mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Merge branch 'develop' into feature/multi-communicator
This commit is contained in:
commit
7d88198387
261
README.md
261
README.md
@ -18,10 +18,41 @@
|
||||
|
||||
License: GPL v2.
|
||||
|
||||
Last update Nov 2016.
|
||||
Last update June 2017.
|
||||
|
||||
_Please do not send pull requests to the `master` branch which is reserved for releases._
|
||||
|
||||
|
||||
|
||||
### Description
|
||||
This library provides data parallel C++ container classes with internal memory layout
|
||||
that is transformed to map efficiently to SIMD architectures. CSHIFT facilities
|
||||
are provided, similar to HPF and cmfortran, and user control is given over the mapping of
|
||||
array indices to both MPI tasks and SIMD processing elements.
|
||||
|
||||
* Identically shaped arrays then be processed with perfect data parallelisation.
|
||||
* Such identically shaped arrays are called conformable arrays.
|
||||
|
||||
The transformation is based on the observation that Cartesian array processing involves
|
||||
identical processing to be performed on different regions of the Cartesian array.
|
||||
|
||||
The library will both geometrically decompose into MPI tasks and across SIMD lanes.
|
||||
Local vector loops are parallelised with OpenMP pragmas.
|
||||
|
||||
Data parallel array operations can then be specified with a SINGLE data parallel paradigm, but
|
||||
optimally use MPI, OpenMP and SIMD parallelism under the hood. This is a significant simplification
|
||||
for most programmers.
|
||||
|
||||
The layout transformations are parametrised by the SIMD vector length. This adapts according to the architecture.
|
||||
Presently SSE4, ARM NEON (128 bits) AVX, AVX2, QPX (256 bits), IMCI and AVX512 (512 bits) targets are supported.
|
||||
|
||||
These are presented as `vRealF`, `vRealD`, `vComplexF`, and `vComplexD` internal vector data types.
|
||||
The corresponding scalar types are named `RealF`, `RealD`, `ComplexF` and `ComplexD`.
|
||||
|
||||
MPI, OpenMP, and SIMD parallelism are present in the library.
|
||||
Please see [this paper](https://arxiv.org/abs/1512.03487) for more detail.
|
||||
|
||||
|
||||
### Compilers
|
||||
|
||||
Intel ICPC v16.0.3 and later
|
||||
@ -56,35 +87,25 @@ When you file an issue, please go though the following checklist:
|
||||
6. Attach the output of `make V=1`.
|
||||
7. Describe the issue and any previous attempt to solve it. If relevant, show how to reproduce the issue using a minimal working example.
|
||||
|
||||
### Required libraries
|
||||
Grid requires:
|
||||
|
||||
[GMP](https://gmplib.org/),
|
||||
|
||||
### Description
|
||||
This library provides data parallel C++ container classes with internal memory layout
|
||||
that is transformed to map efficiently to SIMD architectures. CSHIFT facilities
|
||||
are provided, similar to HPF and cmfortran, and user control is given over the mapping of
|
||||
array indices to both MPI tasks and SIMD processing elements.
|
||||
[MPFR](http://www.mpfr.org/)
|
||||
|
||||
* Identically shaped arrays then be processed with perfect data parallelisation.
|
||||
* Such identically shaped arrays are called conformable arrays.
|
||||
Bootstrapping grid downloads and uses for internal dense matrix (non-QCD operations) the Eigen library.
|
||||
|
||||
The transformation is based on the observation that Cartesian array processing involves
|
||||
identical processing to be performed on different regions of the Cartesian array.
|
||||
Grid optionally uses:
|
||||
|
||||
The library will both geometrically decompose into MPI tasks and across SIMD lanes.
|
||||
Local vector loops are parallelised with OpenMP pragmas.
|
||||
[HDF5](https://support.hdfgroup.org/HDF5/)
|
||||
|
||||
Data parallel array operations can then be specified with a SINGLE data parallel paradigm, but
|
||||
optimally use MPI, OpenMP and SIMD parallelism under the hood. This is a significant simplification
|
||||
for most programmers.
|
||||
[LIME](http://usqcd-software.github.io/c-lime/) for ILDG and SciDAC file format support.
|
||||
|
||||
The layout transformations are parametrised by the SIMD vector length. This adapts according to the architecture.
|
||||
Presently SSE4 (128 bit) AVX, AVX2, QPX (256 bit), IMCI, and AVX512 (512 bit) targets are supported (ARM NEON on the way).
|
||||
[FFTW](http://www.fftw.org) either generic version or via the Intel MKL library.
|
||||
|
||||
These are presented as `vRealF`, `vRealD`, `vComplexF`, and `vComplexD` internal vector data types. These may be useful in themselves for other programmers.
|
||||
The corresponding scalar types are named `RealF`, `RealD`, `ComplexF` and `ComplexD`.
|
||||
LAPACK either generic version or Intel MKL library.
|
||||
|
||||
MPI, OpenMP, and SIMD parallelism are present in the library.
|
||||
Please see https://arxiv.org/abs/1512.03487 for more detail.
|
||||
|
||||
### Quick start
|
||||
First, start by cloning the repository:
|
||||
@ -155,7 +176,6 @@ The following options can be use with the `--enable-comms=` option to target dif
|
||||
| `none` | no communications |
|
||||
| `mpi[-auto]` | MPI communications |
|
||||
| `mpi3[-auto]` | MPI communications using MPI 3 shared memory |
|
||||
| `mpi3l[-auto]` | MPI communications using MPI 3 shared memory and leader model |
|
||||
| `shmem ` | Cray SHMEM communications |
|
||||
|
||||
For the MPI interfaces the optional `-auto` suffix instructs the `configure` scripts to determine all the necessary compilation and linking flags. This is done by extracting the informations from the MPI wrapper specified in the environment variable `MPICXX` (if not specified `configure` will scan though a list of default names). The `-auto` suffix is not supported by the Cray environment wrapper scripts. Use the standard versions instead.
|
||||
@ -173,7 +193,8 @@ The following options can be use with the `--enable-simd=` option to target diff
|
||||
| `AVXFMA4` | AVX (256 bit) + FMA4 |
|
||||
| `AVX2` | AVX 2 (256 bit) |
|
||||
| `AVX512` | AVX 512 bit |
|
||||
| `QPX` | QPX (256 bit) |
|
||||
| `NEONv8` | [ARM NEON](http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch07s03.html) (128 bit) |
|
||||
| `QPX` | IBM QPX (256 bit) |
|
||||
|
||||
Alternatively, some CPU codenames can be directly used:
|
||||
|
||||
@ -196,20 +217,204 @@ The following configuration is recommended for the Intel Knights Landing platfor
|
||||
../configure --enable-precision=double\
|
||||
--enable-simd=KNL \
|
||||
--enable-comms=mpi-auto \
|
||||
--with-gmp=<path> \
|
||||
--with-mpfr=<path> \
|
||||
--enable-mkl \
|
||||
CXX=icpc MPICXX=mpiicpc
|
||||
```
|
||||
The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
|
||||
|
||||
where `<path>` is the UNIX prefix where GMP and MPFR are installed. If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
|
||||
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
|
||||
|
||||
``` bash
|
||||
../configure --enable-precision=double\
|
||||
--enable-simd=KNL \
|
||||
--enable-comms=mpi \
|
||||
--with-gmp=<path> \
|
||||
--with-mpfr=<path> \
|
||||
--enable-mkl \
|
||||
CXX=CC CC=cc
|
||||
```
|
||||
|
||||
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
|
||||
``` bash
|
||||
--with-gmp=<path> \
|
||||
--with-mpfr=<path> \
|
||||
```
|
||||
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
|
||||
|
||||
Knight's Landing with Intel Omnipath adapters with two adapters per node
|
||||
presently performs better with use of more than one rank per node, using shared memory
|
||||
for interior communication. This is the mpi3 communications implementation.
|
||||
We recommend four ranks per node for best performance, but optimum is local volume dependent.
|
||||
|
||||
``` bash
|
||||
../configure --enable-precision=double\
|
||||
--enable-simd=KNL \
|
||||
--enable-comms=mpi3-auto \
|
||||
--enable-mkl \
|
||||
CC=icpc MPICXX=mpiicpc
|
||||
```
|
||||
|
||||
### Build setup for Intel Haswell Xeon platform
|
||||
|
||||
The following configuration is recommended for the Intel Haswell platform:
|
||||
|
||||
``` bash
|
||||
../configure --enable-precision=double\
|
||||
--enable-simd=AVX2 \
|
||||
--enable-comms=mpi3-auto \
|
||||
--enable-mkl \
|
||||
CXX=icpc MPICXX=mpiicpc
|
||||
```
|
||||
The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
|
||||
|
||||
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
|
||||
``` bash
|
||||
--with-gmp=<path> \
|
||||
--with-mpfr=<path> \
|
||||
```
|
||||
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
|
||||
|
||||
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
|
||||
|
||||
``` bash
|
||||
../configure --enable-precision=double\
|
||||
--enable-simd=AVX2 \
|
||||
--enable-comms=mpi3 \
|
||||
--enable-mkl \
|
||||
CXX=CC CC=cc
|
||||
```
|
||||
Since Dual socket nodes are commonplace, we recommend MPI-3 as the default with the use of
|
||||
one rank per socket. If using the Intel MPI library, threads should be pinned to NUMA domains using
|
||||
```
|
||||
export I_MPI_PIN=1
|
||||
```
|
||||
This is the default.
|
||||
|
||||
### Build setup for Intel Skylake Xeon platform
|
||||
|
||||
The following configuration is recommended for the Intel Skylake platform:
|
||||
|
||||
``` bash
|
||||
../configure --enable-precision=double\
|
||||
--enable-simd=AVX512 \
|
||||
--enable-comms=mpi3 \
|
||||
--enable-mkl \
|
||||
CXX=mpiicpc
|
||||
```
|
||||
The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
|
||||
|
||||
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
|
||||
``` bash
|
||||
--with-gmp=<path> \
|
||||
--with-mpfr=<path> \
|
||||
```
|
||||
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
|
||||
|
||||
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
|
||||
|
||||
``` bash
|
||||
../configure --enable-precision=double\
|
||||
--enable-simd=AVX512 \
|
||||
--enable-comms=mpi3 \
|
||||
--enable-mkl \
|
||||
CXX=CC CC=cc
|
||||
```
|
||||
Since Dual socket nodes are commonplace, we recommend MPI-3 as the default with the use of
|
||||
one rank per socket. If using the Intel MPI library, threads should be pinned to NUMA domains using
|
||||
```
|
||||
export I_MPI_PIN=1
|
||||
```
|
||||
This is the default.
|
||||
|
||||
#### Expected Skylake Gold 6148 dual socket (single prec, single node 20+20 cores) performance using NUMA MPI mapping):
|
||||
|
||||
mpirun -n 2 benchmarks/Benchmark_dwf --grid 16.16.16.16 --mpi 2.1.1.1 --cacheblocking 2.2.2.2 --dslash-asm --shm 1024 --threads 18
|
||||
|
||||
TBA
|
||||
|
||||
|
||||
### Build setup for AMD EPYC / RYZEN
|
||||
|
||||
The AMD EPYC is a multichip module comprising 32 cores spread over four distinct chips each with 8 cores.
|
||||
So, even with a single socket node there is a quad-chip module. Dual socket nodes with 64 cores total
|
||||
are common. Each chip within the module exposes a separate NUMA domain.
|
||||
There are four NUMA domains per socket and we recommend one MPI rank per NUMA domain.
|
||||
MPI-3 is recommended with the use of four ranks per socket,
|
||||
and 8 threads per rank.
|
||||
|
||||
The following configuration is recommended for the AMD EPYC platform.
|
||||
|
||||
``` bash
|
||||
../configure --enable-precision=double\
|
||||
--enable-simd=AVX2 \
|
||||
--enable-comms=mpi3 \
|
||||
CXX=mpicxx
|
||||
```
|
||||
|
||||
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
|
||||
``` bash
|
||||
--with-gmp=<path> \
|
||||
--with-mpfr=<path> \
|
||||
```
|
||||
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
|
||||
|
||||
Using MPICH and g++ v4.9.2, best performance can be obtained using explicit GOMP_CPU_AFFINITY flags for each MPI rank.
|
||||
This can be done by invoking MPI on a wrapper script omp_bind.sh to handle this.
|
||||
|
||||
It is recommended to run 8 MPI ranks on a single dual socket AMD EPYC, with 8 threads per rank using MPI3 and
|
||||
shared memory to communicate within this node:
|
||||
|
||||
mpirun -np 8 ./omp_bind.sh ./Benchmark_dwf --mpi 2.2.2.1 --dslash-unroll --threads 8 --grid 16.16.16.16 --cacheblocking 4.4.4.4
|
||||
|
||||
Where omp_bind.sh does the following:
|
||||
```
|
||||
#!/bin/bash
|
||||
|
||||
numanode=` expr $PMI_RANK % 8 `
|
||||
basecore=`expr $numanode \* 16`
|
||||
core0=`expr $basecore + 0 `
|
||||
core1=`expr $basecore + 2 `
|
||||
core2=`expr $basecore + 4 `
|
||||
core3=`expr $basecore + 6 `
|
||||
core4=`expr $basecore + 8 `
|
||||
core5=`expr $basecore + 10 `
|
||||
core6=`expr $basecore + 12 `
|
||||
core7=`expr $basecore + 14 `
|
||||
|
||||
export GOMP_CPU_AFFINITY="$core0 $core1 $core2 $core3 $core4 $core5 $core6 $core7"
|
||||
echo GOMP_CUP_AFFINITY $GOMP_CPU_AFFINITY
|
||||
|
||||
$@
|
||||
```
|
||||
|
||||
Performance:
|
||||
|
||||
#### Expected AMD EPYC 7601 dual socket (single prec, single node 32+32 cores) performance using NUMA MPI mapping):
|
||||
|
||||
mpirun -np 8 ./omp_bind.sh ./Benchmark_dwf --threads 8 --mpi 2.2.2.1 --dslash-unroll --grid 16.16.16.16 --cacheblocking 4.4.4.4
|
||||
|
||||
TBA
|
||||
|
||||
### Build setup for BlueGene/Q
|
||||
|
||||
To be written...
|
||||
|
||||
### Build setup for ARM Neon
|
||||
|
||||
To be written...
|
||||
|
||||
### Build setup for laptops, other compilers, non-cluster builds
|
||||
|
||||
Many versions of g++ and clang++ work with Grid, and involve merely replacing CXX (and MPICXX),
|
||||
and omit the enable-mkl flag.
|
||||
|
||||
Single node builds are enabled with
|
||||
```
|
||||
--enable-comms=none
|
||||
```
|
||||
|
||||
FFTW support that is not in the default search path may then enabled with
|
||||
```
|
||||
--with-fftw=<installpath>
|
||||
```
|
||||
|
||||
BLAS will not be compiled in by default, and Lanczos will default to Eigen diagonalisation.
|
||||
|
||||
|
@ -165,7 +165,7 @@ int main (int argc, char ** argv)
|
||||
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
|
||||
|
||||
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||
int ncall =1000;
|
||||
int ncall =500;
|
||||
if (1) {
|
||||
FGrid->Barrier();
|
||||
Dw.ZeroCounters();
|
||||
@ -303,6 +303,7 @@ int main (int argc, char ** argv)
|
||||
}
|
||||
assert(sum < 1.0e-4);
|
||||
|
||||
|
||||
if(1){
|
||||
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
|
||||
std::cout << GridLogMessage<< "* Benchmarking WilsonFermion5D<DomainWallVec5dImplR>::DhopEO "<<std::endl;
|
||||
@ -381,7 +382,22 @@ int main (int argc, char ** argv)
|
||||
}
|
||||
assert(error<1.0e-4);
|
||||
}
|
||||
|
||||
if(0){
|
||||
std::cout << "Single cache warm call to sDw.Dhop " <<std::endl;
|
||||
for(int i=0;i< PerformanceCounter::NumTypes(); i++ ){
|
||||
sDw.Dhop(ssrc,sresult,0);
|
||||
PerformanceCounter Counter(i);
|
||||
Counter.Start();
|
||||
sDw.Dhop(ssrc,sresult,0);
|
||||
Counter.Stop();
|
||||
Counter.Report();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (1)
|
||||
{ // Naive wilson dag implementation
|
||||
|
@ -55,17 +55,17 @@ int main (int argc, char ** argv)
|
||||
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
uint64_t lmax=64;
|
||||
#define NLOOP (100*lmax*lmax*lmax*lmax/vol)
|
||||
for(int lat=4;lat<=lmax;lat+=4){
|
||||
uint64_t lmax=96;
|
||||
#define NLOOP (10*lmax*lmax*lmax*lmax/vol)
|
||||
for(int lat=8;lat<=lmax;lat+=8){
|
||||
|
||||
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
uint64_t Nloop=NLOOP;
|
||||
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
LatticeVec z(&Grid);// random(pRNG,z);
|
||||
LatticeVec x(&Grid);// random(pRNG,x);
|
||||
@ -83,7 +83,7 @@ int main (int argc, char ** argv)
|
||||
double time = (stop-start)/Nloop*1000;
|
||||
|
||||
double flops=vol*Nvec*2;// mul,add
|
||||
double bytes=3*vol*Nvec*sizeof(Real);
|
||||
double bytes=3.0*vol*Nvec*sizeof(Real);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
|
||||
|
||||
}
|
||||
@ -94,13 +94,13 @@ int main (int argc, char ** argv)
|
||||
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
|
||||
for(int lat=4;lat<=lmax;lat+=4){
|
||||
for(int lat=8;lat<=lmax;lat+=8){
|
||||
|
||||
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
LatticeVec z(&Grid);// random(pRNG,z);
|
||||
LatticeVec x(&Grid);// random(pRNG,x);
|
||||
@ -119,7 +119,7 @@ int main (int argc, char ** argv)
|
||||
double time = (stop-start)/Nloop*1000;
|
||||
|
||||
double flops=vol*Nvec*2;// mul,add
|
||||
double bytes=3*vol*Nvec*sizeof(Real);
|
||||
double bytes=3.0*vol*Nvec*sizeof(Real);
|
||||
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
|
||||
|
||||
}
|
||||
@ -129,16 +129,16 @@ int main (int argc, char ** argv)
|
||||
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
|
||||
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
|
||||
|
||||
for(int lat=4;lat<=lmax;lat+=4){
|
||||
for(int lat=8;lat<=lmax;lat+=8){
|
||||
|
||||
|
||||
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
uint64_t Nloop=NLOOP;
|
||||
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
LatticeVec z(&Grid);// random(pRNG,z);
|
||||
LatticeVec x(&Grid);// random(pRNG,x);
|
||||
@ -154,7 +154,7 @@ int main (int argc, char ** argv)
|
||||
double stop=usecond();
|
||||
double time = (stop-start)/Nloop*1000;
|
||||
|
||||
double bytes=2*vol*Nvec*sizeof(Real);
|
||||
double bytes=2.0*vol*Nvec*sizeof(Real);
|
||||
double flops=vol*Nvec*1;// mul
|
||||
std::cout<<GridLogMessage <<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
|
||||
|
||||
@ -166,14 +166,14 @@ int main (int argc, char ** argv)
|
||||
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
|
||||
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
|
||||
|
||||
for(int lat=4;lat<=lmax;lat+=4){
|
||||
for(int lat=8;lat<=lmax;lat+=8){
|
||||
|
||||
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
uint64_t Nloop=NLOOP;
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
LatticeVec z(&Grid);// random(pRNG,z);
|
||||
LatticeVec x(&Grid);// random(pRNG,x);
|
||||
LatticeVec y(&Grid);// random(pRNG,y);
|
||||
@ -187,7 +187,7 @@ int main (int argc, char ** argv)
|
||||
double stop=usecond();
|
||||
double time = (stop-start)/Nloop*1000;
|
||||
|
||||
double bytes=vol*Nvec*sizeof(Real);
|
||||
double bytes=1.0*vol*Nvec*sizeof(Real);
|
||||
double flops=vol*Nvec*2;// mul,add
|
||||
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<< "\t\t"<<(stop-start)/1000./1000.<< "\t\t " <<std::endl;
|
||||
|
||||
|
@ -37,12 +37,12 @@ int main (int argc, char ** argv)
|
||||
Grid_init(&argc,&argv);
|
||||
#define LMAX (64)
|
||||
|
||||
int Nloop=20;
|
||||
int64_t Nloop=20;
|
||||
|
||||
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
|
||||
int threads = GridThread::GetThreads();
|
||||
int64_t threads = GridThread::GetThreads();
|
||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||
|
||||
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
|
||||
@ -54,16 +54,16 @@ int main (int argc, char ** argv)
|
||||
for(int lat=2;lat<=LMAX;lat+=2){
|
||||
|
||||
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
|
||||
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
LatticeColourMatrix z(&Grid);// random(pRNG,z);
|
||||
LatticeColourMatrix x(&Grid);// random(pRNG,x);
|
||||
LatticeColourMatrix y(&Grid);// random(pRNG,y);
|
||||
LatticeColourMatrix z(&Grid); random(pRNG,z);
|
||||
LatticeColourMatrix x(&Grid); random(pRNG,x);
|
||||
LatticeColourMatrix y(&Grid); random(pRNG,y);
|
||||
|
||||
double start=usecond();
|
||||
for(int i=0;i<Nloop;i++){
|
||||
for(int64_t i=0;i<Nloop;i++){
|
||||
x=x*y;
|
||||
}
|
||||
double stop=usecond();
|
||||
@ -86,17 +86,17 @@ int main (int argc, char ** argv)
|
||||
for(int lat=2;lat<=LMAX;lat+=2){
|
||||
|
||||
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
|
||||
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
LatticeColourMatrix z(&Grid); //random(pRNG,z);
|
||||
LatticeColourMatrix x(&Grid); //random(pRNG,x);
|
||||
LatticeColourMatrix y(&Grid); //random(pRNG,y);
|
||||
LatticeColourMatrix z(&Grid); random(pRNG,z);
|
||||
LatticeColourMatrix x(&Grid); random(pRNG,x);
|
||||
LatticeColourMatrix y(&Grid); random(pRNG,y);
|
||||
|
||||
double start=usecond();
|
||||
for(int i=0;i<Nloop;i++){
|
||||
for(int64_t i=0;i<Nloop;i++){
|
||||
z=x*y;
|
||||
}
|
||||
double stop=usecond();
|
||||
@ -117,17 +117,17 @@ int main (int argc, char ** argv)
|
||||
for(int lat=2;lat<=LMAX;lat+=2){
|
||||
|
||||
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
|
||||
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
LatticeColourMatrix z(&Grid); //random(pRNG,z);
|
||||
LatticeColourMatrix x(&Grid); //random(pRNG,x);
|
||||
LatticeColourMatrix y(&Grid); //random(pRNG,y);
|
||||
LatticeColourMatrix z(&Grid); random(pRNG,z);
|
||||
LatticeColourMatrix x(&Grid); random(pRNG,x);
|
||||
LatticeColourMatrix y(&Grid); random(pRNG,y);
|
||||
|
||||
double start=usecond();
|
||||
for(int i=0;i<Nloop;i++){
|
||||
for(int64_t i=0;i<Nloop;i++){
|
||||
mult(z,x,y);
|
||||
}
|
||||
double stop=usecond();
|
||||
@ -148,17 +148,17 @@ int main (int argc, char ** argv)
|
||||
for(int lat=2;lat<=LMAX;lat+=2){
|
||||
|
||||
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
|
||||
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
|
||||
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
|
||||
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||
|
||||
LatticeColourMatrix z(&Grid); //random(pRNG,z);
|
||||
LatticeColourMatrix x(&Grid); //random(pRNG,x);
|
||||
LatticeColourMatrix y(&Grid); //random(pRNG,y);
|
||||
LatticeColourMatrix z(&Grid); random(pRNG,z);
|
||||
LatticeColourMatrix x(&Grid); random(pRNG,x);
|
||||
LatticeColourMatrix y(&Grid); random(pRNG,y);
|
||||
|
||||
double start=usecond();
|
||||
for(int i=0;i<Nloop;i++){
|
||||
for(int64_t i=0;i<Nloop;i++){
|
||||
mac(z,x,y);
|
||||
}
|
||||
double stop=usecond();
|
||||
|
22
configure.ac
22
configure.ac
@ -13,6 +13,10 @@ m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
|
||||
################ Get git info
|
||||
#AC_REVISION([m4_esyscmd_s([./scripts/configure.commit])])
|
||||
|
||||
################ Set flags
|
||||
# do not move!
|
||||
CXXFLAGS="-O3 $CXXFLAGS"
|
||||
|
||||
############### Checks for programs
|
||||
AC_PROG_CXX
|
||||
AC_PROG_RANLIB
|
||||
@ -27,7 +31,6 @@ AX_GXX_VERSION
|
||||
AC_DEFINE_UNQUOTED([GXX_VERSION],["$GXX_VERSION"],
|
||||
[version of g++ that will compile the code])
|
||||
|
||||
CXXFLAGS="-g $CXXFLAGS"
|
||||
|
||||
|
||||
############### Checks for typedefs, structures, and compiler characteristics
|
||||
@ -51,9 +54,14 @@ AC_CHECK_HEADERS(malloc/malloc.h)
|
||||
AC_CHECK_HEADERS(malloc.h)
|
||||
AC_CHECK_HEADERS(endian.h)
|
||||
AC_CHECK_HEADERS(execinfo.h)
|
||||
AC_CHECK_HEADERS(numaif.h)
|
||||
AC_CHECK_DECLS([ntohll],[], [], [[#include <arpa/inet.h>]])
|
||||
AC_CHECK_DECLS([be64toh],[], [], [[#include <arpa/inet.h>]])
|
||||
|
||||
############## Standard libraries
|
||||
AC_CHECK_LIB([m],[cos])
|
||||
AC_CHECK_LIB([stdc++],[abort])
|
||||
|
||||
############### GMP and MPFR
|
||||
AC_ARG_WITH([gmp],
|
||||
[AS_HELP_STRING([--with-gmp=prefix],
|
||||
@ -186,9 +194,14 @@ Info at: http://usqcd.jlab.org/usqcd-docs/c-lime/)])
|
||||
|
||||
AC_SEARCH_LIBS([crc32], [z],
|
||||
[AC_DEFINE([HAVE_ZLIB], [1], [Define to 1 if you have the `LIBZ' library])]
|
||||
[have_zlib=true],
|
||||
[have_zlib=true] [LIBS="${LIBS} -lz"],
|
||||
[AC_MSG_ERROR(zlib library was not found in your system.)])
|
||||
|
||||
AC_SEARCH_LIBS([move_pages], [numa],
|
||||
[AC_DEFINE([HAVE_LIBNUMA], [1], [Define to 1 if you have the `LIBNUMA' library])]
|
||||
[have_libnuma=true] [LIBS="${LIBS} -lnuma"],
|
||||
[AC_MSG_WARN(libnuma library was not found in your system. Some optimisations will not apply)])
|
||||
|
||||
AC_SEARCH_LIBS([H5Fopen], [hdf5_cpp],
|
||||
[AC_DEFINE([HAVE_HDF5], [1], [Define to 1 if you have the `HDF5' library])]
|
||||
[have_hdf5=true]
|
||||
@ -241,6 +254,7 @@ case ${ax_cv_cxx_compiler_vendor} in
|
||||
SIMD_FLAGS='';;
|
||||
KNL)
|
||||
AC_DEFINE([AVX512],[1],[AVX512 intrinsics])
|
||||
AC_DEFINE([KNL],[1],[Knights landing processor])
|
||||
SIMD_FLAGS='-march=knl';;
|
||||
GEN)
|
||||
AC_DEFINE([GEN],[1],[generic vector code])
|
||||
@ -248,6 +262,9 @@ case ${ax_cv_cxx_compiler_vendor} in
|
||||
[generic SIMD vector width (in bytes)])
|
||||
SIMD_GEN_WIDTH_MSG=" (width= $ac_gen_simd_width)"
|
||||
SIMD_FLAGS='';;
|
||||
NEONv8)
|
||||
AC_DEFINE([NEONV8],[1],[ARMv8 NEON])
|
||||
SIMD_FLAGS='-march=armv8-a';;
|
||||
QPX|BGQ)
|
||||
AC_DEFINE([QPX],[1],[QPX intrinsics for BG/Q])
|
||||
SIMD_FLAGS='';;
|
||||
@ -276,6 +293,7 @@ case ${ax_cv_cxx_compiler_vendor} in
|
||||
SIMD_FLAGS='';;
|
||||
KNL)
|
||||
AC_DEFINE([AVX512],[1],[AVX512 intrinsics for Knights Landing])
|
||||
AC_DEFINE([KNL],[1],[Knights landing processor])
|
||||
SIMD_FLAGS='-xmic-avx512';;
|
||||
GEN)
|
||||
AC_DEFINE([GEN],[1],[generic vector code])
|
||||
|
@ -102,7 +102,14 @@ public:
|
||||
#else
|
||||
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
|
||||
#endif
|
||||
|
||||
// First touch optimise in threaded loop
|
||||
uint8_t *cp = (uint8_t *)ptr;
|
||||
#ifdef GRID_OMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(size_type n=0;n<bytes;n+=4096){
|
||||
cp[n]=0;
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
|
||||
@ -190,6 +197,13 @@ public:
|
||||
#else
|
||||
_Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,__n*sizeof(_Tp));
|
||||
#endif
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
uint8_t *cp = (uint8_t *)ptr;
|
||||
// One touch per 4k page, static OMP loop to catch same loop order
|
||||
#pragma omp parallel for schedule(static)
|
||||
for(size_type n=0;n<bytes;n+=4096){
|
||||
cp[n]=0;
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
void deallocate(pointer __p, size_type) {
|
||||
|
@ -37,7 +37,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <sys/ipc.h>
|
||||
#include <sys/shm.h>
|
||||
#include <sys/mman.h>
|
||||
//#include <zlib.h>
|
||||
#include <zlib.h>
|
||||
#ifdef HAVE_NUMAIF_H
|
||||
#include <numaif.h>
|
||||
#endif
|
||||
#ifndef SHM_HUGETLB
|
||||
#define SHM_HUGETLB 04000
|
||||
#endif
|
||||
@ -214,6 +217,25 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
|
||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
||||
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
|
||||
// Try to force numa domain on the shm segment if we have numaif.h
|
||||
#ifdef HAVE_NUMAIF_H
|
||||
int status;
|
||||
int flags=MPOL_MF_MOVE;
|
||||
#ifdef KNL
|
||||
int nodes=1; // numa domain == MCDRAM
|
||||
// Find out if in SNC2,SNC4 mode ?
|
||||
#else
|
||||
int nodes=r; // numa domain == MPI ID
|
||||
#endif
|
||||
unsigned long count=1;
|
||||
for(uint64_t page=0;page<size;page+=4096){
|
||||
void *pages = (void *) ( page + (uint64_t)ptr );
|
||||
uint64_t *cow_it = (uint64_t *)pages; *cow_it = 1;
|
||||
ierr= move_pages(0,count, &pages,&nodes,&status,flags);
|
||||
if (ierr && (page==0)) perror("numa relocate command failed");
|
||||
}
|
||||
#endif
|
||||
ShmCommBufs[r] =ptr;
|
||||
|
||||
}
|
||||
|
@ -540,7 +540,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
|
||||
for(int i=0;i<Nblock;i++){
|
||||
for(int j=0;j<Nblock;j++){
|
||||
auto tmp = innerProduct(Left[i],Right[j]);
|
||||
vector_typeD rtmp = TensorRemove(tmp);
|
||||
// vector_typeD rtmp = TensorRemove(tmp);
|
||||
auto rtmp = TensorRemove(tmp);
|
||||
mat_thread(i,j) += Reduce(rtmp);
|
||||
}}
|
||||
}}
|
||||
|
@ -40,7 +40,7 @@ const PerformanceCounter::PerformanceCounterConfig PerformanceCounter::Performan
|
||||
{ PERF_TYPE_HARDWARE, PERF_COUNT_HW_CPU_CYCLES , "CPUCYCLES.........." , INSTRUCTIONS},
|
||||
{ PERF_TYPE_HARDWARE, PERF_COUNT_HW_INSTRUCTIONS , "INSTRUCTIONS......." , CPUCYCLES },
|
||||
// 4
|
||||
#ifdef AVX512
|
||||
#ifdef KNL
|
||||
{ PERF_TYPE_RAW, RawConfig(0x40,0x04), "ALL_LOADS..........", CPUCYCLES },
|
||||
{ PERF_TYPE_RAW, RawConfig(0x01,0x04), "L1_MISS_LOADS......", L1D_READ_ACCESS },
|
||||
{ PERF_TYPE_RAW, RawConfig(0x40,0x04), "ALL_LOADS..........", L1D_READ_ACCESS },
|
||||
|
@ -93,6 +93,8 @@ class ScalarImplTypes {
|
||||
class ScalarAdjMatrixImplTypes {
|
||||
public:
|
||||
typedef S Simd;
|
||||
typedef QCD::SU<N> Group;
|
||||
|
||||
template <typename vtype>
|
||||
using iImplField = iScalar<iScalar<iMatrix<vtype, N>>>;
|
||||
template <typename vtype>
|
||||
@ -108,7 +110,7 @@ class ScalarImplTypes {
|
||||
typedef Field PropagatorField;
|
||||
|
||||
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG) {
|
||||
QCD::SU<N>::GaussianFundamentalLieAlgebraMatrix(pRNG, P);
|
||||
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, P);
|
||||
}
|
||||
|
||||
static inline Field projectForce(Field& P) {return P;}
|
||||
@ -122,11 +124,11 @@ class ScalarImplTypes {
|
||||
}
|
||||
|
||||
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||
QCD::SU<N>::LieRandomize(pRNG, U);
|
||||
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U);
|
||||
}
|
||||
|
||||
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||
QCD::SU<N>::LieRandomize(pRNG, U, 0.01);
|
||||
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U, 0.01);
|
||||
}
|
||||
|
||||
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||
|
@ -81,7 +81,7 @@ namespace Grid {
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
Field action(p._grid), pshift(p._grid), phisquared(p._grid);
|
||||
phisquared = p*p;
|
||||
action = (2.0*Ndim + mass_square)*phisquared + lambda*phisquared*phisquared;
|
||||
action = (2.0*Ndim + mass_square)*phisquared - lambda/24.*phisquared*phisquared;
|
||||
for (int mu = 0; mu < Ndim; mu++) {
|
||||
// pshift = Cshift(p, mu, +1); // not efficient, implement with stencils
|
||||
parallel_for (int i = 0; i < p._grid->oSites(); i++) {
|
||||
@ -98,7 +98,7 @@ namespace Grid {
|
||||
permute(temp2, *temp, permute_type);
|
||||
action._odata[i] -= temp2*(*t_p) + (*t_p)*temp2;
|
||||
} else {
|
||||
action._odata[i] -= *temp*(*t_p) + (*t_p)*(*temp);
|
||||
action._odata[i] -= (*temp)*(*t_p) + (*t_p)*(*temp);
|
||||
}
|
||||
} else {
|
||||
action._odata[i] -= phiStencil.CommBuf()[SE->_offset]*(*t_p) + (*t_p)*phiStencil.CommBuf()[SE->_offset];
|
||||
@ -113,7 +113,7 @@ namespace Grid {
|
||||
|
||||
virtual void deriv(const Field &p, Field &force) {
|
||||
assert(p._grid->Nd() == Ndim);
|
||||
force = (2.0*Ndim + mass_square)*p + 2.0*lambda*p*p*p;
|
||||
force = (2.0*Ndim + mass_square)*p - lambda/12.*p*p*p;
|
||||
// move this outside
|
||||
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
|
@ -76,7 +76,7 @@ struct HMCparameters: Serializable {
|
||||
|
||||
template < class ReaderClass >
|
||||
void initialize(Reader<ReaderClass> &TheReader){
|
||||
std::cout << "Reading HMC\n";
|
||||
std::cout << GridLogMessage << "Reading HMC\n";
|
||||
read(TheReader, "HMC", *this);
|
||||
}
|
||||
|
||||
|
@ -253,6 +253,7 @@ class HMCResourceManager {
|
||||
template<class T, class... Types>
|
||||
void AddObservable(Types&&... Args){
|
||||
ObservablesList.push_back(std::unique_ptr<T>(new T(std::forward<Types>(Args)...)));
|
||||
ObservablesList.back()->print_parameters();
|
||||
}
|
||||
|
||||
std::vector<HmcObservable<typename ImplementationPolicy::Field>* > GetObservables(){
|
||||
|
@ -84,8 +84,6 @@ class PlaquetteMod: public ObservableModule<PlaquetteLogger<Impl>, NoParameters>
|
||||
typedef ObservableModule<PlaquetteLogger<Impl>, NoParameters> ObsBase;
|
||||
using ObsBase::ObsBase; // for constructors
|
||||
|
||||
|
||||
|
||||
// acquire resource
|
||||
virtual void initialize(){
|
||||
this->ObservablePtr.reset(new PlaquetteLogger<Impl>());
|
||||
@ -94,23 +92,22 @@ class PlaquetteMod: public ObservableModule<PlaquetteLogger<Impl>, NoParameters>
|
||||
PlaquetteMod(): ObsBase(NoParameters()){}
|
||||
};
|
||||
|
||||
|
||||
template < class Impl >
|
||||
class TopologicalChargeMod: public ObservableModule<TopologicalCharge<Impl>, NoParameters>{
|
||||
typedef ObservableModule<TopologicalCharge<Impl>, NoParameters> ObsBase;
|
||||
class TopologicalChargeMod: public ObservableModule<TopologicalCharge<Impl>, TopologyObsParameters>{
|
||||
typedef ObservableModule<TopologicalCharge<Impl>, TopologyObsParameters> ObsBase;
|
||||
using ObsBase::ObsBase; // for constructors
|
||||
|
||||
|
||||
|
||||
// acquire resource
|
||||
virtual void initialize(){
|
||||
this->ObservablePtr.reset(new TopologicalCharge<Impl>());
|
||||
this->ObservablePtr.reset(new TopologicalCharge<Impl>(this->Par_));
|
||||
}
|
||||
public:
|
||||
TopologicalChargeMod(): ObsBase(NoParameters()){}
|
||||
TopologicalChargeMod(TopologyObsParameters Par): ObsBase(Par){}
|
||||
TopologicalChargeMod(): ObsBase(){}
|
||||
};
|
||||
|
||||
|
||||
|
||||
}// QCD temporarily here
|
||||
|
||||
|
||||
|
@ -33,9 +33,45 @@ directory
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
struct TopologySmearingParameters : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologySmearingParameters,
|
||||
int, steps,
|
||||
float, step_size,
|
||||
int, meas_interval,
|
||||
float, maxTau);
|
||||
|
||||
TopologySmearingParameters(int s = 0, float ss = 0.0f, int mi = 0, float mT = 0.0f):
|
||||
steps(s), step_size(ss), meas_interval(mi), maxTau(mT){}
|
||||
|
||||
template < class ReaderClass >
|
||||
TopologySmearingParameters(Reader<ReaderClass>& Reader){
|
||||
read(Reader, "Smearing", *this);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
struct TopologyObsParameters : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologyObsParameters,
|
||||
int, interval,
|
||||
bool, do_smearing,
|
||||
TopologySmearingParameters, Smearing);
|
||||
|
||||
TopologyObsParameters(int interval = 1, bool smearing = false):
|
||||
interval(interval), Smearing(smearing){}
|
||||
|
||||
template <class ReaderClass >
|
||||
TopologyObsParameters(Reader<ReaderClass>& Reader){
|
||||
read(Reader, "TopologyMeasurement", *this);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// this is only defined for a gauge theory
|
||||
template <class Impl>
|
||||
class TopologicalCharge : public HmcObservable<typename Impl::Field> {
|
||||
TopologyObsParameters Pars;
|
||||
|
||||
public:
|
||||
// here forces the Impl to be of gauge fields
|
||||
// if not the compiler will complain
|
||||
@ -44,21 +80,40 @@ class TopologicalCharge : public HmcObservable<typename Impl::Field> {
|
||||
// necessary for HmcObservable compatibility
|
||||
typedef typename Impl::Field Field;
|
||||
|
||||
TopologicalCharge(int interval = 1, bool do_smearing = false):
|
||||
Pars(interval, do_smearing){}
|
||||
|
||||
TopologicalCharge(TopologyObsParameters P):Pars(P){
|
||||
std::cout << GridLogDebug << "Creating TopologicalCharge " << std::endl;
|
||||
}
|
||||
|
||||
void TrajectoryComplete(int traj,
|
||||
Field &U,
|
||||
GridSerialRNG &sRNG,
|
||||
GridParallelRNG &pRNG) {
|
||||
|
||||
Real q = WilsonLoops<Impl>::TopologicalCharge(U);
|
||||
|
||||
if (traj%Pars.interval == 0){
|
||||
// Smearing
|
||||
Field Usmear = U;
|
||||
int def_prec = std::cout.precision();
|
||||
|
||||
if (Pars.do_smearing){
|
||||
// using wilson flow by default here
|
||||
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
|
||||
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
|
||||
Real T0 = WF.energyDensityPlaquette(Usmear);
|
||||
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
||||
}
|
||||
|
||||
Real q = WilsonLoops<Impl>::TopologicalCharge(Usmear);
|
||||
std::cout << GridLogMessage
|
||||
<< std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||
<< "Topological Charge: [ " << traj << " ] "<< q << std::endl;
|
||||
|
||||
std::cout.precision(def_prec);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
@ -108,7 +108,7 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
|
||||
if (maxTau - taus < epsilon){
|
||||
epsilon = maxTau-taus;
|
||||
}
|
||||
std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||
GaugeField Z(U._grid);
|
||||
GaugeField Zprime(U._grid);
|
||||
GaugeField tmp(U._grid), Uprime(U._grid);
|
||||
@ -138,10 +138,10 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
|
||||
// adjust integration step
|
||||
|
||||
taus += epsilon;
|
||||
std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
||||
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
||||
|
||||
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
|
||||
std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
||||
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
||||
|
||||
}
|
||||
|
||||
@ -166,7 +166,6 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
|
||||
out = in;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) {
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
std::cout << GridLogMessage << "Evolution time :"<< tau(step) << std::endl;
|
||||
evolve_step(out);
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
std::chrono::duration<double> diff = end - start;
|
||||
@ -191,7 +190,7 @@ void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, Re
|
||||
unsigned int step = 0;
|
||||
do{
|
||||
step++;
|
||||
std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
||||
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
||||
evolve_step_adaptive(out, maxTau);
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
||||
<< step << " "
|
||||
|
@ -26,8 +26,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
/* END LEGAL */
|
||||
//#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
template <class Gimpl>
|
||||
class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
@ -186,3 +186,5 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -716,8 +716,7 @@ template<typename GaugeField,typename GaugeMat>
|
||||
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, Ta);
|
||||
auto tmp = - 2.0 * (trace(timesI(Ta) * in)) * scale;// 2.0 for the normalization of the trace in the fundamental rep
|
||||
pokeColour(h_out, tmp, a);
|
||||
pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -65,10 +65,12 @@ Hdf5Reader::Hdf5Reader(const std::string &fileName)
|
||||
Hdf5Type<unsigned int>::type());
|
||||
}
|
||||
|
||||
void Hdf5Reader::push(const std::string &s)
|
||||
bool Hdf5Reader::push(const std::string &s)
|
||||
{
|
||||
group_ = group_.openGroup(s);
|
||||
path_.push_back(s);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void Hdf5Reader::pop(void)
|
||||
|
@ -54,7 +54,7 @@ namespace Grid
|
||||
public:
|
||||
Hdf5Reader(const std::string &fileName);
|
||||
virtual ~Hdf5Reader(void) = default;
|
||||
void push(const std::string &s);
|
||||
bool push(const std::string &s);
|
||||
void pop(void);
|
||||
template <typename U>
|
||||
void readDefault(const std::string &s, U &output);
|
||||
|
@ -6,6 +6,7 @@
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Nils Meyer <nils.meyer@ur.de>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
|
||||
@ -26,19 +27,25 @@ Author: neo <cossu@post.kek.jp>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//----------------------------------------------------------------------
|
||||
/*! @file Grid_sse4.h
|
||||
@brief Optimization libraries for NEON (ARM) instructions set ARMv8
|
||||
|
||||
Experimental - Using intrinsics - DEVELOPING!
|
||||
/*
|
||||
|
||||
ARMv8 NEON intrinsics layer by
|
||||
|
||||
Nils Meyer <nils.meyer@ur.de>,
|
||||
University of Regensburg, Germany
|
||||
SFB/TRR55
|
||||
|
||||
*/
|
||||
// Time-stamp: <2015-07-10 17:45:09 neo>
|
||||
//----------------------------------------------------------------------
|
||||
|
||||
#ifndef GEN_SIMD_WIDTH
|
||||
#define GEN_SIMD_WIDTH 16u
|
||||
#endif
|
||||
|
||||
#include "Grid_generic_types.h"
|
||||
#include <arm_neon.h>
|
||||
|
||||
// ARMv8 supports double precision
|
||||
|
||||
namespace Grid {
|
||||
namespace Optimization {
|
||||
|
||||
template<class vtype>
|
||||
@ -46,14 +53,18 @@ namespace Optimization {
|
||||
float32x4_t f;
|
||||
vtype v;
|
||||
};
|
||||
|
||||
union u128f {
|
||||
float32x4_t v;
|
||||
float f[4];
|
||||
};
|
||||
union u128d {
|
||||
float64x2_t v;
|
||||
double f[4];
|
||||
double f[2];
|
||||
};
|
||||
// half precision
|
||||
union u128h {
|
||||
float16x8_t v;
|
||||
uint16_t f[8];
|
||||
};
|
||||
|
||||
struct Vsplat{
|
||||
@ -64,20 +75,20 @@ namespace Optimization {
|
||||
}
|
||||
// Real float
|
||||
inline float32x4_t operator()(float a){
|
||||
return vld1q_dup_f32(&a);
|
||||
return vdupq_n_f32(a);
|
||||
}
|
||||
//Complex double
|
||||
inline float32x4_t operator()(double a, double b){
|
||||
float tmp[4]={(float)a,(float)b,(float)a,(float)b};
|
||||
return vld1q_f32(tmp);
|
||||
inline float64x2_t operator()(double a, double b){
|
||||
double tmp[2]={a,b};
|
||||
return vld1q_f64(tmp);
|
||||
}
|
||||
//Real double
|
||||
inline float32x4_t operator()(double a){
|
||||
return vld1q_dup_f32(&a);
|
||||
//Real double // N:tbc
|
||||
inline float64x2_t operator()(double a){
|
||||
return vdupq_n_f64(a);
|
||||
}
|
||||
//Integer
|
||||
//Integer // N:tbc
|
||||
inline uint32x4_t operator()(Integer a){
|
||||
return vld1q_dup_u32(&a);
|
||||
return vdupq_n_u32(a);
|
||||
}
|
||||
};
|
||||
|
||||
@ -87,8 +98,8 @@ namespace Optimization {
|
||||
vst1q_f32(F, a);
|
||||
}
|
||||
//Double
|
||||
inline void operator()(float32x4_t a, double* D){
|
||||
vst1q_f32((float*)D, a);
|
||||
inline void operator()(float64x2_t a, double* D){
|
||||
vst1q_f64(D, a);
|
||||
}
|
||||
//Integer
|
||||
inline void operator()(uint32x4_t a, Integer* I){
|
||||
@ -97,49 +108,49 @@ namespace Optimization {
|
||||
|
||||
};
|
||||
|
||||
struct Vstream{
|
||||
//Float
|
||||
struct Vstream{ // N:equivalents to _mm_stream_p* in NEON?
|
||||
//Float // N:generic
|
||||
inline void operator()(float * a, float32x4_t b){
|
||||
|
||||
memcpy(a,&b,4*sizeof(float));
|
||||
}
|
||||
//Double
|
||||
inline void operator()(double * a, float32x4_t b){
|
||||
|
||||
//Double // N:generic
|
||||
inline void operator()(double * a, float64x2_t b){
|
||||
memcpy(a,&b,2*sizeof(double));
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
// Nils: Vset untested; not used currently in Grid at all;
|
||||
// git commit 4a8c4ccfba1d05159348d21a9698028ea847e77b
|
||||
struct Vset{
|
||||
// Complex float
|
||||
// Complex float // N:ok
|
||||
inline float32x4_t operator()(Grid::ComplexF *a){
|
||||
float32x4_t foo;
|
||||
return foo;
|
||||
float tmp[4]={a[1].imag(),a[1].real(),a[0].imag(),a[0].real()};
|
||||
return vld1q_f32(tmp);
|
||||
}
|
||||
// Complex double
|
||||
inline float32x4_t operator()(Grid::ComplexD *a){
|
||||
float32x4_t foo;
|
||||
return foo;
|
||||
// Complex double // N:ok
|
||||
inline float64x2_t operator()(Grid::ComplexD *a){
|
||||
double tmp[2]={a[0].imag(),a[0].real()};
|
||||
return vld1q_f64(tmp);
|
||||
}
|
||||
// Real float
|
||||
// Real float // N:ok
|
||||
inline float32x4_t operator()(float *a){
|
||||
float32x4_t foo;
|
||||
return foo;
|
||||
float tmp[4]={a[3],a[2],a[1],a[0]};
|
||||
return vld1q_f32(tmp);
|
||||
}
|
||||
// Real double
|
||||
inline float32x4_t operator()(double *a){
|
||||
float32x4_t foo;
|
||||
return foo;
|
||||
// Real double // N:ok
|
||||
inline float64x2_t operator()(double *a){
|
||||
double tmp[2]={a[1],a[0]};
|
||||
return vld1q_f64(tmp);
|
||||
}
|
||||
// Integer
|
||||
// Integer // N:ok
|
||||
inline uint32x4_t operator()(Integer *a){
|
||||
uint32x4_t foo;
|
||||
return foo;
|
||||
return vld1q_dup_u32(a);
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
// N:leaving as is
|
||||
template <typename Out_type, typename In_type>
|
||||
struct Reduce{
|
||||
//Need templated class to overload output type
|
||||
@ -184,26 +195,98 @@ namespace Optimization {
|
||||
}
|
||||
};
|
||||
|
||||
struct MultRealPart{
|
||||
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
|
||||
float32x4_t re = vtrn1q_f32(a, a);
|
||||
return vmulq_f32(re, b);
|
||||
}
|
||||
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
|
||||
float64x2_t re = vzip1q_f64(a, a);
|
||||
return vmulq_f64(re, b);
|
||||
}
|
||||
};
|
||||
|
||||
struct MaddRealPart{
|
||||
inline float32x4_t operator()(float32x4_t a, float32x4_t b, float32x4_t c){
|
||||
float32x4_t re = vtrn1q_f32(a, a);
|
||||
return vfmaq_f32(c, re, b);
|
||||
}
|
||||
inline float64x2_t operator()(float64x2_t a, float64x2_t b, float64x2_t c){
|
||||
float64x2_t re = vzip1q_f64(a, a);
|
||||
return vfmaq_f64(c, re, b);
|
||||
}
|
||||
};
|
||||
|
||||
struct Div{
|
||||
// Real float
|
||||
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
|
||||
return vdivq_f32(a, b);
|
||||
}
|
||||
// Real double
|
||||
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
|
||||
return vdivq_f64(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
struct MultComplex{
|
||||
// Complex float
|
||||
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
|
||||
float32x4_t foo;
|
||||
return foo;
|
||||
|
||||
float32x4_t r0, r1, r2, r3, r4;
|
||||
|
||||
// a = ar ai Ar Ai
|
||||
// b = br bi Br Bi
|
||||
// collect real/imag part, negate bi and Bi
|
||||
r0 = vtrn1q_f32(b, b); // br br Br Br
|
||||
r1 = vnegq_f32(b); // -br -bi -Br -Bi
|
||||
r2 = vtrn2q_f32(b, r1); // bi -bi Bi -Bi
|
||||
|
||||
// the fun part
|
||||
r3 = vmulq_f32(r2, a); // bi*ar -bi*ai ...
|
||||
r4 = vrev64q_f32(r3); // -bi*ai bi*ar ...
|
||||
|
||||
// fma(a,b,c) = a+b*c
|
||||
return vfmaq_f32(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi ...
|
||||
|
||||
// no fma, use mul and add
|
||||
//float32x4_t r5;
|
||||
//r5 = vmulq_f32(r0, a);
|
||||
//return vaddq_f32(r4, r5);
|
||||
}
|
||||
// Complex double
|
||||
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
|
||||
float32x4_t foo;
|
||||
return foo;
|
||||
|
||||
float64x2_t r0, r1, r2, r3, r4;
|
||||
|
||||
// b = br bi
|
||||
// collect real/imag part, negate bi
|
||||
r0 = vtrn1q_f64(b, b); // br br
|
||||
r1 = vnegq_f64(b); // -br -bi
|
||||
r2 = vtrn2q_f64(b, r1); // bi -bi
|
||||
|
||||
// the fun part
|
||||
r3 = vmulq_f64(r2, a); // bi*ar -bi*ai
|
||||
r4 = vextq_f64(r3,r3,1); // -bi*ai bi*ar
|
||||
|
||||
// fma(a,b,c) = a+b*c
|
||||
return vfmaq_f64(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi
|
||||
|
||||
// no fma, use mul and add
|
||||
//float64x2_t r5;
|
||||
//r5 = vmulq_f64(r0, a);
|
||||
//return vaddq_f64(r4, r5);
|
||||
}
|
||||
};
|
||||
|
||||
struct Mult{
|
||||
// Real float
|
||||
inline float32x4_t mac(float32x4_t a, float32x4_t b, float32x4_t c){
|
||||
return vaddq_f32(vmulq_f32(b,c),a);
|
||||
//return vaddq_f32(vmulq_f32(b,c),a);
|
||||
return vfmaq_f32(a, b, c);
|
||||
}
|
||||
inline float64x2_t mac(float64x2_t a, float64x2_t b, float64x2_t c){
|
||||
return vaddq_f64(vmulq_f64(b,c),a);
|
||||
//return vaddq_f64(vmulq_f64(b,c),a);
|
||||
return vfmaq_f64(a, b, c);
|
||||
}
|
||||
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
|
||||
return vmulq_f32(a,b);
|
||||
@ -221,74 +304,259 @@ namespace Optimization {
|
||||
struct Conj{
|
||||
// Complex single
|
||||
inline float32x4_t operator()(float32x4_t in){
|
||||
return in;
|
||||
// ar ai br bi -> ar -ai br -bi
|
||||
float32x4_t r0, r1;
|
||||
r0 = vnegq_f32(in); // -ar -ai -br -bi
|
||||
r1 = vrev64q_f32(r0); // -ai -ar -bi -br
|
||||
return vtrn1q_f32(in, r1); // ar -ai br -bi
|
||||
}
|
||||
// Complex double
|
||||
//inline float32x4_t operator()(float32x4_t in){
|
||||
// return 0;
|
||||
//}
|
||||
inline float64x2_t operator()(float64x2_t in){
|
||||
|
||||
float64x2_t r0, r1;
|
||||
r0 = vextq_f64(in, in, 1); // ai ar
|
||||
r1 = vnegq_f64(r0); // -ai -ar
|
||||
return vextq_f64(r0, r1, 1); // ar -ai
|
||||
}
|
||||
// do not define for integer input
|
||||
};
|
||||
|
||||
struct TimesMinusI{
|
||||
//Complex single
|
||||
inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
|
||||
return in;
|
||||
// ar ai br bi -> ai -ar ai -br
|
||||
float32x4_t r0, r1;
|
||||
r0 = vnegq_f32(in); // -ar -ai -br -bi
|
||||
r1 = vrev64q_f32(in); // ai ar bi br
|
||||
return vtrn1q_f32(r1, r0); // ar -ai br -bi
|
||||
}
|
||||
//Complex double
|
||||
//inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
|
||||
// return in;
|
||||
//}
|
||||
|
||||
|
||||
inline float64x2_t operator()(float64x2_t in, float64x2_t ret){
|
||||
// a ib -> b -ia
|
||||
float64x2_t tmp;
|
||||
tmp = vnegq_f64(in);
|
||||
return vextq_f64(in, tmp, 1);
|
||||
}
|
||||
};
|
||||
|
||||
struct TimesI{
|
||||
//Complex single
|
||||
inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
|
||||
//need shuffle
|
||||
return in;
|
||||
// ar ai br bi -> -ai ar -bi br
|
||||
float32x4_t r0, r1;
|
||||
r0 = vnegq_f32(in); // -ar -ai -br -bi
|
||||
r1 = vrev64q_f32(r0); // -ai -ar -bi -br
|
||||
return vtrn1q_f32(r1, in); // -ai ar -bi br
|
||||
}
|
||||
//Complex double
|
||||
//inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
|
||||
// return 0;
|
||||
//}
|
||||
inline float64x2_t operator()(float64x2_t in, float64x2_t ret){
|
||||
// a ib -> -b ia
|
||||
float64x2_t tmp;
|
||||
tmp = vnegq_f64(in);
|
||||
return vextq_f64(tmp, in, 1);
|
||||
}
|
||||
};
|
||||
|
||||
struct Permute{
|
||||
|
||||
static inline float32x4_t Permute0(float32x4_t in){ // N:ok
|
||||
// AB CD -> CD AB
|
||||
return vextq_f32(in, in, 2);
|
||||
};
|
||||
static inline float32x4_t Permute1(float32x4_t in){ // N:ok
|
||||
// AB CD -> BA DC
|
||||
return vrev64q_f32(in);
|
||||
};
|
||||
static inline float32x4_t Permute2(float32x4_t in){ // N:not used by Boyle
|
||||
return in;
|
||||
};
|
||||
static inline float32x4_t Permute3(float32x4_t in){ // N:not used by Boyle
|
||||
return in;
|
||||
};
|
||||
|
||||
static inline float64x2_t Permute0(float64x2_t in){ // N:ok
|
||||
// AB -> BA
|
||||
return vextq_f64(in, in, 1);
|
||||
};
|
||||
static inline float64x2_t Permute1(float64x2_t in){ // N:not used by Boyle
|
||||
return in;
|
||||
};
|
||||
static inline float64x2_t Permute2(float64x2_t in){ // N:not used by Boyle
|
||||
return in;
|
||||
};
|
||||
static inline float64x2_t Permute3(float64x2_t in){ // N:not used by Boyle
|
||||
return in;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
struct Rotate{
|
||||
|
||||
static inline float32x4_t rotate(float32x4_t in,int n){ // N:ok
|
||||
switch(n){
|
||||
case 0: // AB CD -> AB CD
|
||||
return tRotate<0>(in);
|
||||
break;
|
||||
case 1: // AB CD -> BC DA
|
||||
return tRotate<1>(in);
|
||||
break;
|
||||
case 2: // AB CD -> CD AB
|
||||
return tRotate<2>(in);
|
||||
break;
|
||||
case 3: // AB CD -> DA BC
|
||||
return tRotate<3>(in);
|
||||
break;
|
||||
default: assert(0);
|
||||
}
|
||||
}
|
||||
static inline float64x2_t rotate(float64x2_t in,int n){ // N:ok
|
||||
switch(n){
|
||||
case 0: // AB -> AB
|
||||
return tRotate<0>(in);
|
||||
break;
|
||||
case 1: // AB -> BA
|
||||
return tRotate<1>(in);
|
||||
break;
|
||||
default: assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
// working, but no restriction on n
|
||||
// template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n); };
|
||||
// template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n); };
|
||||
|
||||
// restriction on n
|
||||
template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n%4); };
|
||||
template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n%2); };
|
||||
|
||||
};
|
||||
|
||||
struct PrecisionChange {
|
||||
|
||||
static inline float16x8_t StoH (const float32x4_t &a,const float32x4_t &b) {
|
||||
float16x4_t h = vcvt_f16_f32(a);
|
||||
return vcvt_high_f16_f32(h, b);
|
||||
}
|
||||
static inline void HtoS (float16x8_t h,float32x4_t &sa,float32x4_t &sb) {
|
||||
sb = vcvt_high_f32_f16(h);
|
||||
// there is no direct conversion from lower float32x4_t to float64x2_t
|
||||
// vextq_f16 not supported by clang 3.8 / 4.0 / arm clang
|
||||
//float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
|
||||
// workaround for clang
|
||||
uint32x4_t h1u = reinterpret_cast<uint32x4_t>(h);
|
||||
float16x8_t h1 = reinterpret_cast<float16x8_t>(vextq_u32(h1u, h1u, 2));
|
||||
sa = vcvt_high_f32_f16(h1);
|
||||
}
|
||||
static inline float32x4_t DtoS (float64x2_t a,float64x2_t b) {
|
||||
float32x2_t s = vcvt_f32_f64(a);
|
||||
return vcvt_high_f32_f64(s, b);
|
||||
|
||||
}
|
||||
static inline void StoD (float32x4_t s,float64x2_t &a,float64x2_t &b) {
|
||||
b = vcvt_high_f64_f32(s);
|
||||
// there is no direct conversion from lower float32x4_t to float64x2_t
|
||||
float32x4_t s1 = vextq_f32(s, s, 2);
|
||||
a = vcvt_high_f64_f32(s1);
|
||||
|
||||
}
|
||||
static inline float16x8_t DtoH (float64x2_t a,float64x2_t b,float64x2_t c,float64x2_t d) {
|
||||
float32x4_t s1 = DtoS(a, b);
|
||||
float32x4_t s2 = DtoS(c, d);
|
||||
return StoH(s1, s2);
|
||||
}
|
||||
static inline void HtoD (float16x8_t h,float64x2_t &a,float64x2_t &b,float64x2_t &c,float64x2_t &d) {
|
||||
float32x4_t s1, s2;
|
||||
HtoS(h, s1, s2);
|
||||
StoD(s1, a, b);
|
||||
StoD(s2, c, d);
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Exchange support
|
||||
|
||||
struct Exchange{
|
||||
static inline void Exchange0(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
|
||||
// in1: ABCD -> out1: ABEF
|
||||
// in2: EFGH -> out2: CDGH
|
||||
|
||||
// z: CDAB
|
||||
float32x4_t z = vextq_f32(in1, in1, 2);
|
||||
// out1: ABEF
|
||||
out1 = vextq_f32(z, in2, 2);
|
||||
|
||||
// z: GHEF
|
||||
z = vextq_f32(in2, in2, 2);
|
||||
// out2: CDGH
|
||||
out2 = vextq_f32(in1, z, 2);
|
||||
};
|
||||
|
||||
static inline void Exchange1(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
|
||||
// in1: ABCD -> out1: AECG
|
||||
// in2: EFGH -> out2: BFDH
|
||||
out1 = vtrn1q_f32(in1, in2);
|
||||
out2 = vtrn2q_f32(in1, in2);
|
||||
};
|
||||
static inline void Exchange2(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
|
||||
assert(0);
|
||||
return;
|
||||
};
|
||||
static inline void Exchange3(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
|
||||
assert(0);
|
||||
return;
|
||||
};
|
||||
// double precision
|
||||
static inline void Exchange0(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
|
||||
// in1: AB -> out1: AC
|
||||
// in2: CD -> out2: BD
|
||||
out1 = vzip1q_f64(in1, in2);
|
||||
out2 = vzip2q_f64(in1, in2);
|
||||
};
|
||||
static inline void Exchange1(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
|
||||
assert(0);
|
||||
return;
|
||||
};
|
||||
static inline void Exchange2(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
|
||||
assert(0);
|
||||
return;
|
||||
};
|
||||
static inline void Exchange3(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
|
||||
assert(0);
|
||||
return;
|
||||
};
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Some Template specialization
|
||||
template < typename vtype >
|
||||
void permute(vtype &a, vtype b, int perm) {
|
||||
|
||||
};
|
||||
|
||||
//Complex float Reduce
|
||||
template<>
|
||||
inline Grid::ComplexF Reduce<Grid::ComplexF, float32x4_t>::operator()(float32x4_t in){
|
||||
return 0;
|
||||
float32x4_t v1; // two complex
|
||||
v1 = Optimization::Permute::Permute0(in);
|
||||
v1 = vaddq_f32(v1,in);
|
||||
u128f conv; conv.v=v1;
|
||||
return Grid::ComplexF(conv.f[0],conv.f[1]);
|
||||
}
|
||||
//Real float Reduce
|
||||
template<>
|
||||
inline Grid::RealF Reduce<Grid::RealF, float32x4_t>::operator()(float32x4_t in){
|
||||
float32x2_t high = vget_high_f32(in);
|
||||
float32x2_t low = vget_low_f32(in);
|
||||
float32x2_t tmp = vadd_f32(low, high);
|
||||
float32x2_t sum = vpadd_f32(tmp, tmp);
|
||||
return vget_lane_f32(sum,0);
|
||||
return vaddvq_f32(in);
|
||||
}
|
||||
|
||||
|
||||
//Complex double Reduce
|
||||
template<>
|
||||
template<> // N:by Boyle
|
||||
inline Grid::ComplexD Reduce<Grid::ComplexD, float64x2_t>::operator()(float64x2_t in){
|
||||
return 0;
|
||||
u128d conv; conv.v = in;
|
||||
return Grid::ComplexD(conv.f[0],conv.f[1]);
|
||||
}
|
||||
|
||||
//Real double Reduce
|
||||
template<>
|
||||
inline Grid::RealD Reduce<Grid::RealD, float64x2_t>::operator()(float64x2_t in){
|
||||
float64x2_t sum = vpaddq_f64(in, in);
|
||||
return vgetq_lane_f64(sum,0);
|
||||
return vaddvq_f64(in);
|
||||
}
|
||||
|
||||
//Integer Reduce
|
||||
@ -302,8 +570,9 @@ namespace Optimization {
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Here assign types
|
||||
namespace Grid {
|
||||
|
||||
// typedef Optimization::vech SIMD_Htype; // Reduced precision type
|
||||
typedef float16x8_t SIMD_Htype; // Half precision type
|
||||
typedef float32x4_t SIMD_Ftype; // Single precision type
|
||||
typedef float64x2_t SIMD_Dtype; // Double precision type
|
||||
typedef uint32x4_t SIMD_Itype; // Integer type
|
||||
@ -312,13 +581,6 @@ namespace Grid {
|
||||
inline void prefetch_HINT_T0(const char *ptr){};
|
||||
|
||||
|
||||
// Gpermute function
|
||||
template < typename VectorSIMD >
|
||||
inline void Gpermute(VectorSIMD &y,const VectorSIMD &b, int perm ) {
|
||||
Optimization::permute(y.v,b.v,perm);
|
||||
}
|
||||
|
||||
|
||||
// Function name aliases
|
||||
typedef Optimization::Vsplat VsplatSIMD;
|
||||
typedef Optimization::Vstore VstoreSIMD;
|
||||
@ -332,8 +594,11 @@ namespace Grid {
|
||||
// Arithmetic operations
|
||||
typedef Optimization::Sum SumSIMD;
|
||||
typedef Optimization::Sub SubSIMD;
|
||||
typedef Optimization::Div DivSIMD;
|
||||
typedef Optimization::Mult MultSIMD;
|
||||
typedef Optimization::MultComplex MultComplexSIMD;
|
||||
typedef Optimization::MultRealPart MultRealPartSIMD;
|
||||
typedef Optimization::MaddRealPart MaddRealPartSIMD;
|
||||
typedef Optimization::Conj ConjSIMD;
|
||||
typedef Optimization::TimesMinusI TimesMinusISIMD;
|
||||
typedef Optimization::TimesI TimesISIMD;
|
||||
|
@ -53,7 +53,7 @@ directory
|
||||
#if defined IMCI
|
||||
#include "Grid_imci.h"
|
||||
#endif
|
||||
#ifdef NEONv8
|
||||
#ifdef NEONV8
|
||||
#include "Grid_neon.h"
|
||||
#endif
|
||||
#if defined QPX
|
||||
|
@ -32,8 +32,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
namespace Grid {
|
||||
|
||||
int LebesgueOrder::UseLebesgueOrder;
|
||||
#ifdef KNL
|
||||
std::vector<int> LebesgueOrder::Block({8,2,2,2});
|
||||
|
||||
#else
|
||||
std::vector<int> LebesgueOrder::Block({2,2,2,2});
|
||||
#endif
|
||||
LebesgueOrder::IndexInteger LebesgueOrder::alignup(IndexInteger n){
|
||||
n--; // 1000 0011 --> 1000 0010
|
||||
n |= n >> 1; // 1000 0010 | 0100 0001 = 1100 0011
|
||||
@ -51,8 +54,31 @@ LebesgueOrder::LebesgueOrder(GridBase *_grid)
|
||||
if ( Block[0]==0) ZGraph();
|
||||
else if ( Block[1]==0) NoBlocking();
|
||||
else CartesianBlocking();
|
||||
}
|
||||
|
||||
if (0) {
|
||||
std::cout << "Thread Interleaving"<<std::endl;
|
||||
ThreadInterleave();
|
||||
}
|
||||
}
|
||||
void LebesgueOrder::ThreadInterleave(void)
|
||||
{
|
||||
std::vector<IndexInteger> reorder = _LebesgueReorder;
|
||||
std::vector<IndexInteger> throrder;
|
||||
int vol = _LebesgueReorder.size();
|
||||
int threads = GridThread::GetThreads();
|
||||
int blockbits=3;
|
||||
int blocklen = 8;
|
||||
int msk = 0x7;
|
||||
|
||||
for(int t=0;t<threads;t++){
|
||||
for(int ss=0;ss<vol;ss++){
|
||||
if ( ( ss >> blockbits) % threads == t ) {
|
||||
throrder.push_back(reorder[ss]);
|
||||
}
|
||||
}
|
||||
}
|
||||
_LebesgueReorder = throrder;
|
||||
}
|
||||
void LebesgueOrder::NoBlocking(void)
|
||||
{
|
||||
std::cout<<GridLogDebug<<"Lexicographic : no cache blocking"<<std::endl;
|
||||
|
@ -70,6 +70,8 @@ namespace Grid {
|
||||
std::vector<IndexInteger> & xi,
|
||||
std::vector<IndexInteger> &dims);
|
||||
|
||||
void ThreadInterleave(void);
|
||||
|
||||
private:
|
||||
std::vector<IndexInteger> _LebesgueReorder;
|
||||
|
||||
|
@ -98,7 +98,9 @@ template<class rtype,class vtype,class mtype,int N>
|
||||
strong_inline void mult(iVector<rtype,N> * __restrict__ ret,
|
||||
const iVector<vtype,N> * __restrict__ rhs,
|
||||
const iScalar<mtype> * __restrict__ lhs){
|
||||
mult(ret,lhs,rhs);
|
||||
for(int c1=0;c1<N;c1++){
|
||||
mult(&ret->_internal[c1],&rhs->_internal[c1],&lhs->_internal);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -45,7 +45,7 @@ using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
template <class Impl>
|
||||
class MagLogger : public HmcObservable<typename Impl::Field> {
|
||||
class MagMeas : public HmcObservable<typename Impl::Field> {
|
||||
public:
|
||||
typedef typename Impl::Field Field;
|
||||
typedef typename Impl::Simd::scalar_type Trace;
|
||||
@ -72,13 +72,13 @@ private:
|
||||
};
|
||||
|
||||
template <class Impl>
|
||||
class MagMod: public ObservableModule<MagLogger<Impl>, NoParameters>{
|
||||
typedef ObservableModule<MagLogger<Impl>, NoParameters> ObsBase;
|
||||
class MagMod: public ObservableModule<MagMeas<Impl>, NoParameters>{
|
||||
typedef ObservableModule<MagMeas<Impl>, NoParameters> ObsBase;
|
||||
using ObsBase::ObsBase; // for constructors
|
||||
|
||||
// acquire resource
|
||||
virtual void initialize(){
|
||||
this->ObservablePtr.reset(new MagLogger<Impl>());
|
||||
this->ObservablePtr.reset(new MagMeas<Impl>());
|
||||
}
|
||||
public:
|
||||
MagMod(): ObsBase(NoParameters()){}
|
||||
|
@ -66,7 +66,14 @@ int main(int argc, char **argv) {
|
||||
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
|
||||
typedef TopologicalChargeMod<HMCWrapper::ImplPolicy> QObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
TheHMC.Resources.AddObservable<QObs>();
|
||||
TopologyObsParameters TopParams;
|
||||
TopParams.interval = 5;
|
||||
TopParams.do_smearing = true;
|
||||
TopParams.Smearing.steps = 200;
|
||||
TopParams.Smearing.step_size = 0.01;
|
||||
TopParams.Smearing.meas_interval = 50;
|
||||
TopParams.Smearing.maxTau = 2.0;
|
||||
TheHMC.Resources.AddObservable<QObs>(TopParams);
|
||||
//////////////////////////////////////////////
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
Loading…
Reference in New Issue
Block a user