1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Merge branch 'develop' into feature/multi-communicator

This commit is contained in:
Peter Boyle 2017-08-19 13:03:35 -04:00
commit 7d88198387
27 changed files with 875 additions and 240 deletions

265
README.md
View File

@ -18,10 +18,41 @@
License: GPL v2.
Last update Nov 2016.
Last update June 2017.
_Please do not send pull requests to the `master` branch which is reserved for releases._
### Description
This library provides data parallel C++ container classes with internal memory layout
that is transformed to map efficiently to SIMD architectures. CSHIFT facilities
are provided, similar to HPF and cmfortran, and user control is given over the mapping of
array indices to both MPI tasks and SIMD processing elements.
* Identically shaped arrays then be processed with perfect data parallelisation.
* Such identically shaped arrays are called conformable arrays.
The transformation is based on the observation that Cartesian array processing involves
identical processing to be performed on different regions of the Cartesian array.
The library will both geometrically decompose into MPI tasks and across SIMD lanes.
Local vector loops are parallelised with OpenMP pragmas.
Data parallel array operations can then be specified with a SINGLE data parallel paradigm, but
optimally use MPI, OpenMP and SIMD parallelism under the hood. This is a significant simplification
for most programmers.
The layout transformations are parametrised by the SIMD vector length. This adapts according to the architecture.
Presently SSE4, ARM NEON (128 bits) AVX, AVX2, QPX (256 bits), IMCI and AVX512 (512 bits) targets are supported.
These are presented as `vRealF`, `vRealD`, `vComplexF`, and `vComplexD` internal vector data types.
The corresponding scalar types are named `RealF`, `RealD`, `ComplexF` and `ComplexD`.
MPI, OpenMP, and SIMD parallelism are present in the library.
Please see [this paper](https://arxiv.org/abs/1512.03487) for more detail.
### Compilers
Intel ICPC v16.0.3 and later
@ -56,35 +87,25 @@ When you file an issue, please go though the following checklist:
6. Attach the output of `make V=1`.
7. Describe the issue and any previous attempt to solve it. If relevant, show how to reproduce the issue using a minimal working example.
### Required libraries
Grid requires:
[GMP](https://gmplib.org/),
### Description
This library provides data parallel C++ container classes with internal memory layout
that is transformed to map efficiently to SIMD architectures. CSHIFT facilities
are provided, similar to HPF and cmfortran, and user control is given over the mapping of
array indices to both MPI tasks and SIMD processing elements.
[MPFR](http://www.mpfr.org/)
* Identically shaped arrays then be processed with perfect data parallelisation.
* Such identically shaped arrays are called conformable arrays.
Bootstrapping grid downloads and uses for internal dense matrix (non-QCD operations) the Eigen library.
The transformation is based on the observation that Cartesian array processing involves
identical processing to be performed on different regions of the Cartesian array.
Grid optionally uses:
The library will both geometrically decompose into MPI tasks and across SIMD lanes.
Local vector loops are parallelised with OpenMP pragmas.
[HDF5](https://support.hdfgroup.org/HDF5/)
Data parallel array operations can then be specified with a SINGLE data parallel paradigm, but
optimally use MPI, OpenMP and SIMD parallelism under the hood. This is a significant simplification
for most programmers.
[LIME](http://usqcd-software.github.io/c-lime/) for ILDG and SciDAC file format support.
The layout transformations are parametrised by the SIMD vector length. This adapts according to the architecture.
Presently SSE4 (128 bit) AVX, AVX2, QPX (256 bit), IMCI, and AVX512 (512 bit) targets are supported (ARM NEON on the way).
[FFTW](http://www.fftw.org) either generic version or via the Intel MKL library.
These are presented as `vRealF`, `vRealD`, `vComplexF`, and `vComplexD` internal vector data types. These may be useful in themselves for other programmers.
The corresponding scalar types are named `RealF`, `RealD`, `ComplexF` and `ComplexD`.
LAPACK either generic version or Intel MKL library.
MPI, OpenMP, and SIMD parallelism are present in the library.
Please see https://arxiv.org/abs/1512.03487 for more detail.
### Quick start
First, start by cloning the repository:
@ -155,7 +176,6 @@ The following options can be use with the `--enable-comms=` option to target dif
| `none` | no communications |
| `mpi[-auto]` | MPI communications |
| `mpi3[-auto]` | MPI communications using MPI 3 shared memory |
| `mpi3l[-auto]` | MPI communications using MPI 3 shared memory and leader model |
| `shmem ` | Cray SHMEM communications |
For the MPI interfaces the optional `-auto` suffix instructs the `configure` scripts to determine all the necessary compilation and linking flags. This is done by extracting the informations from the MPI wrapper specified in the environment variable `MPICXX` (if not specified `configure` will scan though a list of default names). The `-auto` suffix is not supported by the Cray environment wrapper scripts. Use the standard versions instead.
@ -173,7 +193,8 @@ The following options can be use with the `--enable-simd=` option to target diff
| `AVXFMA4` | AVX (256 bit) + FMA4 |
| `AVX2` | AVX 2 (256 bit) |
| `AVX512` | AVX 512 bit |
| `QPX` | QPX (256 bit) |
| `NEONv8` | [ARM NEON](http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch07s03.html) (128 bit) |
| `QPX` | IBM QPX (256 bit) |
Alternatively, some CPU codenames can be directly used:
@ -195,21 +216,205 @@ The following configuration is recommended for the Intel Knights Landing platfor
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
--enable-comms=mpi-auto \
--with-gmp=<path> \
--with-mpfr=<path> \
--enable-comms=mpi-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
```
The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
where `<path>` is the UNIX prefix where GMP and MPFR are installed. If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
--enable-comms=mpi \
--with-gmp=<path> \
--with-mpfr=<path> \
--enable-mkl \
CXX=CC CC=cc
```
```
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
``` bash
--with-gmp=<path> \
--with-mpfr=<path> \
```
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
Knight's Landing with Intel Omnipath adapters with two adapters per node
presently performs better with use of more than one rank per node, using shared memory
for interior communication. This is the mpi3 communications implementation.
We recommend four ranks per node for best performance, but optimum is local volume dependent.
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
--enable-comms=mpi3-auto \
--enable-mkl \
CC=icpc MPICXX=mpiicpc
```
### Build setup for Intel Haswell Xeon platform
The following configuration is recommended for the Intel Haswell platform:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
--enable-comms=mpi3-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
```
The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
``` bash
--with-gmp=<path> \
--with-mpfr=<path> \
```
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=CC CC=cc
```
Since Dual socket nodes are commonplace, we recommend MPI-3 as the default with the use of
one rank per socket. If using the Intel MPI library, threads should be pinned to NUMA domains using
```
export I_MPI_PIN=1
```
This is the default.
### Build setup for Intel Skylake Xeon platform
The following configuration is recommended for the Intel Skylake platform:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX512 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=mpiicpc
```
The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
``` bash
--with-gmp=<path> \
--with-mpfr=<path> \
```
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX512 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=CC CC=cc
```
Since Dual socket nodes are commonplace, we recommend MPI-3 as the default with the use of
one rank per socket. If using the Intel MPI library, threads should be pinned to NUMA domains using
```
export I_MPI_PIN=1
```
This is the default.
#### Expected Skylake Gold 6148 dual socket (single prec, single node 20+20 cores) performance using NUMA MPI mapping):
mpirun -n 2 benchmarks/Benchmark_dwf --grid 16.16.16.16 --mpi 2.1.1.1 --cacheblocking 2.2.2.2 --dslash-asm --shm 1024 --threads 18
TBA
### Build setup for AMD EPYC / RYZEN
The AMD EPYC is a multichip module comprising 32 cores spread over four distinct chips each with 8 cores.
So, even with a single socket node there is a quad-chip module. Dual socket nodes with 64 cores total
are common. Each chip within the module exposes a separate NUMA domain.
There are four NUMA domains per socket and we recommend one MPI rank per NUMA domain.
MPI-3 is recommended with the use of four ranks per socket,
and 8 threads per rank.
The following configuration is recommended for the AMD EPYC platform.
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
--enable-comms=mpi3 \
CXX=mpicxx
```
If gmp and mpfr are NOT in standard places (/usr/) these flags may be needed:
``` bash
--with-gmp=<path> \
--with-mpfr=<path> \
```
where `<path>` is the UNIX prefix where GMP and MPFR are installed.
Using MPICH and g++ v4.9.2, best performance can be obtained using explicit GOMP_CPU_AFFINITY flags for each MPI rank.
This can be done by invoking MPI on a wrapper script omp_bind.sh to handle this.
It is recommended to run 8 MPI ranks on a single dual socket AMD EPYC, with 8 threads per rank using MPI3 and
shared memory to communicate within this node:
mpirun -np 8 ./omp_bind.sh ./Benchmark_dwf --mpi 2.2.2.1 --dslash-unroll --threads 8 --grid 16.16.16.16 --cacheblocking 4.4.4.4
Where omp_bind.sh does the following:
```
#!/bin/bash
numanode=` expr $PMI_RANK % 8 `
basecore=`expr $numanode \* 16`
core0=`expr $basecore + 0 `
core1=`expr $basecore + 2 `
core2=`expr $basecore + 4 `
core3=`expr $basecore + 6 `
core4=`expr $basecore + 8 `
core5=`expr $basecore + 10 `
core6=`expr $basecore + 12 `
core7=`expr $basecore + 14 `
export GOMP_CPU_AFFINITY="$core0 $core1 $core2 $core3 $core4 $core5 $core6 $core7"
echo GOMP_CUP_AFFINITY $GOMP_CPU_AFFINITY
$@
```
Performance:
#### Expected AMD EPYC 7601 dual socket (single prec, single node 32+32 cores) performance using NUMA MPI mapping):
mpirun -np 8 ./omp_bind.sh ./Benchmark_dwf --threads 8 --mpi 2.2.2.1 --dslash-unroll --grid 16.16.16.16 --cacheblocking 4.4.4.4
TBA
### Build setup for BlueGene/Q
To be written...
### Build setup for ARM Neon
To be written...
### Build setup for laptops, other compilers, non-cluster builds
Many versions of g++ and clang++ work with Grid, and involve merely replacing CXX (and MPICXX),
and omit the enable-mkl flag.
Single node builds are enabled with
```
--enable-comms=none
```
FFTW support that is not in the default search path may then enabled with
```
--with-fftw=<installpath>
```
BLAS will not be compiled in by default, and Lanczos will default to Eigen diagonalisation.

View File

@ -165,7 +165,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
int ncall =1000;
int ncall =500;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
@ -302,6 +302,7 @@ int main (int argc, char ** argv)
std::cout<< "sD ERR \n " << err <<std::endl;
}
assert(sum < 1.0e-4);
if(1){
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
@ -381,8 +382,23 @@ int main (int argc, char ** argv)
}
assert(error<1.0e-4);
}
if(0){
std::cout << "Single cache warm call to sDw.Dhop " <<std::endl;
for(int i=0;i< PerformanceCounter::NumTypes(); i++ ){
sDw.Dhop(ssrc,sresult,0);
PerformanceCounter Counter(i);
Counter.Start();
sDw.Dhop(ssrc,sresult,0);
Counter.Stop();
Counter.Report();
}
}
}
if (1)
{ // Naive wilson dag implementation
ref = zero;

View File

@ -55,21 +55,21 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
uint64_t lmax=64;
#define NLOOP (100*lmax*lmax*lmax*lmax/vol)
for(int lat=4;lat<=lmax;lat+=4){
uint64_t lmax=96;
#define NLOOP (10*lmax*lmax*lmax*lmax/vol)
for(int lat=8;lat<=lmax;lat+=8){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
uint64_t Nloop=NLOOP;
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);
LatticeVec z(&Grid);// random(pRNG,z);
LatticeVec x(&Grid);// random(pRNG,x);
LatticeVec y(&Grid);// random(pRNG,y);
double a=2.0;
@ -83,7 +83,7 @@ int main (int argc, char ** argv)
double time = (stop-start)/Nloop*1000;
double flops=vol*Nvec*2;// mul,add
double bytes=3*vol*Nvec*sizeof(Real);
double bytes=3.0*vol*Nvec*sizeof(Real);
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
}
@ -94,17 +94,17 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=4;lat<=lmax;lat+=4){
for(int lat=8;lat<=lmax;lat+=8){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);
LatticeVec z(&Grid);// random(pRNG,z);
LatticeVec x(&Grid);// random(pRNG,x);
LatticeVec y(&Grid);// random(pRNG,y);
double a=2.0;
uint64_t Nloop=NLOOP;
@ -119,7 +119,7 @@ int main (int argc, char ** argv)
double time = (stop-start)/Nloop*1000;
double flops=vol*Nvec*2;// mul,add
double bytes=3*vol*Nvec*sizeof(Real);
double bytes=3.0*vol*Nvec*sizeof(Real);
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
}
@ -129,20 +129,20 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
for(int lat=4;lat<=lmax;lat+=4){
for(int lat=8;lat<=lmax;lat+=8){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
uint64_t Nloop=NLOOP;
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);
LatticeVec z(&Grid);// random(pRNG,z);
LatticeVec x(&Grid);// random(pRNG,x);
LatticeVec y(&Grid);// random(pRNG,y);
RealD a=2.0;
@ -154,7 +154,7 @@ int main (int argc, char ** argv)
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double bytes=2*vol*Nvec*sizeof(Real);
double bytes=2.0*vol*Nvec*sizeof(Real);
double flops=vol*Nvec*1;// mul
std::cout<<GridLogMessage <<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
@ -166,17 +166,17 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=4;lat<=lmax;lat+=4){
for(int lat=8;lat<=lmax;lat+=8){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
uint64_t Nloop=NLOOP;
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
LatticeVec z(&Grid); //random(pRNG,z);
LatticeVec x(&Grid); //random(pRNG,x);
LatticeVec y(&Grid); //random(pRNG,y);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeVec z(&Grid);// random(pRNG,z);
LatticeVec x(&Grid);// random(pRNG,x);
LatticeVec y(&Grid);// random(pRNG,y);
RealD a=2.0;
Real nn;
double start=usecond();
@ -187,7 +187,7 @@ int main (int argc, char ** argv)
double stop=usecond();
double time = (stop-start)/Nloop*1000;
double bytes=vol*Nvec*sizeof(Real);
double bytes=1.0*vol*Nvec*sizeof(Real);
double flops=vol*Nvec*2;// mul,add
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<< "\t\t"<<(stop-start)/1000./1000.<< "\t\t " <<std::endl;

View File

@ -37,12 +37,12 @@ int main (int argc, char ** argv)
Grid_init(&argc,&argv);
#define LMAX (64)
int Nloop=20;
int64_t Nloop=20;
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
int threads = GridThread::GetThreads();
int64_t threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
@ -54,16 +54,16 @@ int main (int argc, char ** argv)
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid);// random(pRNG,z);
LatticeColourMatrix x(&Grid);// random(pRNG,x);
LatticeColourMatrix y(&Grid);// random(pRNG,y);
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int64_t i=0;i<Nloop;i++){
x=x*y;
}
double stop=usecond();
@ -86,17 +86,17 @@ int main (int argc, char ** argv)
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
LatticeColourMatrix y(&Grid); //random(pRNG,y);
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int64_t i=0;i<Nloop;i++){
z=x*y;
}
double stop=usecond();
@ -117,17 +117,17 @@ int main (int argc, char ** argv)
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
LatticeColourMatrix y(&Grid); //random(pRNG,y);
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int64_t i=0;i<Nloop;i++){
mult(z,x,y);
}
double stop=usecond();
@ -148,17 +148,17 @@ int main (int argc, char ** argv)
for(int lat=2;lat<=LMAX;lat+=2){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
// GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); //random(pRNG,z);
LatticeColourMatrix x(&Grid); //random(pRNG,x);
LatticeColourMatrix y(&Grid); //random(pRNG,y);
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
double start=usecond();
for(int i=0;i<Nloop;i++){
for(int64_t i=0;i<Nloop;i++){
mac(z,x,y);
}
double stop=usecond();

View File

@ -13,6 +13,10 @@ m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
################ Get git info
#AC_REVISION([m4_esyscmd_s([./scripts/configure.commit])])
################ Set flags
# do not move!
CXXFLAGS="-O3 $CXXFLAGS"
############### Checks for programs
AC_PROG_CXX
AC_PROG_RANLIB
@ -27,7 +31,6 @@ AX_GXX_VERSION
AC_DEFINE_UNQUOTED([GXX_VERSION],["$GXX_VERSION"],
[version of g++ that will compile the code])
CXXFLAGS="-g $CXXFLAGS"
############### Checks for typedefs, structures, and compiler characteristics
@ -51,9 +54,14 @@ AC_CHECK_HEADERS(malloc/malloc.h)
AC_CHECK_HEADERS(malloc.h)
AC_CHECK_HEADERS(endian.h)
AC_CHECK_HEADERS(execinfo.h)
AC_CHECK_HEADERS(numaif.h)
AC_CHECK_DECLS([ntohll],[], [], [[#include <arpa/inet.h>]])
AC_CHECK_DECLS([be64toh],[], [], [[#include <arpa/inet.h>]])
############## Standard libraries
AC_CHECK_LIB([m],[cos])
AC_CHECK_LIB([stdc++],[abort])
############### GMP and MPFR
AC_ARG_WITH([gmp],
[AS_HELP_STRING([--with-gmp=prefix],
@ -186,9 +194,14 @@ Info at: http://usqcd.jlab.org/usqcd-docs/c-lime/)])
AC_SEARCH_LIBS([crc32], [z],
[AC_DEFINE([HAVE_ZLIB], [1], [Define to 1 if you have the `LIBZ' library])]
[have_zlib=true],
[have_zlib=true] [LIBS="${LIBS} -lz"],
[AC_MSG_ERROR(zlib library was not found in your system.)])
AC_SEARCH_LIBS([move_pages], [numa],
[AC_DEFINE([HAVE_LIBNUMA], [1], [Define to 1 if you have the `LIBNUMA' library])]
[have_libnuma=true] [LIBS="${LIBS} -lnuma"],
[AC_MSG_WARN(libnuma library was not found in your system. Some optimisations will not apply)])
AC_SEARCH_LIBS([H5Fopen], [hdf5_cpp],
[AC_DEFINE([HAVE_HDF5], [1], [Define to 1 if you have the `HDF5' library])]
[have_hdf5=true]
@ -241,6 +254,7 @@ case ${ax_cv_cxx_compiler_vendor} in
SIMD_FLAGS='';;
KNL)
AC_DEFINE([AVX512],[1],[AVX512 intrinsics])
AC_DEFINE([KNL],[1],[Knights landing processor])
SIMD_FLAGS='-march=knl';;
GEN)
AC_DEFINE([GEN],[1],[generic vector code])
@ -248,6 +262,9 @@ case ${ax_cv_cxx_compiler_vendor} in
[generic SIMD vector width (in bytes)])
SIMD_GEN_WIDTH_MSG=" (width= $ac_gen_simd_width)"
SIMD_FLAGS='';;
NEONv8)
AC_DEFINE([NEONV8],[1],[ARMv8 NEON])
SIMD_FLAGS='-march=armv8-a';;
QPX|BGQ)
AC_DEFINE([QPX],[1],[QPX intrinsics for BG/Q])
SIMD_FLAGS='';;
@ -276,6 +293,7 @@ case ${ax_cv_cxx_compiler_vendor} in
SIMD_FLAGS='';;
KNL)
AC_DEFINE([AVX512],[1],[AVX512 intrinsics for Knights Landing])
AC_DEFINE([KNL],[1],[Knights landing processor])
SIMD_FLAGS='-xmic-avx512';;
GEN)
AC_DEFINE([GEN],[1],[generic vector code])

View File

@ -102,7 +102,14 @@ public:
#else
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
#endif
// First touch optimise in threaded loop
uint8_t *cp = (uint8_t *)ptr;
#ifdef GRID_OMP
#pragma omp parallel for
#endif
for(size_type n=0;n<bytes;n+=4096){
cp[n]=0;
}
return ptr;
}
@ -190,6 +197,13 @@ public:
#else
_Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,__n*sizeof(_Tp));
#endif
size_type bytes = __n*sizeof(_Tp);
uint8_t *cp = (uint8_t *)ptr;
// One touch per 4k page, static OMP loop to catch same loop order
#pragma omp parallel for schedule(static)
for(size_type n=0;n<bytes;n+=4096){
cp[n]=0;
}
return ptr;
}
void deallocate(pointer __p, size_type) {

View File

@ -37,7 +37,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>
//#include <zlib.h>
#include <zlib.h>
#ifdef HAVE_NUMAIF_H
#include <numaif.h>
#endif
#ifndef SHM_HUGETLB
#define SHM_HUGETLB 04000
#endif
@ -214,6 +217,25 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
assert(((uint64_t)ptr&0x3F)==0);
// Try to force numa domain on the shm segment if we have numaif.h
#ifdef HAVE_NUMAIF_H
int status;
int flags=MPOL_MF_MOVE;
#ifdef KNL
int nodes=1; // numa domain == MCDRAM
// Find out if in SNC2,SNC4 mode ?
#else
int nodes=r; // numa domain == MPI ID
#endif
unsigned long count=1;
for(uint64_t page=0;page<size;page+=4096){
void *pages = (void *) ( page + (uint64_t)ptr );
uint64_t *cow_it = (uint64_t *)pages; *cow_it = 1;
ierr= move_pages(0,count, &pages,&nodes,&status,flags);
if (ierr && (page==0)) perror("numa relocate command failed");
}
#endif
ShmCommBufs[r] =ptr;
}

View File

@ -540,7 +540,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
vector_typeD rtmp = TensorRemove(tmp);
// vector_typeD rtmp = TensorRemove(tmp);
auto rtmp = TensorRemove(tmp);
mat_thread(i,j) += Reduce(rtmp);
}}
}}

View File

@ -40,7 +40,7 @@ const PerformanceCounter::PerformanceCounterConfig PerformanceCounter::Performan
{ PERF_TYPE_HARDWARE, PERF_COUNT_HW_CPU_CYCLES , "CPUCYCLES.........." , INSTRUCTIONS},
{ PERF_TYPE_HARDWARE, PERF_COUNT_HW_INSTRUCTIONS , "INSTRUCTIONS......." , CPUCYCLES },
// 4
#ifdef AVX512
#ifdef KNL
{ PERF_TYPE_RAW, RawConfig(0x40,0x04), "ALL_LOADS..........", CPUCYCLES },
{ PERF_TYPE_RAW, RawConfig(0x01,0x04), "L1_MISS_LOADS......", L1D_READ_ACCESS },
{ PERF_TYPE_RAW, RawConfig(0x40,0x04), "ALL_LOADS..........", L1D_READ_ACCESS },

View File

@ -93,6 +93,8 @@ class ScalarImplTypes {
class ScalarAdjMatrixImplTypes {
public:
typedef S Simd;
typedef QCD::SU<N> Group;
template <typename vtype>
using iImplField = iScalar<iScalar<iMatrix<vtype, N>>>;
template <typename vtype>
@ -108,7 +110,7 @@ class ScalarImplTypes {
typedef Field PropagatorField;
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG) {
QCD::SU<N>::GaussianFundamentalLieAlgebraMatrix(pRNG, P);
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, P);
}
static inline Field projectForce(Field& P) {return P;}
@ -122,11 +124,11 @@ class ScalarImplTypes {
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
QCD::SU<N>::LieRandomize(pRNG, U);
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U);
}
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
QCD::SU<N>::LieRandomize(pRNG, U, 0.01);
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U, 0.01);
}
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {

View File

@ -81,7 +81,7 @@ namespace Grid {
phiStencil.HaloExchange(p, compressor);
Field action(p._grid), pshift(p._grid), phisquared(p._grid);
phisquared = p*p;
action = (2.0*Ndim + mass_square)*phisquared + lambda*phisquared*phisquared;
action = (2.0*Ndim + mass_square)*phisquared - lambda/24.*phisquared*phisquared;
for (int mu = 0; mu < Ndim; mu++) {
// pshift = Cshift(p, mu, +1); // not efficient, implement with stencils
parallel_for (int i = 0; i < p._grid->oSites(); i++) {
@ -98,7 +98,7 @@ namespace Grid {
permute(temp2, *temp, permute_type);
action._odata[i] -= temp2*(*t_p) + (*t_p)*temp2;
} else {
action._odata[i] -= *temp*(*t_p) + (*t_p)*(*temp);
action._odata[i] -= (*temp)*(*t_p) + (*t_p)*(*temp);
}
} else {
action._odata[i] -= phiStencil.CommBuf()[SE->_offset]*(*t_p) + (*t_p)*phiStencil.CommBuf()[SE->_offset];
@ -113,7 +113,7 @@ namespace Grid {
virtual void deriv(const Field &p, Field &force) {
assert(p._grid->Nd() == Ndim);
force = (2.0*Ndim + mass_square)*p + 2.0*lambda*p*p*p;
force = (2.0*Ndim + mass_square)*p - lambda/12.*p*p*p;
// move this outside
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
phiStencil.HaloExchange(p, compressor);

View File

@ -76,7 +76,7 @@ struct HMCparameters: Serializable {
template < class ReaderClass >
void initialize(Reader<ReaderClass> &TheReader){
std::cout << "Reading HMC\n";
std::cout << GridLogMessage << "Reading HMC\n";
read(TheReader, "HMC", *this);
}

View File

@ -253,6 +253,7 @@ class HMCResourceManager {
template<class T, class... Types>
void AddObservable(Types&&... Args){
ObservablesList.push_back(std::unique_ptr<T>(new T(std::forward<Types>(Args)...)));
ObservablesList.back()->print_parameters();
}
std::vector<HmcObservable<typename ImplementationPolicy::Field>* > GetObservables(){
@ -297,4 +298,4 @@ private:
}
}
#endif // HMC_RESOURCE_MANAGER_H
#endif // HMC_RESOURCE_MANAGER_H

View File

@ -84,8 +84,6 @@ class PlaquetteMod: public ObservableModule<PlaquetteLogger<Impl>, NoParameters>
typedef ObservableModule<PlaquetteLogger<Impl>, NoParameters> ObsBase;
using ObsBase::ObsBase; // for constructors
// acquire resource
virtual void initialize(){
this->ObservablePtr.reset(new PlaquetteLogger<Impl>());
@ -94,23 +92,22 @@ class PlaquetteMod: public ObservableModule<PlaquetteLogger<Impl>, NoParameters>
PlaquetteMod(): ObsBase(NoParameters()){}
};
template < class Impl >
class TopologicalChargeMod: public ObservableModule<TopologicalCharge<Impl>, NoParameters>{
typedef ObservableModule<TopologicalCharge<Impl>, NoParameters> ObsBase;
class TopologicalChargeMod: public ObservableModule<TopologicalCharge<Impl>, TopologyObsParameters>{
typedef ObservableModule<TopologicalCharge<Impl>, TopologyObsParameters> ObsBase;
using ObsBase::ObsBase; // for constructors
// acquire resource
virtual void initialize(){
this->ObservablePtr.reset(new TopologicalCharge<Impl>());
this->ObservablePtr.reset(new TopologicalCharge<Impl>(this->Par_));
}
public:
TopologicalChargeMod(): ObsBase(NoParameters()){}
TopologicalChargeMod(TopologyObsParameters Par): ObsBase(Par){}
TopologicalChargeMod(): ObsBase(){}
};
}// QCD temporarily here

View File

@ -33,9 +33,45 @@ directory
namespace Grid {
namespace QCD {
struct TopologySmearingParameters : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologySmearingParameters,
int, steps,
float, step_size,
int, meas_interval,
float, maxTau);
TopologySmearingParameters(int s = 0, float ss = 0.0f, int mi = 0, float mT = 0.0f):
steps(s), step_size(ss), meas_interval(mi), maxTau(mT){}
template < class ReaderClass >
TopologySmearingParameters(Reader<ReaderClass>& Reader){
read(Reader, "Smearing", *this);
}
};
struct TopologyObsParameters : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologyObsParameters,
int, interval,
bool, do_smearing,
TopologySmearingParameters, Smearing);
TopologyObsParameters(int interval = 1, bool smearing = false):
interval(interval), Smearing(smearing){}
template <class ReaderClass >
TopologyObsParameters(Reader<ReaderClass>& Reader){
read(Reader, "TopologyMeasurement", *this);
}
};
// this is only defined for a gauge theory
template <class Impl>
class TopologicalCharge : public HmcObservable<typename Impl::Field> {
TopologyObsParameters Pars;
public:
// here forces the Impl to be of gauge fields
// if not the compiler will complain
@ -44,20 +80,39 @@ class TopologicalCharge : public HmcObservable<typename Impl::Field> {
// necessary for HmcObservable compatibility
typedef typename Impl::Field Field;
TopologicalCharge(int interval = 1, bool do_smearing = false):
Pars(interval, do_smearing){}
TopologicalCharge(TopologyObsParameters P):Pars(P){
std::cout << GridLogDebug << "Creating TopologicalCharge " << std::endl;
}
void TrajectoryComplete(int traj,
Field &U,
GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
Real q = WilsonLoops<Impl>::TopologicalCharge(U);
if (traj%Pars.interval == 0){
// Smearing
Field Usmear = U;
int def_prec = std::cout.precision();
if (Pars.do_smearing){
// using wilson flow by default here
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
Real T0 = WF.energyDensityPlaquette(Usmear);
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
}
int def_prec = std::cout.precision();
Real q = WilsonLoops<Impl>::TopologicalCharge(Usmear);
std::cout << GridLogMessage
<< std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "Topological Charge: [ " << traj << " ] "<< q << std::endl;
std::cout << GridLogMessage
<< std::setprecision(std::numeric_limits<Real>::digits10 + 1)
<< "Topological Charge: [ " << traj << " ] "<< q << std::endl;
std::cout.precision(def_prec);
std::cout.precision(def_prec);
}
}
};

View File

@ -108,7 +108,7 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
if (maxTau - taus < epsilon){
epsilon = maxTau-taus;
}
std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
GaugeField Z(U._grid);
GaugeField Zprime(U._grid);
GaugeField tmp(U._grid), Uprime(U._grid);
@ -138,10 +138,10 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
// adjust integration step
taus += epsilon;
std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
}
@ -166,7 +166,6 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
out = in;
for (unsigned int step = 1; step <= Nstep; step++) {
auto start = std::chrono::high_resolution_clock::now();
std::cout << GridLogMessage << "Evolution time :"<< tau(step) << std::endl;
evolve_step(out);
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end - start;
@ -191,7 +190,7 @@ void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, Re
unsigned int step = 0;
do{
step++;
std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
evolve_step_adaptive(out, maxTau);
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " "

View File

@ -26,12 +26,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
//#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
namespace Grid {
namespace QCD {
template <class Gimpl>
class FourierAcceleratedGaugeFixer : public Gimpl {
public:
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
@ -186,3 +186,5 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
}
};
}
}

View File

@ -716,8 +716,7 @@ template<typename GaugeField,typename GaugeMat>
for (int a = 0; a < AdjointDimension; a++) {
generator(a, Ta);
auto tmp = - 2.0 * (trace(timesI(Ta) * in)) * scale;// 2.0 for the normalization of the trace in the fundamental rep
pokeColour(h_out, tmp, a);
pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
}
}

View File

@ -65,10 +65,12 @@ Hdf5Reader::Hdf5Reader(const std::string &fileName)
Hdf5Type<unsigned int>::type());
}
void Hdf5Reader::push(const std::string &s)
bool Hdf5Reader::push(const std::string &s)
{
group_ = group_.openGroup(s);
path_.push_back(s);
return true;
}
void Hdf5Reader::pop(void)

View File

@ -54,7 +54,7 @@ namespace Grid
public:
Hdf5Reader(const std::string &fileName);
virtual ~Hdf5Reader(void) = default;
void push(const std::string &s);
bool push(const std::string &s);
void pop(void);
template <typename U>
void readDefault(const std::string &s, U &output);

View File

@ -1,13 +1,14 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_neon.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: Nils Meyer <nils.meyer@ur.de>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -26,19 +27,25 @@ Author: neo <cossu@post.kek.jp>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//----------------------------------------------------------------------
/*! @file Grid_sse4.h
@brief Optimization libraries for NEON (ARM) instructions set ARMv8
Experimental - Using intrinsics - DEVELOPING!
/*
ARMv8 NEON intrinsics layer by
Nils Meyer <nils.meyer@ur.de>,
University of Regensburg, Germany
SFB/TRR55
*/
// Time-stamp: <2015-07-10 17:45:09 neo>
//----------------------------------------------------------------------
#ifndef GEN_SIMD_WIDTH
#define GEN_SIMD_WIDTH 16u
#endif
#include "Grid_generic_types.h"
#include <arm_neon.h>
// ARMv8 supports double precision
namespace Grid {
namespace Optimization {
template<class vtype>
@ -46,16 +53,20 @@ namespace Optimization {
float32x4_t f;
vtype v;
};
union u128f {
float32x4_t v;
float f[4];
};
union u128d {
float64x2_t v;
double f[4];
double f[2];
};
// half precision
union u128h {
float16x8_t v;
uint16_t f[8];
};
struct Vsplat{
//Complex float
inline float32x4_t operator()(float a, float b){
@ -64,31 +75,31 @@ namespace Optimization {
}
// Real float
inline float32x4_t operator()(float a){
return vld1q_dup_f32(&a);
return vdupq_n_f32(a);
}
//Complex double
inline float32x4_t operator()(double a, double b){
float tmp[4]={(float)a,(float)b,(float)a,(float)b};
return vld1q_f32(tmp);
inline float64x2_t operator()(double a, double b){
double tmp[2]={a,b};
return vld1q_f64(tmp);
}
//Real double
inline float32x4_t operator()(double a){
return vld1q_dup_f32(&a);
//Real double // N:tbc
inline float64x2_t operator()(double a){
return vdupq_n_f64(a);
}
//Integer
//Integer // N:tbc
inline uint32x4_t operator()(Integer a){
return vld1q_dup_u32(&a);
return vdupq_n_u32(a);
}
};
struct Vstore{
//Float
//Float
inline void operator()(float32x4_t a, float* F){
vst1q_f32(F, a);
}
//Double
inline void operator()(float32x4_t a, double* D){
vst1q_f32((float*)D, a);
inline void operator()(float64x2_t a, double* D){
vst1q_f64(D, a);
}
//Integer
inline void operator()(uint32x4_t a, Integer* I){
@ -97,54 +108,54 @@ namespace Optimization {
};
struct Vstream{
//Float
struct Vstream{ // N:equivalents to _mm_stream_p* in NEON?
//Float // N:generic
inline void operator()(float * a, float32x4_t b){
memcpy(a,&b,4*sizeof(float));
}
//Double
inline void operator()(double * a, float32x4_t b){
//Double // N:generic
inline void operator()(double * a, float64x2_t b){
memcpy(a,&b,2*sizeof(double));
}
};
// Nils: Vset untested; not used currently in Grid at all;
// git commit 4a8c4ccfba1d05159348d21a9698028ea847e77b
struct Vset{
// Complex float
// Complex float // N:ok
inline float32x4_t operator()(Grid::ComplexF *a){
float32x4_t foo;
return foo;
float tmp[4]={a[1].imag(),a[1].real(),a[0].imag(),a[0].real()};
return vld1q_f32(tmp);
}
// Complex double
inline float32x4_t operator()(Grid::ComplexD *a){
float32x4_t foo;
return foo;
// Complex double // N:ok
inline float64x2_t operator()(Grid::ComplexD *a){
double tmp[2]={a[0].imag(),a[0].real()};
return vld1q_f64(tmp);
}
// Real float
// Real float // N:ok
inline float32x4_t operator()(float *a){
float32x4_t foo;
return foo;
float tmp[4]={a[3],a[2],a[1],a[0]};
return vld1q_f32(tmp);
}
// Real double
inline float32x4_t operator()(double *a){
float32x4_t foo;
return foo;
// Real double // N:ok
inline float64x2_t operator()(double *a){
double tmp[2]={a[1],a[0]};
return vld1q_f64(tmp);
}
// Integer
// Integer // N:ok
inline uint32x4_t operator()(Integer *a){
uint32x4_t foo;
return foo;
return vld1q_dup_u32(a);
}
};
// N:leaving as is
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
inline Out_type operator()(In_type in){
inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
exit(1);
return 0;
@ -184,26 +195,98 @@ namespace Optimization {
}
};
struct MultRealPart{
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
float32x4_t re = vtrn1q_f32(a, a);
return vmulq_f32(re, b);
}
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
float64x2_t re = vzip1q_f64(a, a);
return vmulq_f64(re, b);
}
};
struct MaddRealPart{
inline float32x4_t operator()(float32x4_t a, float32x4_t b, float32x4_t c){
float32x4_t re = vtrn1q_f32(a, a);
return vfmaq_f32(c, re, b);
}
inline float64x2_t operator()(float64x2_t a, float64x2_t b, float64x2_t c){
float64x2_t re = vzip1q_f64(a, a);
return vfmaq_f64(c, re, b);
}
};
struct Div{
// Real float
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
return vdivq_f32(a, b);
}
// Real double
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
return vdivq_f64(a, b);
}
};
struct MultComplex{
// Complex float
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
float32x4_t foo;
return foo;
float32x4_t r0, r1, r2, r3, r4;
// a = ar ai Ar Ai
// b = br bi Br Bi
// collect real/imag part, negate bi and Bi
r0 = vtrn1q_f32(b, b); // br br Br Br
r1 = vnegq_f32(b); // -br -bi -Br -Bi
r2 = vtrn2q_f32(b, r1); // bi -bi Bi -Bi
// the fun part
r3 = vmulq_f32(r2, a); // bi*ar -bi*ai ...
r4 = vrev64q_f32(r3); // -bi*ai bi*ar ...
// fma(a,b,c) = a+b*c
return vfmaq_f32(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi ...
// no fma, use mul and add
//float32x4_t r5;
//r5 = vmulq_f32(r0, a);
//return vaddq_f32(r4, r5);
}
// Complex double
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
float32x4_t foo;
return foo;
float64x2_t r0, r1, r2, r3, r4;
// b = br bi
// collect real/imag part, negate bi
r0 = vtrn1q_f64(b, b); // br br
r1 = vnegq_f64(b); // -br -bi
r2 = vtrn2q_f64(b, r1); // bi -bi
// the fun part
r3 = vmulq_f64(r2, a); // bi*ar -bi*ai
r4 = vextq_f64(r3,r3,1); // -bi*ai bi*ar
// fma(a,b,c) = a+b*c
return vfmaq_f64(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi
// no fma, use mul and add
//float64x2_t r5;
//r5 = vmulq_f64(r0, a);
//return vaddq_f64(r4, r5);
}
};
struct Mult{
// Real float
inline float32x4_t mac(float32x4_t a, float32x4_t b, float32x4_t c){
return vaddq_f32(vmulq_f32(b,c),a);
//return vaddq_f32(vmulq_f32(b,c),a);
return vfmaq_f32(a, b, c);
}
inline float64x2_t mac(float64x2_t a, float64x2_t b, float64x2_t c){
return vaddq_f64(vmulq_f64(b,c),a);
//return vaddq_f64(vmulq_f64(b,c),a);
return vfmaq_f64(a, b, c);
}
inline float32x4_t operator()(float32x4_t a, float32x4_t b){
return vmulq_f32(a,b);
@ -221,89 +304,275 @@ namespace Optimization {
struct Conj{
// Complex single
inline float32x4_t operator()(float32x4_t in){
return in;
// ar ai br bi -> ar -ai br -bi
float32x4_t r0, r1;
r0 = vnegq_f32(in); // -ar -ai -br -bi
r1 = vrev64q_f32(r0); // -ai -ar -bi -br
return vtrn1q_f32(in, r1); // ar -ai br -bi
}
// Complex double
//inline float32x4_t operator()(float32x4_t in){
// return 0;
//}
inline float64x2_t operator()(float64x2_t in){
float64x2_t r0, r1;
r0 = vextq_f64(in, in, 1); // ai ar
r1 = vnegq_f64(r0); // -ai -ar
return vextq_f64(r0, r1, 1); // ar -ai
}
// do not define for integer input
};
struct TimesMinusI{
//Complex single
inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
return in;
// ar ai br bi -> ai -ar ai -br
float32x4_t r0, r1;
r0 = vnegq_f32(in); // -ar -ai -br -bi
r1 = vrev64q_f32(in); // ai ar bi br
return vtrn1q_f32(r1, r0); // ar -ai br -bi
}
//Complex double
//inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
// return in;
//}
inline float64x2_t operator()(float64x2_t in, float64x2_t ret){
// a ib -> b -ia
float64x2_t tmp;
tmp = vnegq_f64(in);
return vextq_f64(in, tmp, 1);
}
};
struct TimesI{
//Complex single
inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
//need shuffle
return in;
// ar ai br bi -> -ai ar -bi br
float32x4_t r0, r1;
r0 = vnegq_f32(in); // -ar -ai -br -bi
r1 = vrev64q_f32(r0); // -ai -ar -bi -br
return vtrn1q_f32(r1, in); // -ai ar -bi br
}
//Complex double
//inline float32x4_t operator()(float32x4_t in, float32x4_t ret){
// return 0;
//}
inline float64x2_t operator()(float64x2_t in, float64x2_t ret){
// a ib -> -b ia
float64x2_t tmp;
tmp = vnegq_f64(in);
return vextq_f64(tmp, in, 1);
}
};
struct Permute{
static inline float32x4_t Permute0(float32x4_t in){ // N:ok
// AB CD -> CD AB
return vextq_f32(in, in, 2);
};
static inline float32x4_t Permute1(float32x4_t in){ // N:ok
// AB CD -> BA DC
return vrev64q_f32(in);
};
static inline float32x4_t Permute2(float32x4_t in){ // N:not used by Boyle
return in;
};
static inline float32x4_t Permute3(float32x4_t in){ // N:not used by Boyle
return in;
};
static inline float64x2_t Permute0(float64x2_t in){ // N:ok
// AB -> BA
return vextq_f64(in, in, 1);
};
static inline float64x2_t Permute1(float64x2_t in){ // N:not used by Boyle
return in;
};
static inline float64x2_t Permute2(float64x2_t in){ // N:not used by Boyle
return in;
};
static inline float64x2_t Permute3(float64x2_t in){ // N:not used by Boyle
return in;
};
};
struct Rotate{
static inline float32x4_t rotate(float32x4_t in,int n){ // N:ok
switch(n){
case 0: // AB CD -> AB CD
return tRotate<0>(in);
break;
case 1: // AB CD -> BC DA
return tRotate<1>(in);
break;
case 2: // AB CD -> CD AB
return tRotate<2>(in);
break;
case 3: // AB CD -> DA BC
return tRotate<3>(in);
break;
default: assert(0);
}
}
static inline float64x2_t rotate(float64x2_t in,int n){ // N:ok
switch(n){
case 0: // AB -> AB
return tRotate<0>(in);
break;
case 1: // AB -> BA
return tRotate<1>(in);
break;
default: assert(0);
}
}
// working, but no restriction on n
// template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n); };
// template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n); };
// restriction on n
template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n%4); };
template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n%2); };
};
struct PrecisionChange {
static inline float16x8_t StoH (const float32x4_t &a,const float32x4_t &b) {
float16x4_t h = vcvt_f16_f32(a);
return vcvt_high_f16_f32(h, b);
}
static inline void HtoS (float16x8_t h,float32x4_t &sa,float32x4_t &sb) {
sb = vcvt_high_f32_f16(h);
// there is no direct conversion from lower float32x4_t to float64x2_t
// vextq_f16 not supported by clang 3.8 / 4.0 / arm clang
//float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
// workaround for clang
uint32x4_t h1u = reinterpret_cast<uint32x4_t>(h);
float16x8_t h1 = reinterpret_cast<float16x8_t>(vextq_u32(h1u, h1u, 2));
sa = vcvt_high_f32_f16(h1);
}
static inline float32x4_t DtoS (float64x2_t a,float64x2_t b) {
float32x2_t s = vcvt_f32_f64(a);
return vcvt_high_f32_f64(s, b);
}
static inline void StoD (float32x4_t s,float64x2_t &a,float64x2_t &b) {
b = vcvt_high_f64_f32(s);
// there is no direct conversion from lower float32x4_t to float64x2_t
float32x4_t s1 = vextq_f32(s, s, 2);
a = vcvt_high_f64_f32(s1);
}
static inline float16x8_t DtoH (float64x2_t a,float64x2_t b,float64x2_t c,float64x2_t d) {
float32x4_t s1 = DtoS(a, b);
float32x4_t s2 = DtoS(c, d);
return StoH(s1, s2);
}
static inline void HtoD (float16x8_t h,float64x2_t &a,float64x2_t &b,float64x2_t &c,float64x2_t &d) {
float32x4_t s1, s2;
HtoS(h, s1, s2);
StoD(s1, a, b);
StoD(s2, c, d);
}
};
//////////////////////////////////////////////
// Exchange support
struct Exchange{
static inline void Exchange0(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
// in1: ABCD -> out1: ABEF
// in2: EFGH -> out2: CDGH
// z: CDAB
float32x4_t z = vextq_f32(in1, in1, 2);
// out1: ABEF
out1 = vextq_f32(z, in2, 2);
// z: GHEF
z = vextq_f32(in2, in2, 2);
// out2: CDGH
out2 = vextq_f32(in1, z, 2);
};
static inline void Exchange1(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
// in1: ABCD -> out1: AECG
// in2: EFGH -> out2: BFDH
out1 = vtrn1q_f32(in1, in2);
out2 = vtrn2q_f32(in1, in2);
};
static inline void Exchange2(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
assert(0);
return;
};
static inline void Exchange3(float32x4_t &out1,float32x4_t &out2,float32x4_t in1,float32x4_t in2){
assert(0);
return;
};
// double precision
static inline void Exchange0(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
// in1: AB -> out1: AC
// in2: CD -> out2: BD
out1 = vzip1q_f64(in1, in2);
out2 = vzip2q_f64(in1, in2);
};
static inline void Exchange1(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
assert(0);
return;
};
static inline void Exchange2(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
assert(0);
return;
};
static inline void Exchange3(float64x2_t &out1,float64x2_t &out2,float64x2_t in1,float64x2_t in2){
assert(0);
return;
};
};
//////////////////////////////////////////////
// Some Template specialization
template < typename vtype >
void permute(vtype &a, vtype b, int perm) {
};
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, float32x4_t>::operator()(float32x4_t in){
return 0;
float32x4_t v1; // two complex
v1 = Optimization::Permute::Permute0(in);
v1 = vaddq_f32(v1,in);
u128f conv; conv.v=v1;
return Grid::ComplexF(conv.f[0],conv.f[1]);
}
//Real float Reduce
template<>
inline Grid::RealF Reduce<Grid::RealF, float32x4_t>::operator()(float32x4_t in){
float32x2_t high = vget_high_f32(in);
float32x2_t low = vget_low_f32(in);
float32x2_t tmp = vadd_f32(low, high);
float32x2_t sum = vpadd_f32(tmp, tmp);
return vget_lane_f32(sum,0);
return vaddvq_f32(in);
}
//Complex double Reduce
template<>
template<> // N:by Boyle
inline Grid::ComplexD Reduce<Grid::ComplexD, float64x2_t>::operator()(float64x2_t in){
return 0;
u128d conv; conv.v = in;
return Grid::ComplexD(conv.f[0],conv.f[1]);
}
//Real double Reduce
template<>
inline Grid::RealD Reduce<Grid::RealD, float64x2_t>::operator()(float64x2_t in){
float64x2_t sum = vpaddq_f64(in, in);
return vgetq_lane_f64(sum,0);
return vaddvq_f64(in);
}
//Integer Reduce
template<>
inline Integer Reduce<Integer, uint32x4_t>::operator()(uint32x4_t in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
}
}
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
namespace Grid {
// Here assign types
// typedef Optimization::vech SIMD_Htype; // Reduced precision type
typedef float16x8_t SIMD_Htype; // Half precision type
typedef float32x4_t SIMD_Ftype; // Single precision type
typedef float64x2_t SIMD_Dtype; // Double precision type
typedef uint32x4_t SIMD_Itype; // Integer type
@ -312,13 +581,6 @@ namespace Grid {
inline void prefetch_HINT_T0(const char *ptr){};
// Gpermute function
template < typename VectorSIMD >
inline void Gpermute(VectorSIMD &y,const VectorSIMD &b, int perm ) {
Optimization::permute(y.v,b.v,perm);
}
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
@ -326,16 +588,19 @@ namespace Grid {
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}
}

View File

@ -53,7 +53,7 @@ directory
#if defined IMCI
#include "Grid_imci.h"
#endif
#ifdef NEONv8
#ifdef NEONV8
#include "Grid_neon.h"
#endif
#if defined QPX

View File

@ -32,8 +32,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
namespace Grid {
int LebesgueOrder::UseLebesgueOrder;
#ifdef KNL
std::vector<int> LebesgueOrder::Block({8,2,2,2});
#else
std::vector<int> LebesgueOrder::Block({2,2,2,2});
#endif
LebesgueOrder::IndexInteger LebesgueOrder::alignup(IndexInteger n){
n--; // 1000 0011 --> 1000 0010
n |= n >> 1; // 1000 0010 | 0100 0001 = 1100 0011
@ -51,8 +54,31 @@ LebesgueOrder::LebesgueOrder(GridBase *_grid)
if ( Block[0]==0) ZGraph();
else if ( Block[1]==0) NoBlocking();
else CartesianBlocking();
}
if (0) {
std::cout << "Thread Interleaving"<<std::endl;
ThreadInterleave();
}
}
void LebesgueOrder::ThreadInterleave(void)
{
std::vector<IndexInteger> reorder = _LebesgueReorder;
std::vector<IndexInteger> throrder;
int vol = _LebesgueReorder.size();
int threads = GridThread::GetThreads();
int blockbits=3;
int blocklen = 8;
int msk = 0x7;
for(int t=0;t<threads;t++){
for(int ss=0;ss<vol;ss++){
if ( ( ss >> blockbits) % threads == t ) {
throrder.push_back(reorder[ss]);
}
}
}
_LebesgueReorder = throrder;
}
void LebesgueOrder::NoBlocking(void)
{
std::cout<<GridLogDebug<<"Lexicographic : no cache blocking"<<std::endl;

View File

@ -70,6 +70,8 @@ namespace Grid {
std::vector<IndexInteger> & xi,
std::vector<IndexInteger> &dims);
void ThreadInterleave(void);
private:
std::vector<IndexInteger> _LebesgueReorder;

View File

@ -98,7 +98,9 @@ template<class rtype,class vtype,class mtype,int N>
strong_inline void mult(iVector<rtype,N> * __restrict__ ret,
const iVector<vtype,N> * __restrict__ rhs,
const iScalar<mtype> * __restrict__ lhs){
mult(ret,lhs,rhs);
for(int c1=0;c1<N;c1++){
mult(&ret->_internal[c1],&rhs->_internal[c1],&lhs->_internal);
}
}

View File

@ -45,7 +45,7 @@ using namespace Grid;
using namespace Grid::QCD;
template <class Impl>
class MagLogger : public HmcObservable<typename Impl::Field> {
class MagMeas : public HmcObservable<typename Impl::Field> {
public:
typedef typename Impl::Field Field;
typedef typename Impl::Simd::scalar_type Trace;
@ -72,13 +72,13 @@ private:
};
template <class Impl>
class MagMod: public ObservableModule<MagLogger<Impl>, NoParameters>{
typedef ObservableModule<MagLogger<Impl>, NoParameters> ObsBase;
class MagMod: public ObservableModule<MagMeas<Impl>, NoParameters>{
typedef ObservableModule<MagMeas<Impl>, NoParameters> ObsBase;
using ObsBase::ObsBase; // for constructors
// acquire resource
virtual void initialize(){
this->ObservablePtr.reset(new MagLogger<Impl>());
this->ObservablePtr.reset(new MagMeas<Impl>());
}
public:
MagMod(): ObsBase(NoParameters()){}

View File

@ -66,7 +66,14 @@ int main(int argc, char **argv) {
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
typedef TopologicalChargeMod<HMCWrapper::ImplPolicy> QObs;
TheHMC.Resources.AddObservable<PlaqObs>();
TheHMC.Resources.AddObservable<QObs>();
TopologyObsParameters TopParams;
TopParams.interval = 5;
TopParams.do_smearing = true;
TopParams.Smearing.steps = 200;
TopParams.Smearing.step_size = 0.01;
TopParams.Smearing.meas_interval = 50;
TopParams.Smearing.maxTau = 2.0;
TheHMC.Resources.AddObservable<QObs>(TopParams);
//////////////////////////////////////////////
/////////////////////////////////////////////////////////////