1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Updated perambulator binary format to save payload in big endian format on disk

This commit is contained in:
Michael Marshall 2019-02-04 23:07:59 +00:00
parent 008ac6b5ae
commit 7f5354630a
4 changed files with 80 additions and 33 deletions

View File

@ -238,7 +238,7 @@ inline GridCartesian * MakeLowerDimGrid( GridCartesian * gridHD )
Perambulator object
******************************************************************************/
template<typename Scalar_, int NumIndices_>
template<typename Scalar_, typename Scalar_Unit, int NumIndices_>
class NamedTensor : public Eigen::Tensor<Scalar_, NumIndices_, Eigen::RowMajor | Eigen::DontAlign>
{
public:
@ -261,20 +261,26 @@ public:
// load and save - not virtual - probably all changes
inline void load(const std::string filename);
inline void save(const std::string filename) const;
inline void ReadTemporary(const std::string filename);
inline void WriteTemporary(const std::string filename) const;
inline void ReadBinary(const std::string filename);
inline void WriteBinary(const std::string filename);
};
/******************************************************************************
Save NamedTensor binary format
Save NamedTensor binary format (NB: On-disk format is Big Endian)
******************************************************************************/
template<typename Scalar_, int NumIndices_>
void NamedTensor<Scalar_, NumIndices_>::WriteTemporary(const std::string filename) const {
template<typename Scalar_, typename Scalar_Unit, int NumIndices_>
void NamedTensor<Scalar_, Scalar_Unit, NumIndices_>::WriteBinary(const std::string filename) {
LOG(Message) << "Writing NamedTensor to \"" << filename << "\"" << std::endl;
std::ofstream w(filename, std::ios::binary);
// Number of Scalar_Unit objects per Scalar_
constexpr unsigned int Scalar_Unit_Size{sizeof(Scalar_Unit)};
assert((Scalar_Unit_Size == 2 || Scalar_Unit_Size == 4 || Scalar_Unit_Size == 8 )
&& "Scalar_Unit_Size should be 2, 4 or 8");
assert((sizeof(Scalar_) % Scalar_Unit_Size) == 0 && "Scalar_ is not composed of Scalar_Unit_Size" );
// Size of the data (in bytes)
const std::streamsize TotalDataSize{static_cast<std::streamsize>(this->size() * sizeof(Scalar_))};
const auto NumElements{this->size()};
const std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * sizeof(Scalar_))};
uint64_t u64 = htobe64(static_cast<uint64_t>(TotalDataSize));
w.write(reinterpret_cast<const char *>(&u64), sizeof(u64));
// number of dimensions which aren't 1
@ -300,7 +306,29 @@ void NamedTensor<Scalar_, NumIndices_>::WriteTemporary(const std::string filenam
d++;
}
// Actual data
w.write(reinterpret_cast<const char *>(this->data()), TotalDataSize);
char * const pStart{reinterpret_cast<char *>(this->data())};
// Swap to network byte order in place (alternative is to copy memory - still slow)
void * const pEnd{pStart + TotalDataSize};
if(Scalar_Unit_Size == 8)
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
* p = htobe64( * p );
else if(Scalar_Unit_Size == 4)
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
* p = htobe32( * p );
else if(Scalar_Unit_Size == 2)
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
* p = htobe16( * p );
w.write(pStart, TotalDataSize);
// Swap back from network byte order
if(Scalar_Unit_Size == 8)
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
* p = be64toh( * p );
else if(Scalar_Unit_Size == 4)
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
* p = be32toh( * p );
else if(Scalar_Unit_Size == 2)
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
* p = be16toh( * p );
// checksum
#ifdef USE_IPP
uint32_t u32 = htobe32(GridChecksum::crc32c(this->data(), TotalDataSize));
@ -311,15 +339,21 @@ void NamedTensor<Scalar_, NumIndices_>::WriteTemporary(const std::string filenam
}
/******************************************************************************
Load NamedTensor binary format
Load NamedTensor binary format (NB: On-disk format is Big Endian)
******************************************************************************/
template<typename Scalar_, int NumIndices_>
void NamedTensor<Scalar_, NumIndices_>::ReadTemporary(const std::string filename) {
template<typename Scalar_, typename Scalar_Unit, int NumIndices_>
void NamedTensor<Scalar_, Scalar_Unit, NumIndices_>::ReadBinary(const std::string filename) {
LOG(Message) << "Reading NamedTensor from \"" << filename << "\"" << std::endl;
std::ifstream r(filename, std::ios::binary);
// Number of Scalar_Unit objects per Scalar_
constexpr unsigned int Scalar_Unit_Size{sizeof(Scalar_Unit)};
assert((Scalar_Unit_Size == 2 || Scalar_Unit_Size == 4 || Scalar_Unit_Size == 8 )
&& "Scalar_Unit_Size should be 2, 4 or 8");
assert((sizeof(Scalar_) % Scalar_Unit_Size) == 0 && "Scalar_ is not composed of Scalar_Unit_Size" );
// Size of the data in bytes
const std::streamsize TotalDataSize{static_cast<std::streamsize>(this->size() * sizeof(Scalar_))};
const auto NumElements{this->size()};
const std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * sizeof(Scalar_))};
uint64_t u64;
r.read(reinterpret_cast<char *>(&u64), sizeof(u64));
assert( TotalDataSize == be64toh( u64 ) && "Error: Size of the data in bytes" );
@ -350,7 +384,19 @@ void NamedTensor<Scalar_, NumIndices_>::ReadTemporary(const std::string filename
d++;
}
// Actual data
r.read(reinterpret_cast<char *>(this->data()),TotalDataSize);
char * const pStart{reinterpret_cast<char *>(this->data())};
void * const pEnd{pStart + TotalDataSize};
r.read(pStart,TotalDataSize);
// Swap back from network byte order
if(Scalar_Unit_Size == 8)
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
* p = be64toh( * p );
else if(Scalar_Unit_Size == 4)
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
* p = be32toh( * p );
else if(Scalar_Unit_Size == 2)
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
* p = be16toh( * p );
// checksum
uint32_t u32;
r.read(reinterpret_cast<char *>(&u32), sizeof(u32));
@ -360,15 +406,15 @@ void NamedTensor<Scalar_, NumIndices_>::ReadTemporary(const std::string filename
#else
u32 -= GridChecksum::crc32(this->data(), TotalDataSize);
#endif
assert( u32 == 0 && "checksum");
assert( u32 == 0 && "Perambulator checksum invalid");
}
/******************************************************************************
Save NamedTensor Hdf5 format
******************************************************************************/
template<typename Scalar_, int NumIndices_>
void NamedTensor<Scalar_, NumIndices_>::save(const std::string filename) const {
template<typename Scalar_, typename Scalar_Unit, int NumIndices_>
void NamedTensor<Scalar_, Scalar_Unit, NumIndices_>::save(const std::string filename) const {
LOG(Message) << "Writing NamedTensor to \"" << filename << "\"" << std::endl;
#ifndef HAVE_HDF5
LOG(Message) << "Error: I/O for NamedTensor requires HDF5" << std::endl;
@ -382,8 +428,8 @@ void NamedTensor<Scalar_, NumIndices_>::save(const std::string filename) const {
Load NamedTensor Hdf5 format
******************************************************************************/
template<typename Scalar_, int NumIndices_>
void NamedTensor<Scalar_, NumIndices_>::load(const std::string filename) {
template<typename Scalar_, typename Scalar_Unit, int NumIndices_>
void NamedTensor<Scalar_, Scalar_Unit, NumIndices_>::load(const std::string filename) {
LOG(Message) << "Reading NamedTensor from \"" << filename << "\"" << std::endl;
#ifndef HAVE_HDF5
LOG(Message) << "Error: I/O for NamedTensor requires HDF5" << std::endl;
@ -400,8 +446,8 @@ void NamedTensor<Scalar_, NumIndices_>::load(const std::string filename) {
Perambulator object
******************************************************************************/
template<typename Scalar_, int NumIndices_>
using Perambulator = NamedTensor<Scalar_, NumIndices_>;
template<typename Scalar_, typename Scalar_Unit, int NumIndices_>
using Perambulator = NamedTensor<Scalar_, Scalar_Unit, NumIndices_>;
/*************************************************************************************

View File

@ -134,7 +134,7 @@ void TDistilVectors<FImpl>::execute(void)
//auto &noise = envGet(std::vector<std::vector<std::vector<SpinVector>>>, par().noise);
auto &noise = envGet(std::vector<Complex>, par().noise);
auto &perambulator = envGet(Perambulator<SpinVector COMMA 6>, par().perambulator);
auto &perambulator = envGet(Perambulator<SpinVector COMMA Real COMMA 6>, par().perambulator);
auto &epack = envGet(Grid::Hadrons::EigenPack<LatticeColourVector>, par().eigenPack);
auto &rho = envGet(std::vector<FermionField>, getName() + "_rho");
auto &phi = envGet(std::vector<FermionField>, getName() + "_phi");

View File

@ -139,7 +139,7 @@ void TPerambLight<FImpl>::setup(void)
//envCreate(std::complex<double>, getName() + "_debug_delete_me_3", 1, z);
//envCreate(std::complex<double>, getName() + "_debug_delete_me_4", 1, {0.6 COMMA -3.1});
//envCreate(std::array<std::string COMMA 3>, getName() + "_debug_delete_me_5", 1, {"One" COMMA "Two" COMMA "Three"});
envCreate(Perambulator<SpinVector COMMA 6>, getName() + "_perambulator_light", 1,
envCreate(Perambulator<SpinVector COMMA Real COMMA 6>, getName() + "_perambulator_light", 1,
sIndexNames,Distil.Nt,nvec,Distil.LI,Distil.nnoise,Distil.Nt_inv,Distil.SI);
envCreate(std::vector<Complex>, getName() + "_noise", 1,
nvec*Distil.Ns*Distil.Nt*Distil.nnoise);
@ -195,7 +195,7 @@ void TPerambLight<FImpl>::execute(void)
//auto &noise = envGet(std::vector<std::vector<std::vector<SpinVector>>>, par().noise);
auto &noise = envGet(std::vector<Complex>, getName() + "_noise");
auto &perambulator = envGet(Perambulator<SpinVector COMMA 6>, getName() + "_perambulator_light");
auto &perambulator = envGet(Perambulator<SpinVector COMMA Real COMMA 6>, getName() + "_perambulator_light");
auto &epack = envGet(Grid::Hadrons::EigenPack<LatticeColourVector>, par().eigenPack);
auto &unsmeared_sink = envGet(std::vector<FermionField>, getName() + "_unsmeared_sink");
@ -268,7 +268,7 @@ void TPerambLight<FImpl>::execute(void)
bExists = true;
}
if( bExists ) {
perambulator.ReadTemporary(PerambFileName);
perambulator.ReadBinary(PerambFileName);
return;
}
}
@ -368,7 +368,7 @@ void TPerambLight<FImpl>::execute(void)
// THIS IS WHERE WE WANT TO SAVE THE PERAMBULATORS TO DISK
if(PerambFileName.length())
perambulator.WriteTemporary(PerambFileName);
perambulator.WriteBinary(PerambFileName);
}
END_MODULE_NAMESPACE

View File

@ -254,7 +254,7 @@ bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
#ifdef DEBUG
typedef Grid::Hadrons::MDistil::NamedTensor<Complex,3> MyTensor;
typedef Grid::Hadrons::MDistil::NamedTensor<Complex,Real,3> MyTensor;
void DebugShowTensor(MyTensor &x, const char * n)
{
@ -270,7 +270,7 @@ void DebugShowTensor(MyTensor &x, const char * n)
MyTensor::Index SizeCalculated{1};
std::cout << "Dimensions again";
for(int i=0 ; i < d.size() ; i++ ) {
std::cout << " : [" << i << "]=" << d[i];
std::cout << " : [" << i << ", " << x.IndexNames[i] << "]=" << d[i];
SizeCalculated *= d[i];
}
std::cout << std::endl;
@ -281,7 +281,7 @@ void DebugShowTensor(MyTensor &x, const char * n)
for( int i = 0 ; i < d[0] ; i++ )
for( int j = 0 ; j < d[1] ; j++ )
for( int k = 0 ; k < d[2] ; k++ ) {
x(i,j,k) = std::complex<double>(SizeCalculated, SizeCalculated);
x(i,j,k) = std::complex<double>(SizeCalculated, -SizeCalculated);
SizeCalculated--;
}
// Show raw data
@ -300,19 +300,20 @@ bool DebugEigenTest()
std::array<std::string,3> as={"Alpha", "Beta", "Gamma"};
MyTensor x(as, 2,1,4);
DebugShowTensor(x, "x");
x.WriteTemporary(pszTestFileName);
x.WriteBinary(pszTestFileName);
DebugShowTensor(x, "x");
// Test initialisation of an array of strings
for( auto a : as )
std::cout << a << std::endl;
Grid::Hadrons::MDistil::Perambulator<Complex,3> p{as,2,7,2};
Grid::Hadrons::MDistil::Perambulator<Complex,Real,3> p{as,2,7,2};
DebugShowTensor(p, "p");
std::cout << "p.IndexNames follow" << std::endl;
for( auto a : p.IndexNames )
std::cout << a << std::endl;
// Now see whether we can read a tensor back
std::array<std::string,3> a2={"Alpha", "Delta", "Gamma"};
MyTensor y(a2, 2,1,4);
y.ReadTemporary(pszTestFileName);
std::array<std::string,3> a2={"Alpha", "Gamma", "Delta"};
MyTensor y(a2, 2,4,1);
y.ReadBinary(pszTestFileName);
DebugShowTensor(y, "y");
return true;
}