mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-25 05:05:56 +01:00
Improved - untested
This commit is contained in:
parent
3575278b57
commit
8458e13a23
@ -2,13 +2,11 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
|
||||
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2021
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -27,8 +25,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_RATIO_H
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -41,98 +38,39 @@ public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
private:
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionOperator<Impl> & NumOpDirichlet;// the basic operator
|
||||
FermionOperator<Impl> & DenOpDirichlet;// the basic operator
|
||||
SchurFactoredFermionOperator<Impl> & NumOp;// the basic operator
|
||||
SchurFactoredFermionOperator<Impl> & DenOp;// the basic operator
|
||||
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
|
||||
Coordinate Block;
|
||||
typedef Lattice<iLorentzVector<Simd> > LinkMask;
|
||||
|
||||
LinkMask ActiveLinks;
|
||||
LinkMask PassiveLinks;
|
||||
|
||||
// FermionField BoundaryMask;
|
||||
// FermionField BoundaryMask;
|
||||
|
||||
public:
|
||||
DomainBoundaryPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
FermionOperator<Impl> &_NumOpDirichlet,
|
||||
FermionOperator<Impl> &_DenOpDirichlet,
|
||||
DomainBoundaryPseudoFermionAction(SchurFactoredFermionOperator<Impl> &_NumOp,
|
||||
SchurFactoredFermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS,
|
||||
Coordinate &_Block
|
||||
OperatorFunction<FermionField> & AS
|
||||
) : NumOp(_NumOp), DenOp(_DenOp),
|
||||
DerivativeSolver(DS), ActionSolver(AS),
|
||||
Phi(_NumOp.FermionGrid()), Block(_Block) {};
|
||||
Phi(_NumOp.FermionGrid()) {};
|
||||
|
||||
virtual std::string action_name(){return "DomainBoundaryPseudoFermionRatioAction";}
|
||||
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Block "<<_Block << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
void Tests(void)
|
||||
{
|
||||
// Possible checks
|
||||
// Pdbar^2 = Pdbar etc..
|
||||
// ProjectOmega + ProjectOmegabar = 1;
|
||||
// dBoundary Pdbar = dBoundary
|
||||
// dOmega, dOmega vs Omega project and d.
|
||||
}
|
||||
void ProjectBoundary (FermionField &f) { assert(0); };
|
||||
void ProjectBoundaryBar(FermionField &f) { assert(0); };
|
||||
void ProjectOmega (FermionField &f) { assert(0); };
|
||||
void ProjectOmegaBar (FermionField &f) { assert(0); };
|
||||
|
||||
void dInverse (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
void dBoundaryBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
void dBoundary (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
void dOmega (FermionOperator<Impl> &Op,FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
void dOmegaBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
void SolveOmega (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
void SolveOmegaBar(FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
|
||||
// R = 1 - Pdbar DomegaInv Dd DomegabarInv Ddbar
|
||||
void R(FermionOperator<Impl> &Op,FermionOperator<Impl> &OpDirichlet,FermionField &in,FermionField &out)
|
||||
{
|
||||
FermionField tmp1(Op.FermionGrid());
|
||||
FermionField tmp2(Op.FermionGrid());
|
||||
dBoundaryBar(Op,in,tmp1);
|
||||
SolveOmegaBar(OpDirichlet,tmp1,tmp2); // 1/2 cost
|
||||
dBoundary(Op,tmp2,tmp1);
|
||||
SolveOmega(OpDirichlet,tmp1,tmp2); // 1/2 cost
|
||||
ProjectBoundaryBar(tmp2);
|
||||
out = in - tmp2 ;
|
||||
};
|
||||
|
||||
// R = Pdbar - Pdbar Dinv Ddbar
|
||||
void Rinverse(FermionField &in,FermionField &out)
|
||||
{
|
||||
FermionField tmp1(NumOp.FermionGrid());
|
||||
out = in;
|
||||
ProjectBoundaryBar(out);
|
||||
dInverse(out,tmp1);
|
||||
ProjectBoundaryBar(tmp1);
|
||||
out = out -tmp1;
|
||||
};
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG)
|
||||
{
|
||||
// P(phi) = e^{- phi^dag V (MdagM)^-1 Vdag phi}
|
||||
// P(phi) = e^{- phi^dag P^dag Rdag^-1 R^-1 P phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
// NumOp == P
|
||||
// DenOp == R
|
||||
//
|
||||
// Take phi = Vdag^{-1} Mdag eta ; eta = Mdag^{-1} Vdag Phi
|
||||
// Take phi = P^{-1} R eta ; eta = R^-1 P Phi
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
@ -142,27 +80,22 @@ public:
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
FermionField tmp(NumOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
ProjectBoundary(eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
// Note: this hard codes normal equations type solvers; alternate implementation needed for
|
||||
// non-herm style solvers.
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
|
||||
FermionField eta(NumOp.FermOp.FermionGrid());
|
||||
FermionField tmp(NumOp.FermOp.FermionGrid());
|
||||
|
||||
DenOp.Mdag(eta,Phi); // Mdag eta
|
||||
tmp = Zero();
|
||||
ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta
|
||||
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
NumOp.ProjectBoundaryBar(eta);
|
||||
|
||||
NumOp.R(eta,tmp);
|
||||
DenOp.RInv(tmp,Phi);
|
||||
|
||||
Phi=Phi*scale;
|
||||
|
||||
NumOp.ProjectBoundaryBar(Phi);
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
@ -173,17 +106,13 @@ public:
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
||||
FermionField X(NumOp.FermOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermOp.FermionGrid());
|
||||
|
||||
NumOp.Mdag(Phi,Y); // Y= Vdag phi
|
||||
X=Zero();
|
||||
ActionSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
|
||||
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
|
||||
NumOp.R(Phi,Y);
|
||||
DenOp.RInv(Y,X);
|
||||
|
||||
RealD action = norm2(Y);
|
||||
RealD action = norm2(X);
|
||||
|
||||
return action;
|
||||
};
|
||||
@ -198,32 +127,68 @@ public:
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
||||
GridBase *fgrid = NumOp.FermOp.FermionGrid();
|
||||
GridBase *ugrid = NumOp.FermOp.GaugeGrid();
|
||||
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
FermionField X(fgrid);
|
||||
FermionField Y(fgrid);
|
||||
FermionField tmp(fgrid);
|
||||
|
||||
GaugeField force(NumOp.GaugeGrid());
|
||||
GaugeField force(ugrid);
|
||||
|
||||
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
|
||||
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
|
||||
FermionField DiDdbP_Phi(fgrid); // Vector C in my notes
|
||||
FermionField DidRinvP_Phi(fgrid); // Vector D in my notes
|
||||
FermionField DoidRinvDagRinvP_Phi(fgrid); // Vector E in my notes
|
||||
FermionField DobidDddDoidRinvDagRinvP_Phi(fgrid); // Vector F in my notes
|
||||
|
||||
FermionField P_Phi(fgrid);
|
||||
FermionField RinvP_Phi(fgrid);
|
||||
FermionField RinvDagRinvP_Phi(fgrid);
|
||||
|
||||
// P term
|
||||
NumOp.dBoundaryBar(Phi,tmp);
|
||||
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
|
||||
NumOp.dBoundary(DobiDdbPhi,tmp);
|
||||
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
|
||||
P_Phi = Phi - DoiDdDobiDdbPhi;
|
||||
NumOp.ProjectBoundaryBar(P_Phi);
|
||||
|
||||
// R^-1 P term
|
||||
DenOp.dBoundaryBar(P_Phi,tmp);
|
||||
DenOp.Dinverse(tmp,DiDdbP_Phi); // Vector C
|
||||
RinvP_Phi = P_Phi - DiDdbP_Phi;
|
||||
DenOp.ProjectBoundaryBar(RinvP_Phi);
|
||||
|
||||
// R^-dagger R^-1 P term
|
||||
DenOp.DinverseDag(RinvP_Phi,DidRinvP_Phi); // Vector D
|
||||
RinvDagRinvP_Phi = RinvP_Phi - DidRinvP_Phi;
|
||||
DenOp.ProjectBoundaryBar(RinvDagRinvP_Phi);
|
||||
|
||||
// P^dag R^-dagger R^-1 P term
|
||||
NumOp.dOmegaDagInv(RinvDagRinvP_Phi,DoidRinvDagRinvP_Phi); // Vector E
|
||||
NumOp.dBoundaryDag(DoidRinvDagRinvP_Phi,tmp);
|
||||
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidRinvDagRinvP_Phi); // Vector F
|
||||
|
||||
|
||||
//Y=Vdag phi
|
||||
//X = (Mdag M)^-1 V^dag phi
|
||||
//Y = (Mdag)^-1 V^dag phi
|
||||
NumOp.Mdag(Phi,Y); // Y= Vdag phi
|
||||
X=Zero();
|
||||
DerivativeSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
|
||||
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
|
||||
dSdU=Zero();
|
||||
|
||||
// phi^dag V (Mdag M)^-1 dV^dag phi
|
||||
NumOp.MDeriv(force , X, Phi, DaggerYes ); dSdU=force;
|
||||
|
||||
// phi^dag dV (Mdag M)^-1 V^dag phi
|
||||
NumOp.MDeriv(force , Phi, X ,DaggerNo ); dSdU=dSdU+force;
|
||||
X = DobiDdbPhi;
|
||||
Y = DobidDddDoidRinvDagRinvP_Phi;
|
||||
NumOp.DirichletFermOp.MDeriv(force,X,Y,DaggerYes); dSdU=dsdU+force;
|
||||
NumOp.DirichletFermOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||
|
||||
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
|
||||
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
|
||||
DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force;
|
||||
DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force;
|
||||
X = DoiDdDobiDdbPhi;
|
||||
Y = DoidRinvDagRinvP_Phi;
|
||||
NumOp.DirichletFermOp.MDeriv(force,X,Y,DaggerYes); dSdU=dsdU+force;
|
||||
NumOp.DirichletFermOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||
|
||||
X = DiDdbP_Phi;
|
||||
Y = DidRinvP_Phi;
|
||||
NumOp.DirichletFermOp.MDeriv(force,X,Y,DaggerYes); dSdU=dsdU+force;
|
||||
NumOp.DirichletFermOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||
|
||||
dSdU *= -1.0;
|
||||
//dSdU = - Ta(dSdU);
|
||||
|
Loading…
x
Reference in New Issue
Block a user