1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-24 12:45:56 +01:00

Improved - untested

This commit is contained in:
Peter Boyle 2021-05-12 11:00:04 -04:00
parent 3575278b57
commit 8458e13a23

View File

@ -2,13 +2,11 @@
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
Copyright (C) 2015 Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -27,8 +25,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H #pragma once
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
@ -41,98 +38,39 @@ public:
INHERIT_IMPL_TYPES(Impl); INHERIT_IMPL_TYPES(Impl);
private: private:
FermionOperator<Impl> & NumOp;// the basic operator SchurFactoredFermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator SchurFactoredFermionOperator<Impl> & DenOp;// the basic operator
FermionOperator<Impl> & NumOpDirichlet;// the basic operator
FermionOperator<Impl> & DenOpDirichlet;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver; OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver; OperatorFunction<FermionField> &ActionSolver;
FermionField Phi; // the pseudo fermion field for this trajectory FermionField Phi; // the pseudo fermion field for this trajectory
Coordinate Block;
typedef Lattice<iLorentzVector<Simd> > LinkMask;
LinkMask ActiveLinks;
LinkMask PassiveLinks;
// FermionField BoundaryMask;
// FermionField BoundaryMask;
public: public:
DomainBoundaryPseudoFermionAction(FermionOperator<Impl> &_NumOp, DomainBoundaryPseudoFermionAction(SchurFactoredFermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp, SchurFactoredFermionOperator<Impl> &_DenOp,
FermionOperator<Impl> &_NumOpDirichlet,
FermionOperator<Impl> &_DenOpDirichlet,
OperatorFunction<FermionField> & DS, OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS, OperatorFunction<FermionField> & AS
Coordinate &_Block
) : NumOp(_NumOp), DenOp(_DenOp), ) : NumOp(_NumOp), DenOp(_DenOp),
DerivativeSolver(DS), ActionSolver(AS), DerivativeSolver(DS), ActionSolver(AS),
Phi(_NumOp.FermionGrid()), Block(_Block) {}; Phi(_NumOp.FermionGrid()) {};
virtual std::string action_name(){return "DomainBoundaryPseudoFermionRatioAction";} virtual std::string action_name(){return "DomainBoundaryPseudoFermionRatioAction";}
virtual std::string LogParameters(){ virtual std::string LogParameters(){
std::stringstream sstream; std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Block "<<_Block << std::endl;
return sstream.str(); return sstream.str();
} }
void Tests(void)
{
// Possible checks
// Pdbar^2 = Pdbar etc..
// ProjectOmega + ProjectOmegabar = 1;
// dBoundary Pdbar = dBoundary
// dOmega, dOmega vs Omega project and d.
}
void ProjectBoundary (FermionField &f) { assert(0); };
void ProjectBoundaryBar(FermionField &f) { assert(0); };
void ProjectOmega (FermionField &f) { assert(0); };
void ProjectOmegaBar (FermionField &f) { assert(0); };
void dInverse (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
void dBoundaryBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
void dBoundary (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
void dOmega (FermionOperator<Impl> &Op,FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
void dOmegaBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
void SolveOmega (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
void SolveOmegaBar(FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
// R = 1 - Pdbar DomegaInv Dd DomegabarInv Ddbar
void R(FermionOperator<Impl> &Op,FermionOperator<Impl> &OpDirichlet,FermionField &in,FermionField &out)
{
FermionField tmp1(Op.FermionGrid());
FermionField tmp2(Op.FermionGrid());
dBoundaryBar(Op,in,tmp1);
SolveOmegaBar(OpDirichlet,tmp1,tmp2); // 1/2 cost
dBoundary(Op,tmp2,tmp1);
SolveOmega(OpDirichlet,tmp1,tmp2); // 1/2 cost
ProjectBoundaryBar(tmp2);
out = in - tmp2 ;
};
// R = Pdbar - Pdbar Dinv Ddbar
void Rinverse(FermionField &in,FermionField &out)
{
FermionField tmp1(NumOp.FermionGrid());
out = in;
ProjectBoundaryBar(out);
dInverse(out,tmp1);
ProjectBoundaryBar(tmp1);
out = out -tmp1;
};
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG)
{ {
// P(phi) = e^{- phi^dag V (MdagM)^-1 Vdag phi} // P(phi) = e^{- phi^dag P^dag Rdag^-1 R^-1 P phi}
// //
// NumOp == V // NumOp == P
// DenOp == M // DenOp == R
// //
// Take phi = Vdag^{-1} Mdag eta ; eta = Mdag^{-1} Vdag Phi // Take phi = P^{-1} R eta ; eta = R^-1 P Phi
// //
// P(eta) = e^{- eta^dag eta} // P(eta) = e^{- eta^dag eta}
// //
@ -142,27 +80,22 @@ public:
// //
RealD scale = std::sqrt(0.5); RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
gaussian(pRNG,eta);
ProjectBoundary(eta);
NumOp.ImportGauge(U); NumOp.ImportGauge(U);
DenOp.ImportGauge(U); DenOp.ImportGauge(U);
// Note: this hard codes normal equations type solvers; alternate implementation needed for FermionField eta(NumOp.FermOp.FermionGrid());
// non-herm style solvers. FermionField tmp(NumOp.FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
DenOp.Mdag(eta,Phi); // Mdag eta gaussian(pRNG,eta);
tmp = Zero();
ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta NumOp.ProjectBoundaryBar(eta);
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
NumOp.R(eta,tmp);
DenOp.RInv(tmp,Phi);
Phi=Phi*scale; Phi=Phi*scale;
NumOp.ProjectBoundaryBar(Phi);
}; };
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
@ -173,17 +106,13 @@ public:
NumOp.ImportGauge(U); NumOp.ImportGauge(U);
DenOp.ImportGauge(U); DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid()); FermionField X(NumOp.FermOp.FermionGrid());
FermionField Y(NumOp.FermionGrid()); FermionField Y(NumOp.FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
NumOp.Mdag(Phi,Y); // Y= Vdag phi NumOp.R(Phi,Y);
X=Zero(); DenOp.RInv(Y,X);
ActionSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
RealD action = norm2(Y); RealD action = norm2(X);
return action; return action;
}; };
@ -198,32 +127,68 @@ public:
NumOp.ImportGauge(U); NumOp.ImportGauge(U);
DenOp.ImportGauge(U); DenOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp); GridBase *fgrid = NumOp.FermOp.FermionGrid();
GridBase *ugrid = NumOp.FermOp.GaugeGrid();
FermionField X(NumOp.FermionGrid()); FermionField X(fgrid);
FermionField Y(NumOp.FermionGrid()); FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(NumOp.GaugeGrid()); GaugeField force(ugrid);
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
FermionField DiDdbP_Phi(fgrid); // Vector C in my notes
FermionField DidRinvP_Phi(fgrid); // Vector D in my notes
FermionField DoidRinvDagRinvP_Phi(fgrid); // Vector E in my notes
FermionField DobidDddDoidRinvDagRinvP_Phi(fgrid); // Vector F in my notes
FermionField P_Phi(fgrid);
FermionField RinvP_Phi(fgrid);
FermionField RinvDagRinvP_Phi(fgrid);
// P term
NumOp.dBoundaryBar(Phi,tmp);
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
NumOp.dBoundary(DobiDdbPhi,tmp);
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
P_Phi = Phi - DoiDdDobiDdbPhi;
NumOp.ProjectBoundaryBar(P_Phi);
// R^-1 P term
DenOp.dBoundaryBar(P_Phi,tmp);
DenOp.Dinverse(tmp,DiDdbP_Phi); // Vector C
RinvP_Phi = P_Phi - DiDdbP_Phi;
DenOp.ProjectBoundaryBar(RinvP_Phi);
// R^-dagger R^-1 P term
DenOp.DinverseDag(RinvP_Phi,DidRinvP_Phi); // Vector D
RinvDagRinvP_Phi = RinvP_Phi - DidRinvP_Phi;
DenOp.ProjectBoundaryBar(RinvDagRinvP_Phi);
// P^dag R^-dagger R^-1 P term
NumOp.dOmegaDagInv(RinvDagRinvP_Phi,DoidRinvDagRinvP_Phi); // Vector E
NumOp.dBoundaryDag(DoidRinvDagRinvP_Phi,tmp);
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidRinvDagRinvP_Phi); // Vector F
//Y=Vdag phi dSdU=Zero();
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
NumOp.Mdag(Phi,Y); // Y= Vdag phi
X=Zero();
DerivativeSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
// phi^dag V (Mdag M)^-1 dV^dag phi // phi^dag V (Mdag M)^-1 dV^dag phi
NumOp.MDeriv(force , X, Phi, DaggerYes ); dSdU=force; X = DobiDdbPhi;
Y = DobidDddDoidRinvDagRinvP_Phi;
// phi^dag dV (Mdag M)^-1 V^dag phi NumOp.DirichletFermOp.MDeriv(force,X,Y,DaggerYes); dSdU=dsdU+force;
NumOp.MDeriv(force , Phi, X ,DaggerNo ); dSdU=dSdU+force; NumOp.DirichletFermOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi X = DoiDdDobiDdbPhi;
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi Y = DoidRinvDagRinvP_Phi;
DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force; NumOp.DirichletFermOp.MDeriv(force,X,Y,DaggerYes); dSdU=dsdU+force;
DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force; NumOp.DirichletFermOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
X = DiDdbP_Phi;
Y = DidRinvP_Phi;
NumOp.DirichletFermOp.MDeriv(force,X,Y,DaggerYes); dSdU=dsdU+force;
NumOp.DirichletFermOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
dSdU *= -1.0; dSdU *= -1.0;
//dSdU = - Ta(dSdU); //dSdU = - Ta(dSdU);