int main(int argc, char** argv) {
SU3::LatticeMatrix Vmu2 = peekLorentz(V2,mu);
pokeLorentz(UV2,Umu2*Vmu2, mu);
}
TIndexRep.update_representation(UV2);
typename TwoIndexRep< Nc, Symmetric >::LatticeField UVr2 = TIndexRep.U; // (U_f * V_f)_r
TIndexRep.update_representation(U2);
typename TwoIndexRep< Nc, Symmetric >::LatticeField Ur2 = TIndexRep.U; // U_r
TIndexRep.update_representation(V2);
typename TwoIndexRep< Nc, Symmetric >::LatticeField Vr2 = TIndexRep.U; // V_r
typename TwoIndexRep< Nc, Symmetric >::LatticeField Ur2Vr2(grid);
Ur2Vr2 = Zero();
for (int mu = 0; mu < Nd; mu++) {
@ -338,11 +333,11 @@ int main(int argc, char** argv) {
typename TwoIndexRep< Nc, Symmetric >::LatticeMatrix Vrmu2 = peekLorentz(Vr2,mu);
pokeLorentz(Ur2Vr2,Urmu2*Vrmu2, mu);
}
typename TwoIndexRep< Nc, Symmetric >::LatticeField Diff_check2 = UVr2 - Ur2Vr2;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Two Index Symmetric): " << norm2(Diff_check2) << std::endl;
// Check correspondence of algebra and group transformations
// Create a random vector
SU3::LatticeAlgebraVector h_sym(grid);
@ -350,34 +345,31 @@ int main(int argc, char** argv) {
random(gridRNG,h_sym);
h_sym = real(h_sym);
SU_TwoIndex<Nc,Symmetric>::TwoIndexLieAlgebraMatrix(h_sym,Ar_sym);
// Re-extract h_sym
SU3::LatticeAlgebraVector h_sym2(grid);
SU_TwoIndex< Nc, Symmetric>::projectOnAlgebra(h_sym2, Ar_sym);
SU3::LatticeAlgebraVector h_diff_sym = h_sym - h_sym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index Symmetric): " << norm2(h_diff_sym) << std::endl;
// Exponentiate
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix U2iS(grid);
U2iS = expMat(Ar_sym, 1.0, 16);
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix uno2iS(grid);
uno2iS = 1.0;
// Check matrix U2iS, must be real orthogonal
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ucheck2iS = U2iS - conjugate(U2iS);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck2iS)
<< std::endl;
<< std::endl;
Ucheck2iS = U2iS * adj(U2iS) - uno2iS;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck2iS)
<< std::endl;
<< std::endl;
Ucheck2iS = adj(U2iS) * U2iS - uno2iS;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck2iS)
<< std::endl;
<< std::endl;
// Construct the fundamental matrix in the group
SU3::LatticeMatrix Af_sym(grid);
SU3::FundamentalLieAlgebraMatrix(h_sym,Af_sym);
@ -386,147 +378,137 @@ int main(int argc, char** argv) {
SU3::LatticeMatrix UnitCheck2(grid);
UnitCheck2 = Ufund2 * adj(Ufund2) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2)
<< std::endl;
<< std::endl;
UnitCheck2 = adj(Ufund2) * Ufund2 - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck2)
<< std::endl;
<< std::endl;
// Tranform to the 2Index Sym representation
U = Zero(); // fill this with only one direction
pokeLorentz(U,Ufund2,0); // the representation transf acts on full gauge fields
TIndexRep.update_representation(U);
Ur2 = TIndexRep.U; // U_r
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ur02 = peekLorentz(Ur2,0); // this should be the same as U2iS
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Diff_check_mat2 = Ur02 - U2iS;
std::cout << GridLogMessage << "Projections structure check group difference (Two Index Symmetric): " << norm2(Diff_check_mat2) << std::endl;
if (TwoIndexRep<Nc, AntiSymmetric >::Dimension != 1){
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "Two Index anti-Symmetric: Check Group Structure"
<< std::endl;
// Testing HMC representation classes
TwoIndexRep< Nc, AntiSymmetric > TIndexRepA(grid);
std::cout << GridLogMessage << "Two Index anti-Symmetric: Check Group Structure"
<< std::endl;
// Testing HMC representation classes
TwoIndexRep< Nc, AntiSymmetric > TIndexRepA(grid);
// Test group structure
// (U_f * V_f)_r = U_r * V_r
LatticeGaugeField U2A(grid), V2A(grid);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2A);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2A);
// Test group structure
// (U_f * V_f)_r = U_r * V_r
LatticeGaugeField U2A(grid), V2A(grid);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2A);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2A);
LatticeGaugeField UV2A(grid);
UV2A = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU3::LatticeMatrix Umu2A = peekLorentz(U2,mu);
SU3::LatticeMatrix Vmu2A = peekLorentz(V2,mu);
pokeLorentz(UV2A,Umu2A*Vmu2A, mu);
LatticeGaugeField UV2A(grid);
UV2A = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU3::LatticeMatrix Umu2A = peekLorentz(U2,mu);
SU3::LatticeMatrix Vmu2A = peekLorentz(V2,mu);
pokeLorentz(UV2A,Umu2A*Vmu2A, mu);
}
TIndexRep.update_representation(UV2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField UVr2A = TIndexRepA.U; // (U_f * V_f)_r
TIndexRep.update_representation(U2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2A = TIndexRepA.U; // U_r
TIndexRep.update_representation(V2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Vr2A = TIndexRepA.U; // V_r
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2Vr2A(grid);
Ur2Vr2A = Zero();
for (int mu = 0; mu < Nd; mu++) {
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Urmu2A = peekLorentz(Ur2A,mu);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Vrmu2A = peekLorentz(Vr2A,mu);
pokeLorentz(Ur2Vr2A,Urmu2A*Vrmu2A, mu);
}
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Diff_check2A = UVr2A - Ur2Vr2A;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Two Index anti-Symmetric): " << norm2(Diff_check2A) << std::endl;
// Check correspondence of algebra and group transformations
// Create a random vector
SU3::LatticeAlgebraVector h_Asym(grid);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ar_Asym(grid);
random(gridRNG,h_Asym);
h_Asym = real(h_Asym);
SU_TwoIndex< Nc, AntiSymmetric>::TwoIndexLieAlgebraMatrix(h_Asym,Ar_Asym);
// Re-extract h_sym
SU3::LatticeAlgebraVector h_Asym2(grid);
SU_TwoIndex< Nc, AntiSymmetric>::projectOnAlgebra(h_Asym2, Ar_Asym);
SU3::LatticeAlgebraVector h_diff_Asym = h_Asym - h_Asym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index anti-Symmetric): " << norm2(h_diff_Asym) << std::endl;
// Exponentiate
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix U2iAS(grid);
U2iAS = expMat(Ar_Asym, 1.0, 16);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix uno2iAS(grid);
uno2iAS = 1.0;
// Check matrix U2iS, must be real orthogonal
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ucheck2iAS = U2iAS - conjugate(U2iAS);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = U2iAS * adj(U2iAS) - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = adj(U2iAS) * U2iAS - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck2iAS)
<< std::endl;
// Construct the fundamental matrix in the group
SU3::LatticeMatrix Af_Asym(grid);
SU3::FundamentalLieAlgebraMatrix(h_Asym,Af_Asym);
SU3::LatticeMatrix Ufund2A(grid);
Ufund2A = expMat(Af_Asym, 1.0, 16);
SU3::LatticeMatrix UnitCheck2A(grid);
UnitCheck2A = Ufund2A * adj(Ufund2A) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2A)
<< std::endl;
UnitCheck2A = adj(Ufund2A) * Ufund2A - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck2A)
<< std::endl;
// Tranform to the 2Index Sym representation
U = Zero(); // fill this with only one direction
pokeLorentz(U,Ufund2A,0); // the representation transf acts on full gauge fields
TIndexRepA.update_representation(U);
Ur2A = TIndexRepA.U; // U_r
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ur02A = peekLorentz(Ur2A,0); // this should be the same as U2iS
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Diff_check_mat2A = Ur02A - U2iAS;
std::cout << GridLogMessage << "Projections structure check group difference (Two Index anti-Symmetric): " << norm2(Diff_check_mat2A) << std::endl;
} else {
std::cout << GridLogMessage << "Skipping Two Index anti-Symmetric tests "
"because representation is trivial (dim = 1)"
<< std::endl;
}
TIndexRep.update_representation(UV2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField UVr2A = TIndexRepA.U; // (U_f * V_f)_r
TIndexRep.update_representation(U2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2A = TIndexRepA.U; // U_r
TIndexRep.update_representation(V2A);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Vr2A = TIndexRepA.U; // V_r
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Ur2Vr2A(grid);
Ur2Vr2A = Zero();
for (int mu = 0; mu < Nd; mu++) {
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Urmu2A = peekLorentz(Ur2A,mu);
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeMatrix Vrmu2A = peekLorentz(Vr2A,mu);
pokeLorentz(Ur2Vr2A,Urmu2A*Vrmu2A, mu);
}
typename TwoIndexRep< Nc, AntiSymmetric >::LatticeField Diff_check2A = UVr2A - Ur2Vr2A;
std::cout << GridLogMessage << "Group structure SU("<<Nc<<") check difference (Two Index anti-Symmetric): " << norm2(Diff_check2A) << std::endl;
// Check correspondence of algebra and group transformations
// Create a random vector
SU3::LatticeAlgebraVector h_Asym(grid);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ar_Asym(grid);
random(gridRNG,h_Asym);
h_Asym = real(h_Asym);
SU_TwoIndex< Nc, AntiSymmetric>::TwoIndexLieAlgebraMatrix(h_Asym,Ar_Asym);
// Re-extract h_sym
SU3::LatticeAlgebraVector h_Asym2(grid);
SU_TwoIndex< Nc, AntiSymmetric>::projectOnAlgebra(h_Asym2, Ar_Asym);
SU3::LatticeAlgebraVector h_diff_Asym = h_Asym - h_Asym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index anti-Symmetric): " << norm2(h_diff_Asym) << std::endl;
// Exponentiate
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix U2iAS(grid);
U2iAS = expMat(Ar_Asym, 1.0, 16);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix uno2iAS(grid);
uno2iAS = 1.0;
// Check matrix U2iS, must be real orthogonal
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ucheck2iAS = U2iAS - conjugate(U2iAS);
std::cout << GridLogMessage << "Reality check: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = U2iAS * adj(U2iAS) - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 1: " << norm2(Ucheck2iAS)
<< std::endl;
Ucheck2iAS = adj(U2iAS) * U2iAS - uno2iAS;
std::cout << GridLogMessage << "orthogonality check 2: " << norm2(Ucheck2iAS)
<< std::endl;
// Construct the fundamental matrix in the group
SU3::LatticeMatrix Af_Asym(grid);
SU3::FundamentalLieAlgebraMatrix(h_Asym,Af_Asym);
SU3::LatticeMatrix Ufund2A(grid);
Ufund2A = expMat(Af_Asym, 1.0, 16);
SU3::LatticeMatrix UnitCheck2A(grid);
UnitCheck2A = Ufund2A * adj(Ufund2A) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2A)
<< std::endl;
UnitCheck2A = adj(Ufund2A) * Ufund2A - uno_f;
std::cout << GridLogMessage << "unitarity check 2: " << norm2(UnitCheck2A)
<< std::endl;
// Tranform to the 2Index Sym representation
U = Zero(); // fill this with only one direction
pokeLorentz(U,Ufund2A,0); // the representation transf acts on full gauge fields
TIndexRepA.update_representation(U);
Ur2A = TIndexRepA.U; // U_r
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ur02A = peekLorentz(Ur2A,0); // this should be the same as U2iS
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Diff_check_mat2A = Ur02A - U2iAS;
std::cout << GridLogMessage << "Projections structure check group difference (Two Index anti-Symmetric): " << norm2(Diff_check_mat2A) << std::endl;
} else {
std::cout << GridLogMessage << "Skipping Two Index anti-Symmetric tests "
"because representation is trivial (dim = 1)"
<< std::endl;
}
#endif
Grid_finalize();
}

View File

@ -122,14 +122,15 @@ int main (int argc, char ** argv)
std::cout << "Determinant defect before projection " <<norm2(detU)<<std::endl;
tmp = U*adj(U) - ident;
std::cout << "Unitarity check before projection " << norm2(tmp)<<std::endl;
#if (Nc == 3)
ProjectSU3(U);
detU= Determinant(U) ;
detU= detU -1.0;
std::cout << "Determinant ProjectSU3 defect " <<norm2(detU)<<std::endl;
tmp = U*adj(U) - ident;
std::cout << "Unitarity check after projection " << norm2(tmp)<<std::endl;
#endif
ProjectSUn(UU);
detUU= Determinant(UU);
detUU= detUU -1.0;